
To appear at the 57th Design Automation Conference (DAC), July 2020, San Francisco, CA, USA.

ApproxFPGAs: Embracing ASIC-Based Approximate
Arithmetic Components for FPGA-Based Systems

Bharath Srinivas Prabakaran∗,‡, Vojtech Mrazek†,‡, Zdenek Vasicek†, Lukas Sekanina†, Muhammad Shafique∗
∗Institute of Computer Engineering, Technische Universität Wien (TU Wien), Austria

{bharath.prabakaran, muhammad.shafique}@tuwien.ac.at
†Faculty of Information Technology, IT4Innovations Centre of Excellence, Brno University of Technology, Czech Republic

{mrazek, vasicek, sekanina}@fit.vutbr.cz

Abstract—There has been abundant research on the devel-
opment of Approximate Circuits (ACs) for ASICs. However,
previous studies have illustrated that ASIC-based ACs offer
asymmetrical gains in FPGA-based accelerators. Therefore, an
AC that might be pareto-optimal for ASICs might not be pareto-
optimal for FPGAs. In this work, we present the ApproxFPGAs
methodology that uses machine learning models to reduce the
exploration time for analyzing the state-of-the-art ASIC-based
ACs to determine the set of pareto-optimal FPGA-based ACs.
We also perform a case-study to illustrate the benefits obtained
by deploying these pareto-optimal FPGA-based ACs in a state-of-
the-art automation framework to systematically generate pareto-
optimal approximate accelerators that can be deployed in FPGA-
based systems to achieve high performance or low-power con-
sumption.

Index Terms—Approximate Computing, FPGA, ASIC, Adder,
Multiplier, Arithmetic Units, Machine Learning, Statistics, Mod-
els, Synthesis.

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) have become in-
creasingly popular since their introduction in 1984 [1]. Due to
their (partial) run-time reconfigurability, short time-to-market,
and lower prototype costs, as compared to Application-
Specific Integrated Circuits (ASICs), FPGAs are preferred in
a wide variety of applications. These comprise domains like
high-performance computing clusters and server platforms that
offer “FPGAs as a Service”, and embedded and cyber-physical
systems, which perform complex data-computations on the
configurable arrays [2]. The current generation of FPGAs are
equipped with a wide range of capabilities that can be used
to design a Programmable System (on a Chip) by including
hard IPs (IC realization) of the low-power ARM A9 processor
core and other commonly used hardware accelerators, such
as video codecs [3]. However, FPGAs are low-performance,
power-hungry devices that are a lot less energy-efficient when
compared to ASICs.

The Approximate Computing paradigm offers a direction
of research, in which the intermediate computational units
can be approximated without “significantly” degrading the
output quality, to obtain savings in power/energy consumption
and latency [4]. This quality of error-tolerance is exhibited
by applications in the fields of recognition, mining, and
synthesis, due to the following four factors: (i) redundancy

‡ These two authors have contributed to this work equally.

in the processed data, (ii) algorithms with error attenuat-
ing patterns, (iii) non-existence of a unique golden output,
and (iv) imperceptible differences in the output quality by
end-users. Since its re-emergence, plenty of research works
from academia and industry have exploited this phenomenon
across the hardware [5]–[16] and software [17]–[20] layers to
obtain power/energy/latency savings.

Most of the current works on approximate circuits (AC)
primarily focus on obtaining energy/power/latency savings
in ASIC-based systems. Previous studies have illustrated
that ASIC-based approximate computing principles and tech-
niques offer asymmetric savings when implemented on FP-
GAs [13] [15] [16]. State-of-the-art ACs for adders and multi-
pliers can offer up to 70% savings in energy when synthesized
for ASICs. Whereas these designs offer minimal/asymmetric
savings or at times negative savings, i.e., an increase in
resources when synthesized for FPGAs. This is primarily due
to the architectural differences between ASICs and FPGAs.
The required functionality is realized using logic gates in
ASICs and using Lookup Tables (LUTs) made of SRAM
elements in FPGAs. Therefore, an AC that offers significant
savings and introduces the least error (pareto-optimal) for
ASICs, might not necessarily be pareto-optimal for FPGAs.
Note, by pareto-optimal approximate circuits we mean the set
of all circuits that are not dominated by any other circuit from
the set of circuits in the library in terms of the evaluation
metrics.

Furthermore, the works presented in [13]–[16] have de-
veloped FPGA-based approximate circuits by analyzing the
architecture of the target FPGA. These techniques are typically
not scalable, due to their manual lookup table optimizations
and approximations, and do not offer multiple pareto-optimal
design points that trade-off between power consumption and
introduced error. To further illustrate these behavioral differ-
ences between ASICs and FPGAs, we present a motivational
analysis of our work in the next sub-section.

A. Motivational Analysis

We synthesize and implement a small subset of 4, 494 8x8
unsigned approximate multiplier designs from the library of
evolutionary approximate arithmetic circuits [21] and the state-
of-the-art FPGA-based approximate multiplier designs [16].
These circuits were synthesized and implemented for the Xil-

1

ar
X

iv
:2

00
4.

10
50

2v
1

 [
cs

.A
R

]
 2

2
A

pr
 2

02
0

inx xc7vx485tffg1157-1 FPGA using the Vivado 2017.2
tool-chain, with zero Digital Signal Processing blocks enabled
to ensure that the designs are mapped to the reconfigurable
logic (see details in Section III). We also evaluate the output
quality of these approximate circuits with the help of their
behavioral models by computing their Mean Error Distance
(MED), which we define as the average of the absolute error
difference across all the input combinations relative to the
maximum number of outputs [22]. Based on the resources
required for each of these designs and their MED, we extract
the pareto-front of approximate 8x8 multipliers for the target
FPGA and compare them to the pareto-front obtained when
the same designs are synthesized for ASICs. The results of
these experiments are presented in Fig. 1. From these results,
we make the following key observations:

(1) The ACs that are pareto-optimal for ASICs (ASIC-ACs)
are not necessarily pareto-optimal for FPGAs (FPGA-
ACs). As discussed earlier, this is primarily due to the
differences in realizing the logic functions across the ASIC
and FPGA platforms.

(2) The time required for synthesizing only 10% of the
approximate 8x8 multiplier library is ~6 days. This huge
time requirement can also be attributed to the architectural
differences between FPGAs and ASICs. The synthesis and
routing algorithms of an FPGA tool-flow need to map
the functionality to existing hardware blocks on the target
FPGA while optimizing for various factors and constraints
to maximize performance.

(3) State-of-the-art FPGA-based approximate multipliers [16]
are not pareto-optimal when compared to the 10% subset
of approximate multipliers from [21]. Similarly, the other
FPGA-based approximate adders and multipliers pre-
sented in [13] [15] are neither pareto-optimal nor scalable.
Due to their manual optimizations and circuit designs, they
are not effective in achieving similar performance/power
trade-offs, as illustrated by the evolutionary approximate
arithmetic library for larger bit-widths.

Based on these observations, we have identified the follow-
ing research challenges:

• Based on the time required for synthesizing and implement-
ing a small subset of the designs for the target FPGA, the
time required for exhaustively exploring all designs in the

Fig. 1: Analysis of Pareto-optimal Approximate Circuits
for Approximate 8x8 Multipliers and State-of-the-Art (SoA)
FPGA-Based Approximate Multipliers [16].

data-set would be in the magnitude of 100s of hours, or a
couple of weeks.
– How to efficiently reduce the time required for explor-

ing the design-space of approximate arithmetic units in
FPGAs?

– Can we explore the concepts of machine learning in
order to reduce the exploration time by estimating FPGA
parameters? If yes, which machine learning algorithm?

• There is a nonexistence of pareto-optimal FPGA-ACs,
which can offer a design-space trade-off between the re-
sources consumed and the error introduced.
– How can we determine a set of pareto-optimal FPGA-

ACs that can be deployed in error-tolerant applications
to obtain power/energy/latency savings?

• Unavailability of a systematic automation framework that
can be used to develop FPGA-ACs for a given error-tolerant
application and its quality requirements.
– How to systematically deploy the FPGA-ACs in a given

error tolerant application to maximize performance or
power/energy savings?

To address these research challenges, we propose the fol-
lowing novel contributions:
• We propose the ApproxFPGAs methodology that deploys

machine learning (ML) models, which can be used to
estimate the power and latency of the approximate circuits.
These ML models are trained using a small subset of the
evolutionary approximate circuits [21].

• Based on the estimates, we propose to construct a pseudo-
pareto-front, which can be used to determine the set of
pseudo-pareto-optimal approximate circuits for varying bit-
widths of the approximate arithmetic units. These models
can then be subsequently synthesized for the target FPGA
to measure the exact power and latency of these FPGA-ACs.

• These pareto-optimal FPGA-ACs are open-source and avail-
able online at https://github.com/ehw-fit/approx-fpgas, to
enable reproducible research and foster development in this
area.

• We also perform a case-study by deploying these pareto-
optimal FPGA-ACs in a state-of-the-art automation frame-
work that can systematically generate approximate accel-
erators, which can be deployed in FPGA-based systems
to achieve high-performance and/or low power/energy con-
sumption.

II. THE APPROXFPGAS METHODOLOGY

Overview: Fig. 2 presents an overview of the proposed
methodology. The complete procedure can be divided into two
sub-parts, (i) the first part deals with the training and testing
of the ML models, which can be used to efficiently estimate
the hardware resources of a given approximate arithmetic
design, while (ii) the second part deals with the construction
of the pareto-optimal FPGA-ACs, which can be deployed in
error-tolerant applications.

Inputs: We start by compiling the library of approximate
arithmetic circuits that need to be analyzed and deployed

2

https://github.com/ehw-fit/approx-fpgas

Library of
Approximate

Circuits

8-bit 12-bit

16-bit ...

Training
subset

Synthesis

Validation
subset

#LUTs, # Slices
Power, Delay

Model
training

Model
validation

Test
accuracy

Modification of ML parameters

Estimation
of FPGA

parameters

Pseudo-Pareto
construction

Pseudo-Paretos

Final
synthesis

FPGA-ACs

Pareto
construction

ApproxFPGAs

Error
metrics

ASIC
metrics

ASIC
metrics

Fig. 2: An Overview of the ApproxFPGAs Methodology

in the target application. Without loss of generality, in this
work, we consider the evolutionary library of approximate
adder and multiplier circuits for illustrating the benefits of
our methodology [21]. Note, the use of other state-of-the-
art designs is orthogonal to our approach and they can be
appropriately included, with necessary modifications, in the
library of approximate circuits.

Exhaustive Exploration: Due to the large number of
designs present in the library, the time required for exploring
all the designs, exhaustively, might be quite large, as initially
stated in Section I. Fig. 3 presents a brief illustration of the
estimated time required for synthesizing all the approximate
circuits present in the library for the target FPGA. As can be
observed, when the number of ACs in the library increases,
the time required for exploring the designs rises and reaches a
magnitude of 100s of hours. Therefore, exhaustive exploration
is not a feasible option for identifying the pareto-optimal
approximate circuits for FPGAs. Fig. 3 also illustrates the
savings in exploration time when the proposed ApproxFPGAs
methodology is used for exploration as opposed to exhaustive
exploration. The exploration time is reduced by a factor of
~10× from 82.4 days to 8.2 days, including the time required
for synthesizing the data-set, training and evaluating the ML
models, and re-synthesizing the pareto-optimal FPGA-ACs.

ML-Model Learning: Due to the infeasible time require-
ments of exhaustive exploration, we propose to train and
evaluate a wide variety of statistical and machine learning
(S/ML) models, which can be used to estimate the resource
requirements of an approximate circuit, given its hardware
description. These S/ML models can be used to estimate

8-bit
adder

12-bit
adder

16-bit
adder

8-bit
mult.

12-bit
mult.

16-bit
mult.

104

106

FP
GA

 sy
nt

he
sis

tim
e

[s
]

hour

day
week
month

82.4 d
8.2 d

Cumulative Exhaustive Expl.
Cumulative ApproxFPGA

Exhaustive Expl.
ApproxFPGA

Fig. 3: Time Required for Exhaustive Exploration Compared
to our ApproxFPGAs Approach for all ACs in the Library.

TABLE I: List of Light-weight Statistical/Machine
Learning Models Used in ApproxFPGAs.
Statistical/ML Model

ML1 Regression w.r.t
ASIC-AC Power

ML2 Regression w.r.t
ASIC-AC Latency

ML3 Regression w.r.t
ASIC-AC Area

ML4 PLS Regression
ML5 Random Forest
ML6 Gradient Boosting

ML7 Adaptive Boosting
(AdaBoost)

ML8 Gaussian Process

ML9 Symbolic
Regression

Statistical/ML Model
ML10 Kernel Ridge
ML11 Bayesian Ridge

ML12 Coordinate
Descent (Lasso)

ML13 Least Angle
Regression

ML14 Ridge Regression

ML15 Stochastic
Gradient Descent

ML16 K-Nearest
Neighbours

ML17 Multi-Layer
Perceptron (MLP)

ML18 Decision Tree

FPGA parameters like power consumption (W), latency (ns),
and area (#LUTs). Training these models requires a labeled
data-set, with the FPGA parameters as the output labels and
the hardware description of the AC as the input data. We
build this data-set by randomly extracting a 10% subset of
the complete library of ACs and synthesizing them for the
target FPGA platform. This subset is further partitioned into
training (80%) and validation (20%) data-sets, which are then
used to train and evaluate the various machine learning models,
respectively. Without loss of generality, in this work, we
evaluate the applicability of the most-commonly used light-
weight S/ML models (see Table I) to reduce the time required
for exploring the library of ACs. We iteratively evaluate the
accuracy of the models and modify their parameters based on
the correlation obtained on the validation data-set to further
improve the model’s accuracy. Instead of synthesizing and im-
plementing each circuit in the library, which might take weeks
to months, we can roughly estimate the FPGA parameters of
all circuits using these models in the order of seconds. To
estimate the accuracy of these ML models, we propose the
fidelity metric, which evaluates the relationship between the
measured (mes) and estimated (est) FPGA parameters for
any two ACs in the library. We compute the fidelity (F) of a
set of ACs, X , as:

F (X) =

∑
x1∈X

∑
x2∈X E(x1, x2)

|X|2
(1)

where E denotes the correctness of the relationship between
the estimated and measured FPGA parameters:

E(x, y) =

{
1 If est(x) R est(y)
∧ mes(x) R mes(y)

0 Otherwise
(2)

where R denotes one of the following relations {<,>,=}
between the FPGA parameters of the ACs. Due to their
availability

Pareto Construction: Based on the outcome of our ex-
periments (see Section IV), we select the best S/ML models
to estimate the FPGA parameters of all ACs in the library.
Based on these parameter-estimates, we can determine the

3

pareto-optimal FPGA-ACs. However, we have observed that
these models have limited fidelity, because of which the real
pareto-optimal ACs can be dominated by the ACs where the
estimation was incorrect. Therefore we propose to construct
multiple pseudo-pareto-fronts from the input set (library) of
ACs C. We determine the first set of pseudo-pareto-optimal
ACs (F1) from the initial set of all ACs C. Next, we eliminate
all these pseudo-pareto-points from the input set to construct
the second pseudo-pareto-front, i.e., using C \F1 as the input,
we determine F2. Similarly, we construct the third pseudo-
pareto-front F3, using the input C \ (F1 ∪ F2), and so on.
By constructing multiple pseudo-pareto-fronts, we mitigate the
inaccuracies associated with our S/ML models. The ACs lying
on these pseudo-pareto-fronts can be subsequently synthesized
again using our work-flow to determine the accurate FPGA
parameters and the resources required. Hence, we have to syn-
thesize an additional number of ACs when we are constructing
multiple pseudo-pareto-fronts.

Based on the real FPGA parameter measurements obtained
from the synthesis and implementation reports of Vivado, we
construct an open-source library of pareto-optimal FPGA-ACs
that offers a trade-off between the output quality and the
resources consumed. This library can be subsequently utilized
by application and system developers, to further maximize
performance or power and energy savings obtained while sat-
isfying the quality constraints of the application. The RTL and
behavioral models of the FPGA-ACs are open-source and are
available online at https://github.com/ehw-fit/approx-fpgas.

AutoAx-FPGA: To incorporate the set of pareto-optimal
FPGA-ACs in different error-tolerant applications, we modify
the state-of-the-art AutoAx [23] framework to include the
functionality of designing ACs for a given application that
can be deployed in FPGA-based systems. The traditional
AutoAx framework searches the design-space of approximate
components to select and combine approximation components,
in order to generate an approximate hardware accelerator
that maximizes the energy savings. Initially, a set of random
approximation assignments are evaluated for the target accel-
erator circuit, to get the quality of results (QoR) and hardware
(HW) cost of the accelerator. Based on these values, QoR
and HW cost estimators are constructed, which can be used to
explore the complete design-space of approximate components
for the given accelerator and to determine the set of pareto-
optimal circuits for the given application. To generate approx-
imate accelerators for a given application, which can be used
in low-power and/or high-performance FPGA-based systems,
we propose to include the following functionality in AutoAx:
(i) we replace the library of pareto-optimal ASIC-ACs with the
set of pareto-optimal FPGA-ACs obtained from the proposed
ApproxFPGAs methodology, (ii) we modify the estimators
used in AutoAx to estimate the FPGA parameters of the
approximate accelerator instead of their ASIC-based HW
costs.

III. EXPERIMENTAL SETUP

The RTL (in Verilog) and behavioral models (in C) of the
evolutionary approximate arithmetic circuits are open-source
and readily accessible1. These designs are synthesized and
implemented (i.e., place & route) using the Vivado Design
Suite 2017.2 for the target FPGA xc7vx485tffg1157-1,
to extract their area, power, and timing reports. We restrict
the placement and routing algorithms of the Xilinx Vivado by
disabling the use of the FPGA’s DSP logic blocks. We do this
to ensure that the designs are mapped on to the configurable
logic. These reports are used to extract the FPGA parameters,
which are subsequently used for training and evaluating the
S/ML models. The S/ML models are implemented, trained,
and tested inside the Python 3.7 environment with the help of
the scikit-learn library. The RTL designs were synthesized on
an Intel Core i5− 7600 CPU with 16GB of internal memory
and a 256GB Solid-State Drive (SSD). The S/ML models were
trained and evaluated on an Intel Xeon CPU E5− 2630 with
16GB of internal memory. An overview of our work-flow is
presented in Fig. 4.

Fig. 4: Overview of Our Experimental Work-flow.

IV. RESULTS & DISCUSSION

Fidelity: First, we illustrate the accuracy of the 18 S/ML
models that we have evaluated inside our ApproxFPGAs
framework. We do this by studying the fidelity of these models
with respect to the three important FPGA parameters, namely,
latency (ns), power (mW), and area (#LUTs). The fidelity
of these models is evaluated on the validation data-set. The
results of these experiments are presented in Fig. 5. From these
results, we make the following key observations:
• Tree-based methods, like Decision Trees and Random For-

rest, achieve above-average accuracy in estimating the
FPGA parameters and retaining their relationship to the
other ACs.

• Based on further analysis, we also observed that generaliza-
tion of models across all bit-widths is not very effective, i.e.,
estimating FPGA parameters of higher bit-width (12-/16-bit)
designs (adder or multiplier) using a model learned from
a lower bit-width (8-bit) designs is not very effective. On
average, we observed that the fidelity of the higher bit-width
designs decreased from 88% to 53% when using models

1https://github.com/ehw-fit/evoapproxlib

4

https://github.com/ehw-fit/approx-fpgas

trained with lower bit-width designs as opposed to designs
of the same bit-width.

• Ridge models such as Kernel Ridge and Bayesian Ridge,
typically, illustrate the best fidelity.

We also summarize the top-3 S/ML models for each FPGA
parameter, along with the fidelity achieved for each case,
in Table II. Likewise, we identify the models that achieve
maximum fidelity when obtained using regression analysis on
their corresponding ASIC parameters.

TABLE II: Fidelity of the top-3 ML Models for the Estimating
the FPGA parameters

FPGA Latency FPGA Power FPGA Area
Model Fidelity Model Fidelity Model Fidelity
ML11 90% ML11 91% ML4 89%
ML4 89% ML13 91% ML13 88%

ML10 87% ML4 89% ML11 86%
ML2 89% ML1 90% ML3 84%

Correlation of ML Models: Next, we illustrate the cor-
relation between the estimated FPGA parameters and their
measured values when the top-3 S/ML models are used on
the library of approximate 16x16 multipliers. These results are
illustrated in Fig. 6. From these results, we make the following
key observations:

• The Bayesian Ridge and PLS regression techniques can be
used as standalone techniques to estimate all three FPGA

M
L.

1
M

L.
2

M
L.

3
M

L.
4

M
L.

5
M

L.
6

M
L.

7
M

L.
8

M
L.

9
M

L.
10

M
L.

11
M

L.
12

M
L.

13
M

L.
14

M
L.

15
M

L.
16

M
L.

17
M

L.
18

0%

20%

40%

60%

80%

100%

Fi
de

lit
y

Latency Power Area

Fig. 5: Fidelity Analysis of the 3 FPGA parameters for the
Different S/ML Techniques Described in Table I.

parameters, as they are one of the top-3 models for all three
parameters.

• Statistical regression with respect to the corresponding ASIC
parameters is equally useful in estimating the FPGA param-
eters of the given circuit.

• Due to the ~30% bias illustrated by the model, latency is
not estimated accurately, especially using regression with
ASIC parameters and Kernel Ridge. This leads to a scenario
where the circuit latency is under-estimated by the model,
including certain pareto-optimal designs.

Construction of the Pareto-fronts: As discussed earlier,
we construct multiple pareto-fronts to ensure that non-pareto-
optimal designs are not missed by our methodology. Towards
this, we illustrate the benefits of constructing multiple pareto-
fronts sequentially for estimating the FPGA latency using the
top-3 S/ML models and Regression with respect to ASIC
latency. Fig. 7 illustrates the results of constructing 1, 2, and
3 pareto-fronts using the technique discussed in Section II.
From these results, we make the following key observations:

• Using ML-based techniques for estimating the FPGA pa-
rameters reduces the total number of synthesized circuits
by a factor of ~9.9× to 4, 548, including the training and
validation data-set and synthesis of pseudo-pareto-optimal
points, instead of synthesizing the complete library of ap-
proximate 8x8 multipliers.

• The ML models are highly effective in selecting the pseudo-
pareto-optimal designs that have to be re-synthesized, as
compared to the regression analysis w.r.t ASIC latency,
which increases the number of circuits to be explored
from 79 in Bayesian Ridge to 164, effectively doubling the
number of new circuits to be synthesized.

• The best results are obtained when we effectively combine
the pseudo-pareto-optimal points obtained from multiple
ML models. Therefore, we need to consider a union of
all the pareto-fronts

⋃n
i=1 Fi to determine the final set of

pareto-optimal FPGA-ACs.

Pareto-Optimal FPGA-ACs: Fig. 8 illustrates the set of
FPGA-ACs synthesized to obtain the subset of pareto-optimal
FPGA-ACs using our proposed ApproxFPGAs methodology
on the library of 8-, 16-bit adders and 8x8, 16x16 multipliers.
Although we have not exclusively determined and synthesized

Fig. 6: Correlation Analysis of the the Top-3 S/ML Techniques for the Library of 16x16 Approximate Multipliers.

5

Fig. 7: Analysis of Constructing Multiple Pareto-fronts for the 8x8 Approximate Multiplier Library w.r.t FPGA Latency.

all the pareto-optimal designs, we have reduced the exploration
time a factor of ~10× to obtain, on average, 71% percentage
coverage of the pareto-optimal designs present in the library
of approximate circuits. This is quite explicitly illustrated with
the help of the pareto-front in the designs with a higher
number of ACs present in the library, such as the approximate
multipliers, and a little less explicit for libraries with a lower
number of circuits, like the approximate adders. Similarly,
we have generated the pareto-optimal ACs for the 12-bit
approximate adder and 12x12 approximate multiplier.

AutoAx-FPGA: Finally, we present the results of modifying
the AutoAx framework to include the functionality of gen-
erating pareto-optimal accelerators for FPGA-based systems.
We evaluated the modified AutoAx-FPGA methodology using

a Gaussian Filter as a case-study and the input of 9 pareto-
optimal 8x8 approximate multipliers and 8 16-bit approximate
adders. The QoR of the Gaussian filter’s output is estimated
using the structural similarity index (SSIM), for which we
build an estimator. First, we generate a training and validation
data-set of 5, 000 random approximate circuits for the given
Gaussian filter, which was synthesized and implemented using
the Vivado work-flow to measure their FPGA parameters
such as area, latency, and power consumption. Similar to
the AutoAx methodology, we constructed estimators that can
determine the FPGA parameters for the other circuits in
the library, and construct 3 different pareto-fronts using the
hill-climber algorithm. We thereby reduce the number of
accelerator circuits to be explored from 4.95 × 1014 to 368,

Fig. 8: Evaluation of the Pareto-optimal FPGA-ACs Obtained using the ApproxFPGAs Methodology.

6

444, and 946 possible designs for each of the FPGA parameter-
QoR scenarios, namely, latency-SSIM, power-SSIM, and area-
SSIM, respectively. Each of these designs is synthesized in the
Vivado work-flow and their behavioral models are deployed
in the image processing environment to measure their FPGA
parameters and determine their SSIM. These results are illus-
trated in Fig. 9 We can observe that AutoAx-FPGA achieves
better results when compared to a simple random search.
Furthermore, we can also observe that the optimization for
area and power improve the savings obtained in other FPGA
parameters as well, which is not the case when we optimize
for latency. For example, in the case where we optimize for
latency in Fig. 9, we would expect the SSIM-Latency pareto-
front to encompass the best ACs in terms of latency, but this
is not the case as the latency-estimator is not very effective.
However, since the other two pareto-fronts improve the savings
for other FPGA parameters as well, they outperform the SSIM-
Latency pareto-front ACs, even in terms of latency.

Fig. 9: Analysis of the ACs from FPGA-AutoAx Compared
to the Basic Random Search.

V. CONCLUSION

We presented the ApproxFPGAs methodology, for embracing
the use of current state-of-the-art ASIC-based approximate
circuits for FPGA-based systems. We synthesize a partial
subset of the library of arithmetic circuits to establish the
training and validation data-set, which can be used to teach and
evaluate the models’ applicability. Based on the outcome, we
chose the top-3 models that achieve the best fidelity to estimate
the FPGA parameters for all the circuits in the data-set, which
is used to subsequently construct multiple pseudo-pareto-
fronts. The circuits on these pareto-fronts are re-synthesized
to measure the correct FPGA parameters and determine the
final set of pareto-optimal FPGA-ACs, which can be used by

system developers and application-designers to develop low-
power or high-performance FPGA-based accelerators. This set
of pareto-optimal arithmetic FPGA-ACs is open-source and
available online at https://github.com/ehw-fit/approx-fpgas. Fi-
nally, we evaluate the applicability of these pareto-optimal
ACs by using a modified version of the state-of-the-art AutoAx
framework to illustrate the benefits obtained.

ACKNOWLEDGEMENT

This work was partially supported by Doctoral College
Resilient Embedded Systems which is run jointly by TU
Wien’s Faculty of Informatics and FH-Technikum Wien, and
partially by Czech Science Foundation project 19-10137S.

REFERENCES

[1] S. M. S. Trimberger, “Three ages of fpgas: A retrospective on the first
thirty years of fpga technology,” IEEE Solid-State Circuits Magazine,
vol. 10, no. 2, pp. 16–29, 2018.

[2] R. Watanabe et al., “Implementation of fpga building platform as a cloud
service,” in Proceedings of the 10th HEART. ACM, 2019.

[3] L. H. Crockett et al., The Zynq Book: Embedded Processing with the Arm
Cortex-A9 on the Xilinx Zynq-7000 All Programmable Soc. Strathclyde
Academic Media, 2014.

[4] V. K. Chippa et al., “Analysis and characterization of inherent applica-
tion resilience for approximate computing,” in DAC. ACM, 2013.

[5] H. Jiang et al., “A comparative review and evaluation of approximate
adders,” in GLSVLSI. ACM, 2015.

[6] H. Jiang et al., “A comparative evaluation of approximate multipliers,”
in NANOARCH. IEEE, 2016.

[7] S. Mittal, “A survey of techniques for approximate computing,” ACM
Computing Surveys (CSUR), vol. 48, no. 4, p. 62, 2016.

[8] S. Hashemi et al., “Drum: A dynamic range unbiased multiplier for
approximate applications,” in ICCAD. IEEE Press, 2015.

[9] H. Saadat et al., “Approximate integer and floating-point dividers with
near-zero error bias,” in DAC. ACM, 2019.

[10] H. Saadat et al., “Minimally biased multipliers for approximate integer
and floating-point multiplication,” IEEE TCAD, vol. 37, no. 11, pp.
2623–2635, 2018.

[11] S. Venkataramani et al., “Quality programmable vector processors for
approximate computing,” in MICRO. IEEE, 2013.

[12] A. Sampson et al., “Enerj: Approximate data types for safe and general
low-power computation,” in ACM SIGPLAN Notices, vol. 46, no. 6.
ACM, 2011, pp. 164–174.

[13] B. S. Prabakaran et al., “Demas: An efficient design methodology for
building approximate adders for fpga-based systems,” in DATE. IEEE,
2018.

[14] J. Echavarria et al., “Fau: Fast and error-optimized approximate adder
units on lut-based fpgas,” in FPT. IEEE, 2016.

[15] S. Ullah et al., “Smapproxlib: library of fpga-based approximate multi-
pliers,” in DAC. IEEE, 2018.

[16] S. Ullah et al., “Area-optimized low-latency approximate multipliers for
fpga-based hardware accelerators,” in DAC. ACM, 2018.

[17] A. K. Mishra et al., “iact: A software-hardware framework for under-
standing the scope of approximate computing,” in WACAS, 2014.

[18] W. Baek et al., “Green: a framework for supporting energy-conscious
programming using controlled approximation,” in ACM Sigplan Notices,
vol. 45, no. 6. ACM, 2010, pp. 198–209.

[19] D. S. Khudia et al., “Rumba: An online quality management system for
approximate computing,” in ISCA. IEEE, 2015.

[20] A. Yazdanbakhsh et al., “Axilog: Language support for approximate
hardware design,” in DATE. IEEE EDA Consortium, 2015.

[21] V. Mrazek et al., “Evoapprox8b: Library of approximate adders and
multipliers for circuit design and benchmarking of approximation meth-
ods,” in DATE. IEEE European Design and Automation Association,
2017.

[22] J. Han et al., “Approximate computing: An emerging paradigm for
energy-efficient design,” in ETS. IEEE, 2013.

[23] V. Mrazek et al., “autoax: An automatic design space exploration
and circuit building methodology utilizing libraries of approximate
components,” in DAC. ACM, 2019.

7

https://github.com/ehw-fit/approx-fpgas

