
A Device Non-Ideality Resilient Approach for
Mapping Neural Networks to Crossbar Arrays

Arman Kazemi∗, Cristobal Alessandri†, Alan C. Seabaugh†, X. Sharon Hu∗, Michael Niemier∗, Siddharth Joshi∗
∗Department of Computer Science and Engineering, University of Notre Dame

†Department of Electrical Engineering, University of Notre Dame, akazemi@nd.edu

Abstract—We propose a technology-independent method, re-
ferred to as adjacent connection matrix (ACM), to efficiently map
signed weight matrices to non-negative crossbar arrays. When
compared to same-hardware-overhead mapping methods, using
ACM leads to improvements of up to 20% in training accuracy
for ResNet-20 with the CIFAR-10 dataset when training with
5-bit precision crossbar arrays or lower. When compared with
strategies that use two elements to represent a weight, ACM
achieves comparable training accuracies, while also offering area
and read energy reductions of 2.3× and 7×, respectively. ACM
also has a mild regularization effect that improves inference
accuracy in crossbar arrays without any retraining or costly
device/variation-aware training.

I. INTRODUCTION

Automated analysis of vast amounts of data can potentially
revolutionize governance, manufacturing, medicine, and many
other fields. Over the past decade, increasingly complex deep
neural network (DNN) models have been proposed as a means
to perform such automated analysis. The cost to train and
deploy such models has grown along with model complexity,
leading to a need for hardware platforms that are energy-
efficient and low-latency [1].

A promising avenue for hardware research that addresses
these challenges is based on analog domain computation of
matrix-vector multiplication (MVM), a critical kernel in the
forward pass of DNN training as well as inference. One
family of accelerators uses analog crossbar (XBar) arrays
which could be composed of emerging devices such as re-
sistive random access memories (RRAM) [2], phase change
memories (PCM) [3], and ferroelectric field-effect transistors
(FeFET) [4], for highly parallel MVMs. A XBar array rep-
resents the input vector as analog voltages. Applying these
voltages to the rows of the XBar array (where weights are
stored as conductances at row/column crosspoints) induces a
current along the XBar columns. The current of each column
represents the dot product of the input vector and the weight
vector represented by the synapse devices on the column [3].

While XBar arrays efficiently implement MVMs and offer
many performance advantages in energy and latency, their
use poses many practical challenges. One such challenge is
inherent in representing weights as conductance values. This
constrains XBar arrays to use non-negative conductance values
to implement arbitrary signed MVMs. As shown in Fig. 1, two
approaches have been widely adopted: (i) differential encoding
where two elements are used to represent one weight (a double
element (DE) approach) [5], [6] and (ii) a constant bias to

remap values in the range (−w,w) to (0, 2w) (a bias column
(BC) approach) [7], [8]. Another challenge with performing
MVMs via XBar arrays arises due to the limitations of devices
employed for synapse elements, e.g., RRAMs [2], PCMs [3],
FeFETs [4], etc, with respect to achievable weight resolution
and weight update linearity, which in turn can adversely impact
training accuracy. Furthermore, methods to overcome these
issues, e.g., using multiple synapse elements for a single
weight [9], further reduce the energy and area savings that
might otherwise be obtained from XBar arrays. Moreover, the
accuracy of models deployed on XBar arrays for inference is
further degraded by device variation [7], [10].

As stated in [11], to capitalize on the benefits offered
by XBar arrays, breakthroughs in material development or
architecture design are needed. Within this context, this paper
presents a method, referred to as adjacent connection matrix
(ACM), for efficiently mapping signed MVMs to XBar arrays.
By learning the most effective representation of a weight
through a combination of a XBar array column and its im-
mediate neighbor, ACM increases the effective dynamic range
of weight representations. This nearest-neighbor coupling also
introduces a mild regularization effect that improves resilience
to device variation. ACM has been evaluated with the MNIST
[12] and CIFAR-10 [13] datasets and results indicate that using
ACM can lead to (i) up to 20% improvements in training
accuracy when compared to other strategies under equivalent
resource constraints (i.e., the BC approach), (ii) comparable
training accuracies coupled with area reductions of 2.3× and
read energy reductions of 7× when compared to the DE
approach, and (iii) a 10% average improvement compared to
both DE and BC in the inference accuracy of a VGG network
trained on the CIFAR-10 dataset with 3-bit precision XBar
arrays, assuming a 15% device variation.

The remainder of the paper is organized as follows: Section
II reviews strategies for mapping signed MVMs to XBar
arrays. Section III presents ACM and a method to evaluate
and compare it with other mappings. Section IV discusses
the results of our simulations and quantifies DNN accuracy
improvements under resource constraints and device variation;
system-level evaluations of energy, area, and delay are also
presented. Section V concludes by summarizing our findings.

II. BACKGROUND

There are two approaches typically used to map a MVM to
a XBar array; these can be implemented in both the analog



(a) Double Element (DE) (b) Bias Column (BC)

Fig. 1: Prior approaches to map DNN models to ReXB arrays;
(a) Using two resistive elements to represent one weight; (b)
using a single column of resistive elements as reference.

and the digital domain. The first approach, i.e., DE shown in
Fig. 1a, uses two XBar array columns to represent one weight
column [14], [15]. With this approach, the difference between
column-pairs in the XBar array represents the equivalent
signed weighted sum. The second case is an input dependent
bias approach, i.e., BC [7], [8]. As illustrated in Fig. 1b, a
single XBar array column is used as a reference to implement
the bias. The conductance of each element in this column is
fixed to the middle of the conductance range. The output from
this column is subtracted from the output of all other columns
to compute the signed weighted sum.

In order to perform a MVM with XBar arrays with these
mapping methods, the outputs of the MVM are digitized
in the periphery of the XBar array [3]. The operational
overhead of the mappings are the additions and subtractions
performed after digitization. Since both mappings require a
single subtraction per weight, this overhead is the same for
both approaches. The hardware overhead due to the number
of elements used for each mapping is evaluated in Section IV.

Note that, if the conductance values of the XBar array ele-
ments are limited to the range [Gmin, Gmax] (for simplicity,
we assume Gmin = 0), the weights of BC will be in the
range [−Gmax/2, Gmax/2], with the conductance values of
the bias column elements fixed to Gmax/2. For DE, the range
of weights will be [−Gmax, Gmax], at the expense of using
twice as many weight elements, while representing twice as
many weight values as that of the BC. In short, DE utilizes
2× synapse elements and gains a 2× wider dynamic range of
weight representation compared to the BC approach. However,
in both the DE and BC approaches, a MVM with non-negative
weights is performed in the XBar array, followed by a simple
(linear) combination of the outputs from its columns to obtain
an equivalent MVM with signed weights. A critical aspect of
the effectiveness of these mapping solutions is the simplicity
of the linear transforms implemented. These transforms consist
of the addition and subtraction of values at the XBar periphery.

Fig. 2: ACM computes the outputs of a signed MVM as a
combination of the outputs of adjacent columns with alternat-
ing signs.

III. ADJACENT CONNECTION MATRIX

We extend the idea of using simple linear transforms in the
periphery of the XBar array circuit to map a MVM onto XBar
arrays and present a new method called the adjacent connec-
tion matrix (ACM). After a brief qualitative introduction of
the ACM and its benefits over other mapping methods, i.e.,
DE and BC, we provide a formal definition of the different
mapping techniques (DE, BC, and ACM) and show how a
signed MVM can be realized with a non-negative matrix
representing the XBar array, and a constant signed matrix
representing each mapping. Finally, we show the regularization
effect of ACM using its formal definition.

A. Adjacent Connection Matrix Concept

In contrast with (i) the DE approach that uses two elements
per weight (each a reference for the other) and (ii) the
BC approach that uses a fixed reference column per MVM,
the ACM approach uses each column as a reference for its
immediate neighbor. ACM computes the outputs of a signed
MVM as a combination of the outputs of neighboring columns
of the XBar array with alternating signs as shown in Fig. 2.
Like BC, ACM also requires one additional column. This
compares favorably against DE which requires two elements
per weight, and therefore requires almost double the number of
synapse elements in large XBar arrays. It is noteworthy that the
operational overhead of ACM is the same as BC and DE, since
it requires a single subtraction for each weight. Furthermore,
ACM provides a mild regularization effect which increases
resilience against device variation.

B. Formal Definition of Different Mappings

ACM, DE, and BC, all combine the outputs from columns
of the XBar array in a fixed and predefined way. This combi-
nation of columns is comprised of additions and subtractions
only and can be thought of as a matrix with its non-zero entries
limited to ±1. We refer to this matrix as the periphery matrix.
The three different mappings and their corresponding unique
periphery matrices are presented in Figs. 1 and 2. In order to



W

NI

nodes
NO

nodes

(a) Signed Matrix W of
a Fully-Connected Layer

dummy
M S

NI

nodes
ND

nodes
NO

nodes

(b) Equivalent Non-negative Matrix M
and the Periphery Matrix S

Fig. 3: An example in the context of fully-connected layers,
where the original matrix is decomposed as a sequence of a
non-negative matrix M, followed by a periphery matrix S.

verify that the periphery matrix holds as a general technique
to map MVMs onto XBar arrays, we first demonstrate the
decomposition of a signed MVM into (i) a non-negative matrix
that is stored on the XBar array and (ii) a fixed, signed
matrix. We then characterize the requirements of this matrix
and demonstrate that it can be implemented through addition
and subtraction operations at the periphery of the XBar array.

Consider an arbitrary signed matrix W with dimensions
NO × NI

1. To constrain the multiplication to non-negative
weights only, matrix W is factored into a matrix with non-
negative elements M, followed by a periphery matrix S, i.e.,

SM = W , M ≥ 0, (1)

where M≥ 0 means that all elements of M are non-negative.
Within the context of DNN layers, W is the weight matrix of a
fully-connected layer with NI inputs and NO outputs as shown
in Fig. 3a. For ease of visualization, we define a dummy layer
Y with ND neurons. Fig. 3b shows the layer mapped to a XBar
array where M is the non-negative matrix with dimensions
ND×NI , and S is a periphery matrix of dimensions NO×ND.
While we have used a fully-connected layer from a DNN in
our example, all linear transforms, including convolutions, are
possible through ACM.

There are two properties we desire from S: (i) a fixed S
must guarantee that any multiplication using a signed matrix
W can be realized using a non-negative matrix M and a fixed
signed matrix S and (ii) S must be of a form that does not
impose large hardware implementation costs.

C. Sufficient Conditions of a Periphery Matrix

As before, given a W with the dimensions NO × NI , S
can be assigned dimensions NO×ND, and M the dimensions
ND × NI . Formulated independently for each column of W
and M, this can be expressed as:

Smk = wk, mk ≥ 0, (2)

where mk and wk are the k-th columns of M and W,
respectively, and k ∈ {1, 2, . . . , NI}.

1In this section we examine the transpose of the matrices to simplify the
solution of equations and the explanations.

A necessary condition for the existence of a solution to
Eq. (2) is that wk is in the column space of S. This con-
dition will be satisfied for any arbitrary wk if and only if
rank(S) = NO. The sufficient condition for the existence of
a non-negative solution is the existence of a vector xh in the
null space of S with strictly positive elements. This guarantees
that any particular solution xp to the system Smk = wk can
be shifted as x′

p = xp+αxh to be non-negative. The sufficient
conditions are summarized as:

1. rank(S) = NO

2. ∃ xh > 0,xh ∈ RND , s.t. S xh = 0. (3)

If these conditions are met, the signed matrix W can be de-
composed to a non-negative matrix M and periphery matrix S,
such that, W = SM . Equations ND = rank(S)+nullity(S)
and nullity(S) ≥ 1 hold, if there is at least one element (xh)
in the null space of S. Therefore, M with ND columns has at
least one more column than W with NO columns. A particular
case that satisfies the second condition of Eq. (3) is xh = 1,
which implies that the elements of the rows of S add up to
0. Thus, an S such that neighboring columns are subtracted
from each other, introduced earlier as the ACM, satisfies both
conditions, i.e., one extra column in M and the sum of rows
of S = 0. Note that S also has all the properties listed as
desirable per Section III-B.

D. Analysis of Different Mappings

Using the periphery matrix decomposition discussed above,
we can derive not only the ACM mapping but also the DE and
BC mappings. We can observe in Figs. 1 and 2 that all three
approaches satisfy the conditions stated in Eq. (3). In all cases,
each row in the periphery matrix has two nonzero elements (1
and −1), hence the sum of the elements of the rows add up to
0. Furthermore, ND ≥ 1 is true for all three cases. However,
DE has ND = 2NO columns, whereas BC and ACM have
the minimum number of columns, ND = NO + 1. Therefore,
BC and ACM require minimal additional hardware resources.
Furthermore, we assume that the elements of M have a
conductance range of [Gmin, Gmax] (again, for simplicity,
we assume Gmin = 0). Thus, by using the ACM approach,
addition and subtraction of neighboring elements can result in
the representation of weights over the range [−Gmax, Gmax]
while using the same hardware resources as BC. That said,
while DE can always demonstrate the full range in weights,
ACM is limited by having to balance DNN accuracy and
weight range, as neighboring columns are not guaranteed
to have a large disparity in weights. Section IV quantifies
the effect of these different mappings on system-level DNN
training and inference accuracy in the presence of non-ideal
XBar array synapse devices.

E. Regularization Effect of Adjacent Connection Matrix

An observation of the nearest-neighbor coupling induced by
the ACM approach naturally leads to the question, how does
the ACM approach constrain the neighboring weights and what
is the consequence of such constraint? In this subsection we



examine the effects of these constraints through the lens of
regularization. Let us denote the sum of all the elements of
a column of M as Mj , in other words Mj =

∑NI

i=1 Mij .
Inserting this expansion into Eq. (1) and explicitly writing out
the values in the periphery matrix S of ACM (Fig. 2) leads to
the following expression:

NI∑
i=1

NO∑
j=1

Wij = M1 −M2 +M2 −M3 + . . .

+MNO−1
−MNO

= M1 −MNO . (4)

Eq. (4) demonstrates that any non-negative weight matrix M
trained with the ACM approach must satisfy the constraints
on the first and last columns in the matrix M. For a quantized
matrix where the elements of matrix M have bit precision B,
each element can only be assigned one of 2B values. Thus, for
any index j, the column Mj can be assigned 1 of 2B values
per element, leading to NI×2B different values. Consequently,
for quantized matrices, Eq. (4) constrains

∑NI

i=1

∑NO

j=1 Wij to
2×NI ×2B−1 values. When each element in M has a small
set of possible values (i.e., when 2B is smaller), this constraint
is tighter. Thus, leading to a regularization effect when training
with ACM. As the results in Section IV-B indicate, the
nearest-neighbor coupling of ACM increases device variation
resilience in reverse relation with B (the smaller B, the higher
the resilience). However, ACM based training is not meant to
replace standard regularization methods, e.g. L-2, dropout, etc,
which have a much stronger regularization effect.

IV. EVALUATION AND RESULTS

In this section, we first evaluate the training accuracy of
the ACM method and compare it with alternative mappings.
We follow this with an evaluation of inference accuracy
on a pre-trained network with different mappings when the
weights are subject to device variation. We have developed a
model for neural network training using TensorFlow [16] that
incorporates the non-idealities of the synapse devices. While
training, matrix M is constrained to be non-negative and is
followed by a periphery matrix that is defined as a fixed layer
with values in {−1,+1, 0} as depicted in Figs. 1 and 2. In
our studies, we consider two non-ideal device characteristics
that virtually exist in all physical synapse devices used for
XBar arrays and impact the accuracy of DNNs trained on
XBar arrays: (i) limited weight precision (i.e., the number
of representable states) and (ii) non-linear weight update of
XBar array synapse devices. For the former, we quantize the
weights similar to [17], and for the latter, we present results
for devices with symmetric increase/decrease steps [4], [18]
(Fig. 4a) to isolate the effect of the nonlinear weight update
on ACM from the effect of the nonlinearity on the learning
rule. Since ACM is a linear transform, it is also compatible
with learning rules tailored for devices with asymmetric weight
update nonlinearity [19]. We present results for activations
quantized to 8 bits of resolution; results on 6-bit quantized

(a)

Pulse Number

C
on

du
ct

an
ce

(S
)

Potentiation
Depression

(b)

σ σ

Conductance (S)

PD
F

State 1
State 2

Fig. 4: (a) Up/down symmetric non-linearity observed in [4],
[18] and assumed in training with non-linear weight update;
(b) Gaussian distribution used to model device variation for a
1-bit (2 state) device, observed in [10].

activations followed the same trend and were omitted for
brevity.

To evaluate DNN training accuracy when using ACM, we
train a variant of LeNet [20] with the MNIST dataset; we also
train a VGG-9 [21] network (with 6 convolutional layers and 3
fully-connected layers) and a ResNet20 network [22] with the
CIFAR-10 dataset using a vanilla stochastic gradient descent.
We train four types of models for the above networks: (i) a
baseline model, i.e., the original network trained with signed
weights, (ii) DE, i.e., a network trained using non-negative
weights and the periphery matrix in Fig. 1a, (iii) BC, i.e., a
network trained using non-negative weights and the periphery
matrix in Fig. 1b, and (iv) ACM, i.e., the network trained using
non-negative weights and the periphery matrix in Fig. 2. We
also evaluate the impact of device variation on the inference
accuracy of the VGG-9 network trained with the CIFAR-
10 dataset when different mappings are used. Variation is
modeled as a zero-mean, normal distribution [10] as depicted
in Fig. 4b, and this is added to the desired conductance value.
Finally, we investigate the system-level characteristics of a
XBar-based accelerator that uses different mappings with the
NeuroSim+ [7] tool in terms of area, delay, and energy.

A. Neural Network Training Accuracy

Figs. 5a and 5e show training and test accuracies for
the LeNet and ResNet20 networks with single-precision
floating-point (FP32) weights, respectively. The three mapping
schemes achieve results equivalent to the baseline model. Fur-
thermore, the training and test errors follow similar trajectories
as a function of the number of epochs. This is consistently
observed for different networks and training conditions for the
two datasets. These observations validate our analysis in Sec-
tion III, experimentally showing that the three decompositions
(DE, BC, ACM) can achieve similar accuracy in DNN training
when there are no constraints on weight precision during
training. Note that while ACM provides identical test accuracy
at FP32 weights, the training accuracy is lower than that of
DE and BC in Fig. 5e. This is due to the mild regularization
effect of ACM that is discussed in Section III-E.

Figs. 5b, 5c, and 5d show the effect of limited XBar array
weight precision on training DNNs on MNIST and CIFAR-10
tasks. The test errors are shown as a function of the number
of bits for weight precision. Since there exists no array-level



0 10 20 30
0

1

2

3

Test

(a) Training

E
rr

or
(%

)
LeNet, FP32

Baseline
ACM
DE
BC

2 3 4 5 6 7 8

1

2

3

4 Reported
precisions
at scale

(b)

LeNet, Linear

ACM
DE
BC

3 4 5 6 7 8

10

15

20

25

(c)

VGG-9, Linear

ACM
DE
BC

3 4 5 6 7 8

10

20

30

(d)

ResNet20, Linear

ACM
DE
BC

0 50 100
0

10

20

30

(e)

Number of Epochs

E
rr

or
(%

)

ResNet20, FP32

Baseline
ACM
DE
BC

2 3 4 5 6 7 8
0

2

4

6

8

2 bits

(f)

Weight Resolution (bits)

LeNet, Nonlinear

ACM
DE
BC

3 4 5 6 7 8

20

40

60

~2 bits

(g)

Weight Resolution (bits)

VGG-9, Nonlinear

ACM
DE
BC

3 4 5 6 7 8

20

40

60

2 bits

20%

(h)

Weight Resolution (bits)

ResNet20, Nonlinear

ACM
DE
BC

Fig. 5: This figure presents training results with MNIST and CIFAR-10 datasets. (a) and (e) are results from training with
FP32 weights and activations and the solid and dashed lines are test accuracies and training accuracies, respectively. (b), (c),
and (d) are results from training with limited weight precision with linear weight update and 8-bit activations. (f), (g), and
(h) show results for training with limited weight precision with non-linear weight update and 8-bit activations. The grey area
illustrates the bit precisions that have not been demonstrated experimentally at the array scale for synapse devices.

experiments demonstrating XBar array synapse devices with
weight precision higher than 5 bits, we focus our study on
weights from 2-6 bits. For precision lower than 6 bits, it can
be observed that the error of DE is lower than that of the other
mappings. As one would expect, this is because DE uses twice
the number of elements as BC and ACM and consequently has
twice the range in weight representation. When using ACM,
some of the resolution lost through BC is recovered, placing its
accuracy between BC and DE. The ACM encoding distributes
the weight value over two columns to provide better tolerance
to limited resolution compared to the BC approach. Thus, at
resource parity, ACM provides a resolution advantage over
the BC approach. At precision higher than 5 bits, for DNNs
trained on the MNIST dataset, training accuracy saturates to
values achieved through FP32 training. However, results on
the CIFAR-10 dataset (Figs. 5c and 5d) start to diverge from
the FP32 results for precision lower than 8 bits due to the
higher complexity of the task.

When training with non-linear weight update (Figs. 5f, 5g,
and 5h), the differences between DE and BC approaches
become even more apparent. As before, the error when training
with ACM is lower than the error obtained when training
using BC, approaching the error of DE. However, the accuracy
improvement is much more dramatic due to the disparate
accuracy impact of the nonlinear weight update. These results
show that ACM consistently improves upon the accuracy of
BC while using the same hardware resources. The VGG-
9 network is overparameterized and better offsets the non-
linearity as compared to the ResNet20 network. Therefore,

the accuracy decline starts at 5 bits in Fig. 5g rather than 6
bits in Fig. 5h. The largest gain is obtained for non-linear
weights when training with 5-bit precision XBar arrays or
lower: e.g. for ResNet20, effectively 2 bits in weight resolution
are recovered, leading to a 20% improvement in accuracy.

B. Effects of Device Variation on Neural Network Inference

We evaluate the inference accuracy of a VGG-9 network
trained on CIFAR-10 under the conditions of device variation
when operating with different weight precision. After training,
variation is added to the trained model weights and the
inference accuracy is evaluated without any fine-tuning. Fig. 6
shows the results averaged over 25 samples per data point
for 4 different precision values. There is a disparity in DNN
inference accuracy even when not subjected to any device vari-
ation (e.g., see Fig. 5e for the difference in quantized DNNs
trained on CIFAR-10 with DE, BC, and ACM). Results on
inference with added variation show that this initial disparity
is dramatically increased and BC consistently performs worse
than the other two mappings regardless of the bit precision.
Due to limited space, we only show results for 1-bit, 3-bit,
4-bit, and-6 bit weights; the 2-bit and 5-bit weights follow the
expected trends. ACM performs better than DE and BC for 1,
2, and 3-bit weights and DE outperforms the other mapping
methods for the 4, 5, and 6-bit weights. The improvement in
inference accuracy when using ACM at lower bit precision
may appear counterintuitive. However, this can be explained
by considering the regularization effect of ACM discussed in
Section III-E. At lower bit precision, the constraint is tighter,



0 5 10 15 20 25

20

40

60

80

A
cc

ur
ac

y
(%

)
1-bit Weights

DE
ACM
BC

0 5 10 15 20 25
20

40

60

80

3-bit Weights

0 5 10 15 20 25
40

60

80

Sigma of Variation (%)

A
cc

ur
ac

y
(%

)

4-bit Weights

0 5 10 15 20 25

70

80

90

Sigma of Variation (%)

6-bit Weights

Fig. 6: Effects of device variation on the inference accuracy
of a VGG-like network trained with different mapping ap-
proaches and bit precision on the CIFAR-10 dataset

while it is relaxed at higher bit precision. This constraint
strengthens the network against device variation.

C. System-Level Evaluation

Table I shows system-level results for the three mapping
approaches generated using the NeuroSim+ [7] tool with
the default parameters in the 14nm tech node. The assumed
peripherals include MUX, ADC, word-line decoder, bit-line
and select-line switch matrices, adders, and shift registers. The
read energy and latency values are for one epoch of training
a two-layered multi-layer perceptron (MLP) network with a
XBar-based hardware accelerator. Read energy, area, and read
delay values for BC and ACM approaches are exactly the
same, as there is practically no difference in their hardware
resource utilization. The read energy of DE is 7× more than
that of the ACM due to the longer wires for rows of the XBar
array. DE uses 2.3× XBar area compared to the ACM, as
it requires twice as many elements. The peripherals are also
larger and require more area. Furthermore, DE has a 1.33×
higher read delay due to the additional columns that need to
be multiplexed for the associated peripherals.

V. CONCLUSION

We introduced the ACM mapping method to mitigate the
effects of limited weight resolution and non-linearity on neural
network training while incurring minimal hardware overhead.
We demonstrated, both mathematically and by simulation, that
ACM is a general approach and represents the same MVMs as
previous mapping approaches. Neural network training evalua-
tions with limited resolution and non-linearity show that ACM
consistently improved upon the accuracy of BC while using
the same hardware resources. The largest gain was obtained

TABLE I: System-level results of the three mapping ap-
proaches for training a two-layered MLP on XBar arrays.

Mapping BC DE ACM

XBar Area (µm2) 914 2088 914

Periphery Area (µm2) 157 246 157

Read Energy (µJ) 2.402 14.408 2.402

Read Delay (ms) 0.240 0.318 0.240

for non-linear weights when training with 5-bit precision XBar
arrays or lower: effectively 2 bits in weight resolution were
recovered, leading to a 20% accuracy improvement. Compared
to DE, ACM can achieve comparable training accuracies while
reducing the read energy consumption by 7× and area by
2.3×. Furthermore, the regularization effect of ACM makes it
resilient to device variation. Assuming a 15% device variation,
ACM improves the inference accuracy of a VGG network
trained on the CIFAR-10 dataset with 3-bit precision XBar
arrays by an average of 10% compared to other mappings.

ACKNOWLEDGMENT

This work was supported in part by ASCENT, one of six centers in JUMP,
a SRC program sponsored by DARPA under task ID 2776.043.

REFERENCES

[1] S. Han et al., “Eie: efficient inference engine on compressed deep neural
network,” in ISCA, 2016.

[2] H. P. Wong et al., “Metal–oxide rram,” Proceedings of the IEEE, 2012.
[3] G. W. Burr et al., “Neuromorphic computing using non-volatile mem-

ory,” Advances in Physics: X, 2017.
[4] M. Jerry et al., “A ferroelectric field effect transistor based synaptic

weight cell,” Journal of Physics D: Applied Physics, 2018.
[5] S. Ambrogio et al., “Equivalent-accuracy accelerated neural-network

training using analogue memory,” Nature, 2018.
[6] T. Gokmen and Y. Vlasov, “Acceleration of deep neural network training

with resistive cross-point devices,” Frontiers in Neuroscience, 2016.
[7] P.-Y. Chen et al., “Neurosim+: An integrated device-to-algorithm frame-

work for benchmarking synaptic devices and array architectures,” in
IEDM, 2016.

[8] C. C. Chang et al., “Mitigating asymmetric nonlinear weight update
effects in hardware neural network based on analog resistive synapse,”
IEEE Trans. Emerg. Sel. Topics Circuits Syst., 2017.

[9] P. Chi et al., “Prime: A novel processing-in-memory architecture for
neural network computation in reram-based main memory,” in ACM
SIGARCH Computer Architecture News, 2016.

[10] Y. Lin et al., “Demonstration of generative adversarial network by
intrinsic random noises of analog rram devices,” in IEDM, 2018.

[11] W. Haensch, T. Gokmen, and R. Puri, “The next generation of deep
learning hardware: Analog computing,” Proceedings of the IEEE, 2018.

[12] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[13] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from

tiny images,” tech. rep., Citeseer, 2009.
[14] G. W. Burr et al., “Experimental demonstration,” IEEE T-ED.
[15] P. Narayanan et al., “Reducing circuit design complexity for neuromor-

phic systems based on non-volatile memory,” in ISCAS, 2017.
[16] M. Abadi et al., “Tensorflow: A system for large-scale machine learn-

ing,” in 12th USENIX OSDI, 2016.
[17] S. Zhou et al., “Dorefa-net: Training low bitwidth convolutional neural

networks with low bitwidth gradients,” arXiv, 2016.
[18] J. Woo et al., “Resistive memory-based analog synapse: The pursuit for

linear and symmetric weight update,” IEEE Nanotechnol. Mag., 2018.
[19] M. Fouda et al., “Independent component analysis using rrams,” IEEE

Transactions on Nanotechnology, 2018.
[20] Y. LeCun et al., “Lenet-5, convolutional neural networks,” 2015.
[21] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” arXiv, 2014.
[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in CVPR, 2016.


	I Introduction
	II Background
	III Adjacent Connection Matrix
	III-A Adjacent Connection Matrix Concept
	III-B Formal Definition of Different Mappings
	III-C Sufficient Conditions of a Periphery Matrix
	III-D Analysis of Different Mappings
	III-E Regularization Effect of Adjacent Connection Matrix

	IV Evaluation and Results
	IV-A Neural Network Training Accuracy
	IV-B Effects of Device Variation on Neural Network Inference
	IV-C System-Level Evaluation

	V Conclusion
	References

