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Abstract—Quantum computing devices in the NISQ era share
common features and challenges like limited connectivity between
qubits. Since two-qubit gates are allowed on limited qubit pairs,
quantum compilers must transform original quantum programs
to fit the hardware constraints. Previous works on qubit mapping
assume different gates have the same execution duration, which
limits them to explore the parallelism from the program. To
address this drawback, we propose a Multi-architecture Adaptive
Quantum Abstract Machine (maQAM) and a COntext-sensitive
and Duration-Aware Remapping algorithm (CODAR). The CO-
DAR remapper is aware of gate duration difference and program
context, enabling it to extract more parallelism from programs
and speed up the quantum programs by 1.23 in simulation on
average in different architectures and maintain the fidelity of
circuits when running on OriginQ quantum noisy simulator.

I. INTRODUCTION

Quantum Computing (QC) has attracted huge attention in recent a
decade due to its ability to exponentially accelerate some important
algorithms [22]. Both QC algorithm designers and programmers work
at a very high level, and know little about (future) NISQ devices
that (will) execute quantum programs. There exists a gap, however,
between NISQ devices and the hardware requirements (e.g., size
and reliability) of QC algorithms. To bridge the gap, QC requires
abstraction layer and toolchain to translate and optimize quantum
programs [8]. QC compilers typically translate high-level QC code
into (optimized) circuit-level assembly code in multiple stages.

In order to use NISQ hardware, quantum circuit programs have to
be compiled to the target device, which includes mapping logical
qubits to physical ones of the device. The mapping step, which
we focus on in this paper, faces a tough challenge because further
physical constraints have to be considered. In fact, 2-qubit gates can
only be applied to certain physical qubit pairs. A common method to
solve this problem is to insert additional SWAP operations in order to
“move” the logical qubits to positions where they can interact with
each other. This qubit mapping problem has been proved to be a
NP-Complete problem [26].

Previous solutions to this problem can be classified into two
types. One of them is to formulate the problem into an equivalent
mathematical problem and apply a solver [6, 7, 23, 29, 30, 32] and
the other type is to use heuristic search to obtain approximate results
[5, 15, 16, 18, 33, 35]. The former suffers from a very long runtime
and can only apply to small-size cases. The latter is better in runtime,
especially when the circuit is large scale. All these algorithms assume
that different gates have the same execution duration.

On NISQ hardware, however, different gates have different du-
rations (see Table I). Ignoring the gate duration difference may
cause these algorithms to find the shortest depth but not the shortest
execution time. The real execution time of the circuit is associated
with the weighted depth, in which different gates have different
duration weights. Considering gate duration difference will help the
compiler make better use of the parallelism of quantum circuits and
generate circuits with shorter execution time.

In this paper, we focus on solving the qubit mapping problem by
heuristic search with the consideration of gate duration difference
and program context to explore more program’s parallelism. To
address the challenges of qubit mapping problem and adapt to
different quantum technologies, we first give several examples to
explain our motivation, then propose a Multi-architecture Adaptive
Quantum Abstract Machine (maQAM) for studying the qubit map-
ping problem. The maQAM is modeled as a coupling graph with
limited qubit connectivity and configurable durations of different
kinds of quantum gates. Based on the maQAM, we further propose
two mechanisms that enable COntext-sensitive and Duration-Aware
Remapping algorithm (CODAR) to solve the qubit mapping problem
with the awareness of gate duration difference and program context.

The main contributions of this paper are as follows:

• We summarize the features of different QC technologies in-
cluding their available gates, operation fidelity and execution
duration, and establish the quantum architecture abstraction with
configurable parameters – maQAM.

• We propose a SWAP-based heuristic algorithm for qubit remap-
ping, CODAR, which considers the gate duration difference and
program context and can further speed up the quantum program.

• We evaluate CODAR with various benchmarks on several latest
hardware models such as Google’s 54-qubit Sycamore proces-
sor [3]. Experimental results show that CODAR speeds up quan-
tum programs by 1.212∼1.258 at the average in comparison
with the best-known algorithm, and maintains the fidelity of
circuits when running on OriginQ quantum noisy simulator [24].

II. PROBLEM ANALYSIS

A. Recent Work on Qubit Mapping

There are a lot of research on the qubit mapping problem. Here we
focus on analyzing some valuable solutions in recent two years [4,
18, 21, 26, 28, 32, 35]. All of them are proposed for some IBM QX
architectures, and none of them consider the gate duration difference.

a) Solutions only considering qubit coupling: [26, 32]
provide solutions for 5-qubit IBM QX architectures with directed
coupling. Siraichi et al. [26] propose an optimal algorithm based on
dynamic programming, which only fits for small circuits; then they
propose a heuristic one which is fast but oversimplified with results
worse than IBM’s solution. Wille et al. [32] present a solution with a
minimal number of additional SWAP and H operations, in which qubit
mapping problem is formulated as a symbolic optimization problem
with high complexity. They utilize powerful reasoning engines to
solve the computationally task.

[18, 35] use heuristic search to provide good solutions in accept-
able time for large scale circuits. Zulehner et al. [35] divide the two-
qubit gates into independent layers, then use A∗ search plus heuristic
cost function to determine compliant mappings for each layer. Li et al.
[18] propose a SWAP-based bidirectional heuristic search algorithm
– SABRE, which can produce comparable results with exponential
speedup against previous solutions such as [35].
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TABLE I: Parameter information of several quantum computing devices.

Ion Trap Superconducting Neutral Atom [25]Ion Q5 [19] Ion Q11 [34] IBM Q5 [19] IBM Q16 [21] IBM Q20 [18]
Available 1-qubit gate Rθα X, Y, Z, H, S, T Rθα
Available 2-qubit gate XX CNOT (CX) CNOT (CX)[27]

Fidelity

1-qubit gate 99.1(5)% 99.5% 99.7% ∼99.8% ∼99.56% 99.995% [25]
2-qubit gate 97(1)% 97.5%[95.1%,98.9%] 96.5% ∼96% ∼97% 82%[20]

1-qubit readout |0〉:99.7(1)%, |1〉:99.1(1)% 99.3% ∼ 96% ∼93% ∼91.2% 98.6% [12]
average readout 95.7(1)% – ∼ 80% – – ≥97.4(3)% [17]

Time 1-qubit gate 20µ s 130 ns 80 ns – 1µ ∼20µ s
2-qubit gate 250µ s – 250-450 ns 170-391 ns – ∼10µ s

Depolarization (T1) ∼ ∞ – ∼ 60µ s ∼ 70µ s 87.29µ s >10s
Spin dephasing (T2) ∼ 0.5s – ∼ 60µ s ∼ 70µ s 54.43µ s ∼ 1s

b) Solutions further considering error rates: [4, 21, 28]
provide another type of perspective for solving the qubit mapping
problem. They consider the variation in the error rates of different
qubits and connections to generate directly executable circuits that
improve reliability rather than minimize circuit depth and number
of gates. Based on the error rate data from real IBM Q16 and Q20
respectively, [21, 28] use a SMT solver to schedule gate operations
to qubits with lower error probabilities. Ash-Saki et al. propose two
approaches, Sub-graph Search and Greedy approach, to optimize
gate-errors [4]. Circuits generated by them may suffer from long
execution time due to no consideration of the minimal circuit depth.

c) What we consider in the qubit mapping: We want
to produce solutions for the qubit mapping problem with speedup
against previous works and maintain the fidelity meanwhile. Besides
the coupling map, what we further concern includes the program
context and the gate duration difference, which affect the design of
qubit mapping. Considering these factors will help to find remapping
solution with approximate optimal execution close to reality.

B. Motivating Examples
We use several examples written in OpenQASM [10] to explain

our motivation for considering program context and gate duration
difference in the qubit remapping process. The two examples base on
the coupling map of four physical qubits Q0 ∼ Q3 and the assumed
gate durations defined in Fig. 1 (a) and (b). We directly map the
logical qubits q[0]∼q[3] initially to physical qubits Q0 ∼ Q3 for
easier explanation.

(a) (c)

Gate Duration
T 1 cycle

CX 2 cycle
SWAP 6 cycle

(b) (d)
Fig. 1: An example reflecting the impact of program context on
SWAP-based transformations: SWAP q[3], q[1] is selected in
(d) to avoid using q[2] operated by the previous T gate, accordingly
increasing parallelism.

a) Impact of program context: Consider the OpenQASM
code fragment shown in Fig.1 (b). Since qubits Q0 and Q3 are
non-adjacent, the instruction “CX q[0],q[3]” at line 2 cannot be
applied. To solve the problem, SWAP operation is required before

(a) (c)

(b) (d)
Fig. 2: A 4-qubit QFT example reflecting the impact of gate duration
difference: “SWAP q[3],q[1]” is the best candidate since it can
start immediately after “T q[1]” while “CX q[0],q[2]” has not
finished yet, increasing the parallelism of the circuit.

performing the CX operation. In this case, there are four candidate
SWAP pairs, i.e., (Q0, Q1), (Q0, Q2), (Q3, Q1) and (Q3, Q2). If the
program context, i.e., the predecessor instruction “T q[2];”, is not
considered, there are no differences among the four candidates when
selecting. However, SWAP operation on pair (Q3, Q2) or (Q0, Q2)
conflicts with the context instruction “T q[2];” due to operating
the same Q2, and has to be executed serially after T operation as
shown in Fig.1 (c). SWAP on pair (Q3, Q1) or (Q3, Q1) does not
conflict with “T q[2];” and can be executed in parallel as shown
in Fig.1 (d). With the awareness of the context information, SWAP
operations that improve parallelism can be sifted out.

b) Impact of gate duration difference: We use a 4-qubit
QFT (Quantum Fourier Transform) circuit to explain the limitation
of ignoring the duration of quantum gates. Fig. 2 (b) lists the fragment
of a 4-qubit QFT OpenQASM program, which is generated by
ScaffCC compiler [2]. Similar to the first example, SWAP operation is
required before performing the CX operation, and there are also the
same four candidate SWAP pairs. Instructions “T q[2]” and “CX
q[0],q[2]” can be executed in parallel and we assume both of
them start at cycle 0. If the difference of gate durations is ignored,
the two gates “T q[2]” and “CX q[0],q[2]” are assumed to
finish at the same time t and the four candidate SWAP operations
have to start after t. However, if the duration of CX is twice as much
as that of T, we find that “T q[2]” will finish at cycle 1 while
“CX q[0],q[2]” at cycle 2. As a result, SWAP between q[3]
and q[1] can start at cycle 1 as shown in Fig.2 (d), while other
three candidate SWAP operations have to start at cycle 2 since one
of operands Q0 or Q2 is occupied as shown in Fig.2 (c). Fig. 2 (d)
has better parallelism, which can be deduced by the awareness of
different quantum gate durations.



TABLE II: Definition of Quantum Abstract Machine.

Notation Definition

Static
Structure

QH The set of physical qubits, |QH | = N ; ∀Q∈QH, Q.tend is the qubit lock described in Section IV-A
G The set of elementary quantum operations and SWAP, |G | = M
M =(QH,EH) The coupling graph of a quantum device, EH ⊆ QH ×QH

τ: G→N Mapping from quantum operations to their durations, N represents the set of natural numbers
D: QH ×QH→N Mapping from physical qubit pairs to their shortest path lengths on the M,

if there is no path between Qi and Qj , then D (Qi,Qj ) = INT MAX
Dynamic
Structure

π:QP→QH Mapping from logical qubits to physical qubits
CF(I) Commutative Front gate set of a gate sequence I, defined in Definition 1

Auxiliary
Functions

gate(g) the name of a given gate g.
qseq(g) the logical qubit sequence applied by a given gate g.

Variables

Q{1,2,...,N} Physical qubits, Qi∈QH, 1 ≤ i ≤ N
q{1,2,...,n} Logical qubits, qi∈QP, 1 ≤ i ≤ n
g{1,2,...,M} Physical quantum operations, gi∈G, 1 ≤ i ≤M
g{1,2,...,m} Quantum operations in the circuit program
I A sequence of quantum operations, I = [g1,g2,..., gk] if k = |I|, and the length of I is written as I.len

III. QUANTUM ARCHITECTURE ABSTRACTION

Since the qubit mapping problem is affected by the constraints
of underlying QC devices, which based on various and evolving
quantum technologies, it is essential to design quantum mapping
algorithms that are compatible with different quantum technologies.

A. Characteristics of NISQ devices
Table I lists parameter information of some QC devices based on

ion trap, superconducting and neutral atomic quantum technologies,
respectively. From the table, we see that two-qubit gate executes
slower (at least 2×) and has lower fidelity than single-qubit gate
on both superconducting and ion trap platforms; the ion trap system
is about 1000× slower than the superconducting system, but can
execute more gates before decoherence. The directly implementable
elementary gates in ion trap system are single-qubit gate Rθα (rotations
by an angle θ about any axis α) and two-qubit gate XX. Specifically,
CNOT gate can be implemented by a one-XX and four-R [11]. Neutral
atoms are similar in magnitude to trapped ions. However, the two-
qubit gate applied to neutral atoms may not perform slower than a
single-qubit gate, but the fidelity is much worse.

B. Definition of the maQAM
In view of the above, we consider the qubit connectivity of various

NISQ devices, and take each gate duration as a multiple of quantum
clock cycle τu, which can be analogized to the classic clock cycle.
We then introduce a Multi-architecture Adaptive Quantum Abstract
Machine (maQAM) which consists of static and dynamic structures,
denoted as A = (As, Ad). Table II shows the definitions for maQAM,
where As = (QH, G, M, τ, D), and Ad = (π, CF). We assume the
device can provide enough physical qubits (denote the number as N )
for the program’s execution (denote the number of logical qubits in
the program as n), i.e., N ≥ n.

For a QC device, we abstract its qubit layout as a graph M where
qubits are vertices and there are edges between qubit pairs where
a two-qubit gate is allowed to apply on them. We introduce the
Gate Duration Map τ into As which maps each kind of quantum
gate to its duration, depending on the information from quantum
architecture. We assume the same kind of quantum gates have the
same duration and fidelity. We also introduce the shortest distance
matrix map D between each pair of physical qubits for quick selection
of exchangeable qubits in our CODAR scheduling algorithm.

IV. DESIGN OF THE QUBIT REMAPPING ALGORITHM

In this section, we discuss our design for COntext-sensitive and
Duration-Aware Remapping algorithm (CODAR). We introduce two
fundamental mechanisms that enable CODAR context-sensitivity and
duration awareness, i.e., qubit lock and commutativity detection.

A. Qubit Lock
CODAR is based on a reasonable assumption: Two or more gates

cannot be applied to the same qubit at the same time. If a gate
occupies a qubit, we call the qubit busy, and other gates can no
longer be applied to the qubit. As the example shown in Fig. 1,
when inserting SWAP for a specific two-qubit gate CX q[0],q[3],
the neighbour qubit q[2] of the target qubits may be occupied by
the contextual gate which has started in an earlier time. Using the
occupied qubits to route the two-qubit gate will reduce the parallelism
of the program because the routing process has to wait until the
occupied qubits become free.

To make CODAR aware of the qubit occupation by the past
contextual gate, we introduce a qubit lock tend for each physical
qubit in Q. When start applying a quantum gate g ∈ G whose
duration is τg at time t to a physical qubit in Q, CODAR will
update this qubit’s tend as t+ τg , which means the qubit is occupied
before t+τg . A qubit is free only when its lock tend ≤ current time,
which means all the past gates applied on this qubit are finished.
When trying to find a routing path for a specific two-qubit gate, by
comparing tend of each qubit with the current time, CODAR can be
aware of which qubit is occupied by the past contextual gate. Fig. 3
shows an example. Gates can only be applied to the physical qubits
in a free state. We call the gates whose associate physical qubits are
all free as lock free gates.

Fig. 3: Qubit lock tend of qubit q is 2 means q is busy until time 2.

Qubit lock also makes CODAR aware of the gate duration differ-
ence. Different gate kinds have different duration and CODAR updates
the operated qubit’s lock tend with different values. As a result, qubits
occupied by gates with shorter duration will be set smaller tend and
become free earlier. Thus CODAR can use those earlier free qubits
to route two-qubit gates and improve the parallelism of the program.
As the example shown in Fig. 2 (d), suppose the program starts at
time 0 and τ T=1, τCNOT=2. Then tend of Q1 is set to 1 while tend
of Q0 and Q2 are set to 2. Q1 becomes free at time 1 while Q2 is
still busy. CODAR can use Q1 to route for the third gate and need
not wait for the freedom of Q2.

B. Commutativity Detection
Qubit lock brings CODAR awareness of the past contextual gate.

On the other hand, considering gate commutation relation can expose
more future contextual gate for CODAR to decide routing path.



Fig. 4: Overview of the remapping algorithm.

Definition 1 (Commutative Forward Gate, CF gate). Given a gate
sequence I=[g1, g2, ..., gk, ...], ∀gk ∈ I, gk is a commutative forward
gate iff ∀j, 0 < j < k, gj and gk are commutative.

The commutation relation between two-qubit gates gA, gB that
share qubits with each other can be resolved by checking the relevant
unitary operators ÂB̂ = B̂Â. Gates applied to disjoint qubits are
obviously commutative with each other.

All the CF gates in sequence I are denoted as ICF. CF gates can
be moved to the the head of I, which means they can be executed
instantly from logical perspective. Compared to the methods that
ignore the commutativity between quantum gates, choosing CF gates
as logically-executable gates can expose more contextual gates for
the heuristic search to determine better remapping solutions.

For example, suppose a sequence I contains two gates: CX q1,q3
and CX q2,q3 in order. The second gate shares q3 with the first
and might not be regarded as logically executable due to qubit
dependence. However, because the second commutes with the first
one, both of the gates are CF gates in I and instantly executable in
fact. Commutativity detection will expose both CXs for the heuristic
search which improve the contextual look-ahead ability of CODAR.

C. Algorithms for CODAR Remapping
Now we discuss how CODAR transforms the quantum circuit to

fit the hardware limitation. Given the coupling graph M =(Q,EH),
initial mapping π and gate duration map τ, our algorithm takes an
original gate sequence I as input, and generates an executable gate
sequence E. The overview of the algorithm is shown in Fig.4. The
algorithm starts with the current time and each qubit lock initialized
as 0. There are three steps in each iteration.

a) Step 1: At the start of each cycle, the algorithm first gets
all CF gates in the input sequence I denoted as ICF. The algorithm
will terminate if there is no gate in I.

b) Step 2: In this step, the algorithm will select all directly
executable gates in ICF. A gate g is directly executable only when it
satisfies two conditions below.
• g is a lock free gate.
• If g is a two-qubit gate like CNOT, its two target qubits are

connected in the coupling graph.
Then the algorithm will apply those executable gates by moving them
from the input sequence I to the output sequence E and update the
qubit lock for each gate in the way described in Section IV-A.

c) Step 3: For the remaining CNOTs in ICF, due to the
connectivity limitation, the algorithm need decide which SWAPs
should be inserted into the output sequence. The algorithm first
searches all lock free edges associated with the qubits of each
two-qubit gate g in ICF to avoid huge overhead cost by global
searching. For example, suppose g as “CX q0, q1”, Qk = π(q1) is
the corresponding physical qubit of q1 and we locate all of Qk’s
adjacent qubits as Qk1,Qk2,...,Qkt. Since the number of physical
qubits may be greater than that of logical qubits, not every physical
qubit has a corresponding logical qubit, thus the SWAP operation can
only be applied to physical qubits. If the SWAP between Qk and Qki
(1 ≤ i ≤ t) is lock free, then SWAP Qk,Qki will be regarded as a
candidate. We repeat this process for all qubits associated with gate
g to get the candidate SWAP set denoted as Cswap.

Next, the algorithm repeatedly select the best SWAP in Cswap and
insert it into E until no positive-priority SWAP remains in Cswap. The

Fig. 5: Example of the remapping process in one cycle.

priority of a SWAP denotes the benefit it can bring to the circuit
and we discuss how to calculate the priority for each SWAP in next
subsection. In each selection iteration, the algorithm first calculates
the priority for each gswap in Cswap. Then the algorithm inserts the
gate with the highest priority in Cswap into E and updates the qubit
locks to remove the no longer lock free SWAPs from Cswap.

An example shown in Fig.5 illustrates the remapping process.
Suppose a CNOT between qubits q1 and q6 need be applied at cycle
2 in a 3 × 3 grid model. For an easy explanation, we suggest in
this cycle all qubit locks are 0 except the lock of qubit q3 is 3,
which means that q3 is busy. As shown in Fig.5(a), the algorithm
inspects each free edge associated with q1, q6 and calculates their
priority. Because the lock of q3 is larger than the current time, the
edge between q3 and q6 is not free. Finally, all the candidate SWAPs
are colorized and suppose the red one has the highest priority. Then
as shown in Fig.5(b), the algorithm applies the red one and updates
the lock of qubit q1 and q2 (suppose the duration of SWAP is 6 cycle).
This update causes the edge between q1 and q4 is no longer free,
and it is removed from Cswap. The algorithm repeats the process and
applies the SWAP between q5 and q6. In the end, no gate exists in
Cswap, which leads to the termination of this cycle.

D. Design of Heuristic Cost Funtion
The heuristic cost function for SWAP gswap

Heuristic(gswap,M, π) = 〈Hbasic, Hfine〉

is to measure the benefits that gate g can bring to solve the mapping
problem. When comparing the priority between two SWAPs, Hbasic

is compared first and Hfine is compared only when two gates have
the same Hbasic.

a) Basic Priority: Suppose a two-qubit gate g applied to
logical qubits q1 and q2, D (π(q1), π(q2)) denotes the distance of
two qubits in the coupling graph M. When the distance becomes 1,
the gate fits the hardware limitation of the device.

L(π,g)=D (π(g.q1), π(g.q2)) calculates the distance of g ∈ ICF

based on the mapping π. To evaluate a candidate SWAP, we first
temporarily use that SWAP to update π and get πnew. Then we
calculate how much πnew can reduce (or increase) the distance of
all g ∈ ICF compared to the original π. Equation 1 shows the basic
priority heuristic function Hbasic.

Hbasic =
∑
g∈ICF

L(π, g)− L(πnew, g) (1)

If the basic heuristic function of a specific SWAP ≤ 0, this SWAP
won’t shorten the total distance and cannot bring any benefit to the
circuit. If we find no SWAP has a positive basic heuristic, there is no
best SWAP gate. But sometimes it happens that neither SWAP gate
nor other executable gates could be launched while all qubits are
free. Such situations are called “deadlock” by us, and at this time we
should just choose a SWAP with the highest priority to launch, even
if its Hbasic may not be positive.



Fig. 6: The circuit is going to apply CX on q1 and q6 while q5 will
be locked for a long time. The SWAP between {q1,q2} and between
{q1,q4} have the same Hbasic. But routing q1 through q4 will be
blocked by q5 while routing through q2 can get better parallelism.

Fig. 7: Example of heuristic search for the high parallelism SWAP.
The number near the qubits denotes the qubit lock tend.

b) Fine Priority: In many cases, there are several candidate
SWAPs with the same basic priority, so we design fine priority as
shown in Equation 2 which applies to 2D lattice model.

Hfine = − |VD(πnew, g)− HD(πnew, g)| (2)

Functions HD and VD stand for the horizontal and vertical distance
on the lattice between the two qubits of g. The main idea of
fine priority is: suppose a two-qubit gate g with specific distance
D = HD + VD, there may be CHD

D = HD!VD!
(HD+VD)!

, possibly the
shortest routing way for g, which increases as |VD− HD| decreases.
Choose a suitable SWAP gate to make |VD− HD| smaller may let
the remapping algorithm perform better in the future.

Retaining more possible routing way can improve the parallelism.
Fig.6 shows a situation: Hfine indicates the algorithm to choose SWAP
that can let the CX gate has closer vertical and horizontal distance
which can avoid waiting for q5 to be free.

E. Example
Now we use an example shown in Fig. 7 to explain our algorithm.

Suppose there is a 6-qubit device and we are given a gate sequence
I that contains a CX on {q0,q2}, a T on {q1} and a CX on {q0,q3}.
The number near the qubit node represents the value of its tend. All
the three gates are CF gates. Due to the coupling limitation, CX on
{q0,q3} is not directly executable and SWAP is needed. The algorithm
simulates the execution timeline and starts at cycle 0.

At cycle 0, the first gate “CX q0,q2” and the second gate “T
q1” are directly executable so both of them will be launched and
qubits {q0,q1,q2}’s tend locks are updated with the gate duration
(T=1 cycle, CX=2 cycle). Each of {q0,q1,q2} has bigger tend than
current time and thus they are locked. Therefore the SWAP between
{q1,q3} and {q2,q3} are blocked. SWAP between {q3,q5} with Hbasic

< 0 (which means the SWAP wont shorten the total distance of CF
gates according to our heuristic cost function) moves q3 away from
q0 and will not be inserted. As a result, no SWAP will be inserted in
cycle 0 and the mapping π stays unchanged.

At cycle 1, qubit q1 becomes free while q2 stays busy. The SWAP
between {q1,q3} becomes free while the SWAP between {q3,q2} is

still blocked. Therefore the algorithm knows that the SWAP between
{q1,q3} can start earlier than SWAP between {q3,q2} and choose
SWAP q3,q1 to solve the remapping problem. After launching “SWAP
q1,q3”, qubit locks of {q1,q3} are also updated by the sum of its
start time (cycle 1) and the duration of SWAP (6 cycle) as 7.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate CODAR with benchmarks based on the
latest reported hardware models.

a) Comparison with Previous Algorithms: Several recent
algorithms proposed by IBM [14], Siraichi et al. [26], Zulehner
et al. [35] and Li et al. [18] try to find solutions of the qubit mapping
problem with small circuit depth. Among them, Li’s SABRE [18]
beats the other three in the performance of benchmarks, thus it is
used for comparison in this paper.

b) Hardware Configuration: We test our algorithm on sev-
eral latest reported architectures, including IBM Q20 Tokyo[18], IBM
Q16 Melbourne[1], 6 × 6 grid model proposed by Enfield [26]’s
GitHub and Google Q54 Sycamore [3]. The gate duration difference
configuration is based on experimental data of symmetric supercon-
ducting technology shown in Table I, where two-qubit gate duration
is generally twice as much as that of the single-qubit gate.

c) Benchmarks: To evaluate our algorithm, we totally collect
71 benchmarks which are selected from the previous work, includ-
ing: 1) programs from IBM Qiskit [9]’s Github and RevLib [31];
2) several quantum algorithms compiled from ScaffCC [2] and
Quipper [13]; 3) benchmarks used in the best-known algorithm
SABRE [18]. The size of the benchmarks ranges from using 3 qubits
up to using 36 qubits and about 30,000 gates. For the IBM Q16, Q20
and 6 × 6 architectures, 68 benchmarks out of the 71 benchmarks
except 3 36-qubit programs are tested. While all 71 benchmarks are
tested on Google Q54 Sycamore.

1

1.5

2

IBM Q16 Melbourne

1

1.5

2

2.5

Enfield 6×6

0.5

1

1.5

2

IBM Q20 Tokyo

1

2

3

Google Q54 Sycamore

Fig. 8: Speedup ratio of all 71 benchmarks compared between
CODAR and SABRE in four architectures. The benchmarks are listed
from left to right in the ascending order of the number of qubits used.

A. Circuit Execution Speedup
We collect the weighted circuit depth of the circuits produced by

CODAR and SABRE for the 71 benchmarks. Initial mapping has been
proved to be significant for the qubit mapping problem, and for a fair
comparison, we use the same method as SABRE to create the initial
mapping for the benchmarks. We use the depth of circuits produced
by SABRE compared with the one of CODAR to show the ability of
our algorithm to speed up the quantum program. As shown in Fig.8,



the average speedup ratio of CODAR on four architecture models,
IBM Q16 Melbourne, Enfield 6×6, IBM Q20 Tokyo and Google
Q54 are respectively 1.212, 1.241, 1.214 and 1.258.

B. Fidelity Maintenance
Fidelity has been proved to be significant for the quantum com-

puter in NISQ era. CODAR focuses on exploring the parallelism of
the program to reduce the execution time and ignores the number
of SWAPs inserted into the program. Compared to SABRE, CODAR
may insert more SWAPs, which may bring more noise to the program.
However, less execution time will improve the fidelity of the circuit
on the contrary. To show CODAR’s ability to maintain the fidelity,
we use a distributed noisy quantum virtual machine made by Origin
Quantum [24], which is based on Qubit Dephasing and Damping
model [22] to simulate the fidelity of 7 famous quantum algorithms.
The result (Fig.9) indicates that CODAR can speed up the circuits
and maintain the fidelity of the circuits at the same time.

Fig. 9: Fidelity of the circuit produced by CODAR and SABRE for
several quantum algorithms. When the noise mainly caused by qubit
dephasing, CODAR performs better than SABRE and the fidelity of
several circuits produced by CODAR reach nearly 1. When the noise
mainly caused by qubit damping, CODAR performs about the same
with SABRE.

VI. CONCLUSION

In NISQ era, most quantum programs are not directly executable
because two-qubit gates can be applied between arbitrary two logical
qubits while it can only be implemented between two adjacent
physical qubits due to hardware constraints. To solve this problem, In
this paper we propose CODAR that can transform the original circuit
and insert necessary SWAP operations making the circuit comply
with the hardware constraints. With the design of qubit lock and
commutativity detection, CODAR is aware of the program context
and the gate duration difference, which help CODAR remapper find
the remapping with good parallelism and reduce QC’s weighted
depth. Experimental results show that CODAR remapper can speed up
quantum programs by 1.212∼1.258 in different quantum architectures
compared with the best known algorithm on average and maintain the
fidelity of the benchmarks when running on OriginQ quantum noisy
simulator.
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