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ABSTRACT 
This paper presents 6T SRAM cell-based bit-parallel in-memory 
computing (IMC) architecture to support various computations 
with reconfigurable bit-precision. In the proposed technique, bit-
line computation is performed with a short WL followed by BL 
boosting circuits, which can reduce BL computing delays. By per-
forming carry-propagation between each near-memory circuit, 
bit-parallel complex computations are also enabled by iterating 
operations with low latency. In addition, reconfigurable bit-preci-
sion is also supported based on carry-propagation size. Our 128KB 
in/near memory computing architecture has been implemented 
using a 28nm CMOS process, and it can achieve 2.25GHz clock 
frequency at 1.0V with 5.2% of area overhead. The proposed ar-
chitecture also achieves 0.68, 8.09 TOPS/W for the parallel addi-
tion and multiplication, respectively. In addition, the proposed 
work also supports a wide range of supply voltage, from 0.6V to 
1.1V. 
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1 INTRODUCTION 
In processor-centric architecture, the separation between com-

puting units and memories generates numerous data movement 
through data bus, causing huge energy consumption. For the last 
decade, an abrupt increase of data-intensive applications has 
made the data movement issue become one of the largest bottle-
necks in computing system. As processor-centric architecture is 
not very efficient to perform data-centric applications, such as 
deep learning and real-time visual/streaming processing, reducing 
data movement between computing units and memories, has been 
an active research topic.  

As one of the research efforts to relieve this data movement 
burden, processing in memory (PIM) or in memory computing 
(IMC) has been proposed [1]-[15]. The main idea of PIM or IMC is 
to perform some or all of the computations within or near memo-
ries, so that it can reduce the data movement between computing 
units and memories. In [1], row-wise operation has been proposed 
using the reconfiguration of 6T SRAM cell. This work can perform 
simple logic operation, such as bit-wise logic operation. However, 
this work is inappropriate for high-performance data-centric ap-
plications since it has to repeat the simple bit-wise operations to 
perform complex computation. In [2], 8T transposable bit-cell 
based bit-serial IMC architecture has been proposed to support 
more complex operations such as shift, add, and multiplication. 
This work nonetheless had to endure high latency, slow clock fre-
quency, and large cell area overhead. Moreover, the techniques 
employed to prevent read disturbance issue inevitably limits the 
memory performance. This contradicts the ultimate goal of IMC 
which is to reduce the data movement while satisfying the system 
performance. In [5], the approach to improve the performance of 
in-memory addition while avoiding read disturbance issue has 
been covered. Although it employed 6T SRAM based IMC for area 
efficiency, it still had a drawback in terms of data access. Further-
more, when implementing the application which requires compu-
tation in diverse bit-precision, such as machine learning inference, 
the limited bit-precision architecture can result in unnecessary 
use of hardware. Therefore, the need for flexibility of bit-precision 
must also be considered. 

In this paper, to address the complexity of operations, perfor-
mance of memory, and flexible bit-precision, we present a 6T 
SRAM based bit-parallel in-memory computation architecture. In 
the proposed approach, the bit parallel computations, which are 
specialized in carry propagations in adding/multiplying operation, 
are executed inside memories with low latency. In order to en-
hance the memory clock frequency while avoiding read disturb-
ance during BL computing, a short WL pulse with a BL boosting 
scheme is also proposed. Furthermore, to improve the perfor-
mance, transmission gate based adders are adopted, providing 
simple bit-wise operations. For the same reason, write-back delay 
is reduced by separating dummy arrays to be used independently. 
In addition, by adjusting the size of carry propagation, the addi-
tions and multiplications with reconfigurable bit-width are also 
supported in the proposed architecture. As a result, the proposed 
6T SRAM cell based memory banks can provide considerably 
faster processing speed with small cell area and small peripherals. 
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The rest of this paper is organized as follows. In Section 2, the 
background of IMC and previous IMC works are introduced. Sec-
tion 3 describes the proposed bit-parallel in/near-memory compu-
ting architecture for low-latency arithmetic operation with recon-
figurable bit-precision. In Section 4, the experimental results, us-
ing the 28nm CMOS process based post-layout simulation, are 
presented with the comparisons to previous IMC solutions. Fi-
nally, Section 5 concludes this work. 

2 BACKGROUND 

2.1 Bit-line Computing 
Many previous in-memory computing solutions are based on 

bit-line computation while activating two WL simultaneously. 
However, there is a read disturbance issue in the SRAM cells when 
WLs are activated, as shown in Fig. 1. For example, in the case of 
‘A=0’, ‘B=1’, BL/BLB are discharged through each cell’s ground 
node. Due to the discharged BL from ‘1’ to ‘0’, the stored data in 
the cell which held ‘1’ may be flipped. To solve this problem, one 
of the SRAM assist techniques, Word-Line Under-Drive (WLUD) 
is employed. However, the weakened access transistor can make 
BL discharge slow. This eventually affects the memory operation 
frequency thus leading to performance degradation. Fig. 2 shows 
the distribution of BL computation delay of the proposed IMC 
compared to the conventional, 0.55V WL driven 6T SRAM IMC, 
which has the same read failure rate of 2.5x10-5. A short pulse 
based fully driven WL shows smaller deviation. Therefore, in this 
work, instead of adopting WLUD, we propose fully driven WL, 
but for a short amount of time, to guarantee the performance and 
avoid the read disturbance at the same time. 

2.2 Related Works 
To alleviate the data movement of modern computing system, 

many IMC solutions have been proposed so far. A simple bit-wise 

logic operation is implemented using reconfiguration of 6T SRAM 
cells in [1]. However, this work can only implement functions re-
stricted in their complexity. To resolve this limitation, more re-
cent solutions [2]-[5] offer more complex bit-operations, such as 
shift, add, and multiplication. An architecture capable of bit-serial 
arithmetic operation using 8T transposable bit cell is presented in 
[2], where vector-based operations can be performed. Due to the 
bit-serial architecture, high-complexity operation can be com-
pleted, and high throughput is achieved. However, the approach 
suffers from large latency as multiplication takes N2 cycles. Addi-
tionally, the solution employed for the read disturbance problem 
incurs slow BL discharge because of the low voltage WL. By 
adopting ripple-carry-addition using pipelining with latches in ar-
ray peripheral circuits, faster operation cycles without read dis-
turbance issue could be achieved in [4]. Since this work employed 
10T SRAM cells with 2 separate read ports to resolve the problem, 
low cell efficiency was inevitably followed. Improvement of cell 
efficiency without read disturbance issue was conducted in [5], 
with bit-parallel in-memory operations using separate read BL 

 
Figure 1: Conventional BL computing schemes. 
 

 
Figure 2: Comparison BL computation delay between 
WLUD and Short-WL + BL Boosting 
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Figure 3: Th  proposed 6T SRAM-based bit parallel in-
memory-computing architecture. 
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with 6T SRAM cell, where Manchester addition can be performed 
inside memory with small carry propagation delay. However, it 
still requires additional area overhead for each local array group, 
therefore the cell array efficiency remains problematic. Consider-
ing data-centric applications such as deep learning processors, it 
is also important to support different operation bit-widths. 

Overall in the previous works [1]-[7], each has different draw-
back in either cell area efficiency, computation complexity, or 
memory clock frequency. In the following, we present 6T SRAM 
based bit-parallel in-memory computing architecture, in which 
read disturbance and performance degradation issues are ad-
dressed together using a short WL followed by BL boosting. In 
addition, the proposed bit-parallel in-memory computing ap-
proach can process complex operation with low latency. Details 
of the proposed IMC architecture will be presented in section III. 

3  PROPOSED IN-MEMORY COMPUTING 

3.1 Operation Principles 

Fig. 3 illustrates the architecture of the proposed in-memory-
processing cells and peripherals to provide low latency arithmetic 
operation with reconfigurable bit-precision. As shown in this fig-
ure, the proposed architecture includes additional computing 
blocks, that can be summarized to i) bit-line (BL) separator and 
dummy array in the SRAM cell array area, and ii) BL booster, 
transmission gate based full-adder and logic gates (FA-Logics) 

with three multiplexers and bunch of flip-flops in the column pe-
ripheral area. To avoid area overhead caused by modified cell or 
memory array, the conventional 6T SRAM cell and the array 
structure are employed. In the proposed architecture, BL boosting 
scheme and transmission gate based FA-Logics reduce the com-
putation delay with small additional area overhead (5.2% of array 
area). Moreover, to perform complex computation which requires 
iterative operation, such as multiplication, we use dummy array 
and few flip-flops. 

The proposed in-memory-processing can be divided into i) BL 
computation, and ii) logic and arithmetic operations. For the BL 
computation, the detailed procedure is as follows: Firstly, while 
the BL precharges, BL boosting scheme is initialized by boosting 
the reset (BSTRS) signal, which makes BL mirror node set to VSS. 
Next, when the WLs are activated, if the computation result is 
‘Low’, BL is discharged slightly. Accordingly, P0 transistor is 
gradually turned on, which leads BL mirror node to go high. Thus, 
BL will be discharged through N0-N1, which has larger discharge 
path than that of SRAM cell. As shown in BL Boost of Fig. 3, to 
catch-up the small BL swing, caused by short WL pulse-width to 
prevent the read disturbance, low threshold voltage (LVT) device 
is used for P0, N0, and N1 transistors. Otherwise, if the BL com-
putation result is ‘High’, BL boosting scheme is not activated. Af-
ter the acceleration of the BL swing, the single-ended sense am-
plifiers (SAs) generate the BL computation results. At this time, 
depending on the number of activated WL, the SA outputs are set 
to AB/~(A+B) or A/~A. Here, the A and B indicate the accessed 
memory data in the SRAM array. 

For the simple logic operations, which is not included in the BL 
computation results, an OR gate and three inverters with four 
transmission gates (illustrated as switches) are embedded in the 
‘FA-Logics’. As shown in ‘Y-Path’ and ‘FA-Logics’ of Fig. 3, by us-
ing the selection signal of multiplexer MX2 and ‘LogicSEL’ signal, 
all the logic operations can be generated. For the simple arithmetic 
operations, such as addition (ADD) and subtraction (SUB), the 
logic results can be mixed cost-effectively in the proposed in-
memory-computing feature. The Boolean equations of the FA out-
puts, e.g. sum and carry-out, can be expressed as: 

𝑆[𝑁] =  𝐶[𝑁−1](𝐴[𝑁] ⊙ 𝐵[𝑁]) + ~𝐶[𝑁−1](𝐴[𝑁]𝐵[𝑁]) (1) 

𝐶[𝑁] =  𝐶[𝑁−1](𝐴[𝑁]|𝐵[𝑁]) + ~𝐶[𝑁−1](𝐴[𝑁]&𝐵[𝑁]) (2) 

As shown in (1)-(2) and ‘FA-Logics’ of Fig. 3, by using the carry-
out of the right-side ‘Y-Path’ (C[N-1]) as switch control signal, the 
BL computation results (AB and ~(A+B)) can be converted to the 
FA outputs. For the shift and add-and-shift operations, this carry-
propagation path is used by controlling the multiplexers. In case 

Table 1: Th  supported operations and cycles 

Type Operation Cycles Type Operation Cycles 

Logic 

NAND/AND 1 

Integer 

ADD 1 

NOR/OR 1 SUB 2 

XNOR/XOR 1 MULT N+2 

NOT, Shift (<<1) 1 ADD-Shift 1 

* N represents the data bit-width 

 
 

 
Figure 4: Operation principles of the proposed IMC. 
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of 1-bit shift operation with single-WL activation, the ‘FA-Logics’ 
outputs the original data (A) to the C[N] node, and the MX1 selects 
the write-back data as the propagated data (C[N-1]). On the other 
hand, in case of the add-shift operation, the sum value of ‘FA-
Logics’ is passed to the MX0 and propagated to the left-side ‘Y-
Path’. During write-back, the flip-flop releases the propagated 
sum value (S[N-1]) to perform the shift operation. Since this prop-
agation path is not only used for ADD and SUB operations, but 
also used for shift and add-and-shift operations, the overhead of 
the complex arithmetic operation, such as multiplication (MULT), 
is alleviated in the proposed in-memory-computing. The detailed 
procedure of the MULT operation and comparison in various bit-
precision cases will be discussed in Section 3.2 and Section 4, re-
spectively.  

For the SUB operation, the overall procedure is presented in the 
bottom-left of Fig. 4. As shown in this figure, the SUB operation is 
started with a NOT operation. At this time, the SRAM read path 
outputs the stored data (Data 1 in Fig. 4), and the column periph-
eral units write-back the inverted ‘Data 1’ to the dummy array. 
Please note that, in the Fig. 4, the numbers below the WL pulse 
indicate the accessing cycle, and the prime symbol (‘) separates 
the read and write-back operations. After the NOT operation (in-
cluding write-back), an ADD operation is performed to subtract 
the ‘Data 1’ from the ‘Data 0’ using two’s complement format. As 
shown in Fig. 4, in order to reduce the write-back power consump-
tion, the BL separator adaptively disconnects the large capacitive 

BL in the SRAM array. The supported in-memory-computing op-
erations are categorized in Fig. 4 and Table I. As shown in Table I, 
except for the SUB, and MULT operation, all the other operations 
only take 1 cycle.  

3.2  Bit-Parallel Multiplication with Reconfig-
urable Bit-precision 

As shown in the top-left illustration of Fig. 5, the conventional 
multiplication consists of i) partial products generation, and ii) 
summation of all the partial products. When these operations are 
performed as is, 6 (1+2+3) shift operations and 3 addition opera-
tions are required for 4×4 multiplication. In the proposed in-
memory-computing architecture, by using the ‘add-and-shift’ 
function and adopting the left-shift based multiplication algo-
rithm, the multiplication operation can be performed cost-effec-
tively. The left-shift based multiplication is presented in the bot-
tom-left of Fig. 5. As shown in this figure, the reversed multipli-
cand (B[3:0]  B[0:3]) makes the accumulation of partial products 
to the left-shift based addition operation. As shown in the 
‘1010×1011’ example of Fig. 5, the partial products accumulations 
in the left-shift based multiplication perform reversely compared 
to the conventional approach (pMult0  pMult1  tMult). At this 
time, the reversed accumulations can be divided into each add-
and-shift operation groups by inserting an initial ‘0000’ to the add-
ing operation. In the proposed in-memory-computing architec-

 
Figure 5: Multiplication procedure of the proposed in-memory-computing architecture. 
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ture, since the add-and-shift function is performed in a single-cy-
cle while minimizing data movement, the multiplication overhead 
is significantly alleviated compared to the conventional multiple 
shift and add combination. The detailed hardware operation prin-
ciple is also illustrated in Fig. 5. During initialization, ‘0’s are writ-
ten to the first row of dummy array, while multiplier data (B[3:0] 
= 1011) is stored in the flip-flops. After that, multiplicand data 
(A[3:0] = 1010) is copied to the second row of dummy array. Here, 
these steps are omitted in Fig. 5. Next, first and second rows are 
activated for the add-and-shift operation. During those add-and-
shift operations, the propagated data from lower bit to upper bit 
is selected depending on the flip-flop output. As shown in Fig. 5, 
in case of the add-and-shift 0 phase (top-right illustration of Fig. 
5), since the flip-flop output is ‘1’, the FA output is selected and 
wrote back, shifted. On the other hand, in case of add-and-shift 1 
phase, since the valid data are stored in second and third rows of 
dummy array, the corresponding WLs are activated. At this time, 
since the flip-flop output is ‘0’, the data which was propagated 
from lower bit and stored in the flip-flop of ‘Y-Path’ is delivered 
to the write-back path. Similarly, during the add-and-shift 2 phase, 
the second and third rows are activated to add the previously ac-
cumulated data (010100 in Fig. 5) to the multiplicand (1010 in Fig. 
5). For the final accumulation of the partial products, the ADD 
operation is performed to complete the multiplication result. For 
the NxN multiplication, the total number of cycles can be com-
puted with 2 initialization steps and N iterative add-and-shift op-
eration. 

Fig. 6 illustrates the reconfigurable unit structure of a 2-bit 
precision arithmetic operation and its extension to the 4-bit and 
8-bit cases. To distinguish the accessed cells from the unaccessed 
cells in the 4:1 column-interleaved SRAM, the accessed cells are 

colored grey. As shown in Fig. 6, in order to support 2-bit 
precision multiplication, additional 2-bit storages are needed in 
the proposed in-memory-computing architecture. When the bit 
precision of mulplication is extended two times larger, the 
storages also have to increase twice in their size. Thus, 2-bit FF 
based structure is a perfect fit for the proposed architecture, since 
there will be no redundant hardware in any form of operation. 
Our proposed architecture supports up to 8-bit precision mode, 
but 16-bit and 32-bit precision can also be implemented in the 
same method. 

4 IMPLEMENTATION RESULT 
In the proposed in-memory computing architecture, a 128KB 

memory size (4 banks 128 x 128 macro) has been simulated with a 
28nm CMOS process. Fig. 7 (a) shows the bit-line computing delay 
(from WL driver to single-ended SA) compared with 0.55V WL 
driver based 6T SRAM in-memory computing, in various process 
corners. Since a short WL pulse makes small discharge and the 
remainder is discharged by an additional pull-down path in the BL 
boosting scheme, which consists of larger transistors than 6T 
SRAM cells, the delay of BL computing is improved 0.22X com-
pared to the 6T SRAM with 0.55V driven WL at worst case. Also, 
Fig. 7 (b) shows the carry propagation delay comparison between 
the proposed FA and the logic gate based FA. While the proposed 
FA generates added results in advance and they are selected by 
the carry signals, logic gate based FA has to perform computation 
every time it receives the carry-in. Therefore, the proposed FA 

 
             (a)                                                        (b) 

Figure 7: Delay Comparisons. 
 

 
Figure 8: Breakdown and maximum frequency of the pro-
posed in-memory-computing. 
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Figure 6: Reconfigurable bit precision for multiplication. 
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improves the critical path delay 1.8X-2.2X. In our proposed archi-
tecture, the overall delay consists of components as shown on the 
left side of Fig. 8. Due to the reduction of delay of each component, 
we can enhance the operating frequency. In the 8-bit precision 
case, we have to consider logic delay the same as that of 16-bit 
adder delay, which is 222ps. In addition, we can reduce the write-
back delay by controlling the BL separator.  

The right side of Fig. 8 presents maximum operation frequency 
with various supply voltages, and the TOPS/W of addition/multi-
plication. For the figure that shows TOPS/W of adding operation, 
the y-axis values have to be multiplied by 10. Fig. 9 shows cycles 
per operation size of 8-bit arithmetic operations depending on the 
BL size. Compared to the conventional bit-serial approach, our 
bit-parallel architecture shows better cycle performance as the BL 
size increases because of the bit-parallel structure. Table II shows 
the energy per operation of typical complex computations for 
each bit-precision. Energy of subtraction or multiplication, which 
requires write-back phase, is denoted with and without the BL 
separator. Table III shows the comparison between the proposed 
and the state-of-the-arts. Our work shows the best energy effi-
ciency (TOPS/W) with high clock frequency while avoiding read 
disturbance issue.   

5 CONCLUSIONS 
In this paper, we propose 6T SRAM based bit-parallel in-

memory computing. By performing BL computing with a short 
WL pulse followed by BL boosting, we enhance the memory op-
eration frequency while avoiding cell read disturbance issues. In 
addition, our transmission gate based FA composes ripple carry 
adder faster than logic-gate based FA. Moreover, WB delay and 
energy consumption are reduced due to BL separator. Due to the 
applied techniques, we successfully improved the memory clock 
frequency. Also, the bit-parallel architecture allows our IMC to 
perform complex operations such as addition/multiplication with 

low latency. Furthermore, this work supports reconfigurable bit-
precision operation, so we can implement various algorithms and 
increase hardware utilization. The numerical result shows that the 
proposed IMC architecture achieves 2.25GHz clock frequency at 
0.9V with 5.2% of area overhead. The parallel addition and multi-
plication of the proposed architecture also achieves 0.68, 8.09 
TOPS/W for addition and multiplication, respectively. The pro-
posed work also supports a wide range of supply voltage, from 
0.6V to 1.1V. 
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Figure 9: Operation cycle comparison with conventional 
bit-serial approach [2].  
 

Table II: Supported operations and their energy 
Operation ADD SUB MULT 

Bit-Precision 2-bit 4-bit 8-bit 2-bit 4-bit 8-bit 2-bit 4-bit 8-bit 

Energy/ 
Operation 

[fJ] 
68.2 138.4 274.8 

w/o BL Separator w/o BL Separator 

152.3 307.5 612.2 357.4 1167.6 4186.4 

w/ BL Separator w/ BL Separator 

136.5 274.9 545.4 296 922.4 3394.8 
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Figure 7: Conventional BL computing scheme. 
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