
1

Bit Parallel 6T SRAM In-memory Computing
with Reconfigurable Bit-Precision

--Kyeongho Lee1, Jinho Jeong1, Sungsoo Cheon1, Woong Choi2, and Jongsun Park1
1 School of Electrical Engineering, Korea University, Seoul, Korea---

2 School of Electronics Engineering, Sookmyung Women’s University, Seoul, Korea---
{rudgh0143, k007312, chssis, jongsun}@korea.ac.kr, woongchoi@sookmyung.ac.kr

ABSTRACT
This paper presents 6T SRAM cell-based bit-parallel in-memory
computing (IMC) architecture to support various computations
with reconfigurable bit-precision. In the proposed technique, bit-
line computation is performed with a short WL followed by BL
boosting circuits, which can reduce BL computing delays. By per-
forming carry-propagation between each near-memory circuit,
bit-parallel complex computations are also enabled by iterating
operations with low latency. In addition, reconfigurable bit-preci-
sion is also supported based on carry-propagation size. Our 128KB
in/near memory computing architecture has been implemented
using a 28nm CMOS process, and it can achieve 2.25GHz clock
frequency at 1.0V with 5.2% of area overhead. The proposed ar-
chitecture also achieves 0.68, 8.09 TOPS/W for the parallel addi-
tion and multiplication, respectively. In addition, the proposed
work also supports a wide range of supply voltage, from 0.6V to
1.1V.

KEYWORDS
In-Memory Computing; Processing-In-memory; Read Disturb;
Bitline Computing; Short Pulse WL;

1 INTRODUCTION
In processor-centric architecture, the separation between com-

puting units and memories generates numerous data movement
through data bus, causing huge energy consumption. For the last
decade, an abrupt increase of data-intensive applications has
made the data movement issue become one of the largest bottle-
necks in computing system. As processor-centric architecture is
not very efficient to perform data-centric applications, such as
deep learning and real-time visual/streaming processing, reducing
data movement between computing units and memories, has been
an active research topic.

As one of the research efforts to relieve this data movement
burden, processing in memory (PIM) or in memory computing
(IMC) has been proposed [1]-[15]. The main idea of PIM or IMC is
to perform some or all of the computations within or near memo-
ries, so that it can reduce the data movement between computing
units and memories. In [1], row-wise operation has been proposed
using the reconfiguration of 6T SRAM cell. This work can perform
simple logic operation, such as bit-wise logic operation. However,
this work is inappropriate for high-performance data-centric ap-
plications since it has to repeat the simple bit-wise operations to
perform complex computation. In [2], 8T transposable bit-cell
based bit-serial IMC architecture has been proposed to support
more complex operations such as shift, add, and multiplication.
This work nonetheless had to endure high latency, slow clock fre-
quency, and large cell area overhead. Moreover, the techniques
employed to prevent read disturbance issue inevitably limits the
memory performance. This contradicts the ultimate goal of IMC
which is to reduce the data movement while satisfying the system
performance. In [5], the approach to improve the performance of
in-memory addition while avoiding read disturbance issue has
been covered. Although it employed 6T SRAM based IMC for area
efficiency, it still had a drawback in terms of data access. Further-
more, when implementing the application which requires compu-
tation in diverse bit-precision, such as machine learning inference,
the limited bit-precision architecture can result in unnecessary
use of hardware. Therefore, the need for flexibility of bit-precision
must also be considered.

In this paper, to address the complexity of operations, perfor-
mance of memory, and flexible bit-precision, we present a 6T
SRAM based bit-parallel in-memory computation architecture. In
the proposed approach, the bit parallel computations, which are
specialized in carry propagations in adding/multiplying operation,
are executed inside memories with low latency. In order to en-
hance the memory clock frequency while avoiding read disturb-
ance during BL computing, a short WL pulse with a BL boosting
scheme is also proposed. Furthermore, to improve the perfor-
mance, transmission gate based adders are adopted, providing
simple bit-wise operations. For the same reason, write-back delay
is reduced by separating dummy arrays to be used independently.
In addition, by adjusting the size of carry propagation, the addi-
tions and multiplications with reconfigurable bit-width are also
supported in the proposed architecture. As a result, the proposed
6T SRAM cell based memory banks can provide considerably
faster processing speed with small cell area and small peripherals.

2

The rest of this paper is organized as follows. In Section 2, the
background of IMC and previous IMC works are introduced. Sec-
tion 3 describes the proposed bit-parallel in/near-memory compu-
ting architecture for low-latency arithmetic operation with recon-
figurable bit-precision. In Section 4, the experimental results, us-
ing the 28nm CMOS process based post-layout simulation, are
presented with the comparisons to previous IMC solutions. Fi-
nally, Section 5 concludes this work.

2 BACKGROUND

2.1 Bit-line Computing
Many previous in-memory computing solutions are based on

bit-line computation while activating two WL simultaneously.
However, there is a read disturbance issue in the SRAM cells when
WLs are activated, as shown in Fig. 1. For example, in the case of
‘A=0’, ‘B=1’, BL/BLB are discharged through each cell’s ground
node. Due to the discharged BL from ‘1’ to ‘0’, the stored data in
the cell which held ‘1’ may be flipped. To solve this problem, one
of the SRAM assist techniques, Word-Line Under-Drive (WLUD)
is employed. However, the weakened access transistor can make
BL discharge slow. This eventually affects the memory operation
frequency thus leading to performance degradation. Fig. 2 shows
the distribution of BL computation delay of the proposed IMC
compared to the conventional, 0.55V WL driven 6T SRAM IMC,
which has the same read failure rate of 2.5x10-5. A short pulse
based fully driven WL shows smaller deviation. Therefore, in this
work, instead of adopting WLUD, we propose fully driven WL,
but for a short amount of time, to guarantee the performance and
avoid the read disturbance at the same time.

2.2 Related Works
To alleviate the data movement of modern computing system,

many IMC solutions have been proposed so far. A simple bit-wise

logic operation is implemented using reconfiguration of 6T SRAM
cells in [1]. However, this work can only implement functions re-
stricted in their complexity. To resolve this limitation, more re-
cent solutions [2]-[5] offer more complex bit-operations, such as
shift, add, and multiplication. An architecture capable of bit-serial
arithmetic operation using 8T transposable bit cell is presented in
[2], where vector-based operations can be performed. Due to the
bit-serial architecture, high-complexity operation can be com-
pleted, and high throughput is achieved. However, the approach
suffers from large latency as multiplication takes N2 cycles. Addi-
tionally, the solution employed for the read disturbance problem
incurs slow BL discharge because of the low voltage WL. By
adopting ripple-carry-addition using pipelining with latches in ar-
ray peripheral circuits, faster operation cycles without read dis-
turbance issue could be achieved in [4]. Since this work employed
10T SRAM cells with 2 separate read ports to resolve the problem,
low cell efficiency was inevitably followed. Improvement of cell
efficiency without read disturbance issue was conducted in [5],
with bit-parallel in-memory operations using separate read BL

Figure 1: Conventional BL computing schemes.

Figure 2: Comparison BL computation delay between
WLUD and Short-WL + BL Boosting

BLT BLB

VDD

VSS

VDD

VSS

WL[A]

Norm. WL

BLs Behavior

...

Q[A] Qb[A]

WL[B]

Q[B] Qb[B]

BLT BLB

VDD

VSS

VDD

VSS

WL[A]

Under-driven WL

BLs Behavior

Q[A] Qb[A]

WL[B]

Q[B] Qb[B]

Fast
Eval.

Disturbance

... ...

...

Slow
Eval.

0.5 1.0 1.5 2.0 2.5 3.0 3.50

0.1

0.2

0.3

O
cc

ur
an

ce

Short WL + BL Boost
WLUD (0.55V VDD)

Long-tail distribution of
BL Computation Delay
w/ WLUD (0.55V VDD)

28nm, 0.9V, 25°C, NN, @ ISO Access Disturb Margin (ADM) : 2.5 x 10-5
 failure rate

Short-tail distribution of
BL Computing Delay

w/ Short WL (140ps) + BL Boosting

BL Computation Delay (ns)

Figure 3: Th proposed 6T SRAM-based bit parallel in-
memory-computing architecture.

BL
Boost

FA-
Logics

BL
Boost

MX0

Lo
gi

c

A
dd

Sh
if

t (
<<

1)

A
dd

&
Sh

ift

SA
WR

SA
WRY-Path

6T SRAM Array
(128x128)

Dummy Array (3 rows)

Y-
Pa

thColumn
Peripheral Units
(4:1 Interleaved)

Flip-Flops
(for Multiplier)

W
L

D
ec

. &
 D

rv
.

C
tr

l.

N3

N2

N1

N0
P0

Low-VT

S[N]

C[N]

S[N-1]

C[N-1]

BLT BLB

AB A+B

LogicSEL

PCHb

or A or A

for Write-Back

for Mult.

for Speed-up

BSTRS

BSTEN

BL

BL
Mirror

BL Boost

C[N] C[N]

AB or A A+B or A

FA-Logics

XOR

- Single WL
 : INV, SHIFT, COPY
- Dual WL
 : Logics/ADD/SUB/ADD-SHIFT
 /MULT

LS
EL

 =
 0

LS
EL

 =
 1

LS
EL

 =
 0

LS
EL

 =
 1

BL Separator

S[N]

A[N] B[N] C[N-1] S[N] C[N] C[N-1] S[N] C[N]

0 0 0 0 0 1 0 0
0 1 0 1 0 1 1 1
1 0 0 1 0 1 1 1
1 1 0 0 1 1 0 1

Timing Control

BLPb

BSTRS/
BSTEN

WL

BL/BL

BL
Mirror

SAO

BL precharge
BL boosting
WL activation

MX1

M
X

2

Logics

LSEL

1
2
3

1 2 3 4 5

 3

with 6T SRAM cell, where Manchester addition can be performed
inside memory with small carry propagation delay. However, it
still requires additional area overhead for each local array group,
therefore the cell array efficiency remains problematic. Consider-
ing data-centric applications such as deep learning processors, it
is also important to support different operation bit-widths.

Overall in the previous works [1]-[7], each has different draw-
back in either cell area efficiency, computation complexity, or
memory clock frequency. In the following, we present 6T SRAM
based bit-parallel in-memory computing architecture, in which
read disturbance and performance degradation issues are ad-
dressed together using a short WL followed by BL boosting. In
addition, the proposed bit-parallel in-memory computing ap-
proach can process complex operation with low latency. Details
of the proposed IMC architecture will be presented in section III.

3 PROPOSED IN-MEMORY COMPUTING

3.1 Operation Principles

Fig. 3 illustrates the architecture of the proposed in-memory-
processing cells and peripherals to provide low latency arithmetic
operation with reconfigurable bit-precision. As shown in this fig-
ure, the proposed architecture includes additional computing
blocks, that can be summarized to i) bit-line (BL) separator and
dummy array in the SRAM cell array area, and ii) BL booster,
transmission gate based full-adder and logic gates (FA-Logics)

with three multiplexers and bunch of flip-flops in the column pe-
ripheral area. To avoid area overhead caused by modified cell or
memory array, the conventional 6T SRAM cell and the array
structure are employed. In the proposed architecture, BL boosting
scheme and transmission gate based FA-Logics reduce the com-
putation delay with small additional area overhead (5.2% of array
area). Moreover, to perform complex computation which requires
iterative operation, such as multiplication, we use dummy array
and few flip-flops.

The proposed in-memory-processing can be divided into i) BL
computation, and ii) logic and arithmetic operations. For the BL
computation, the detailed procedure is as follows: Firstly, while
the BL precharges, BL boosting scheme is initialized by boosting
the reset (BSTRS) signal, which makes BL mirror node set to VSS.
Next, when the WLs are activated, if the computation result is
‘Low’, BL is discharged slightly. Accordingly, P0 transistor is
gradually turned on, which leads BL mirror node to go high. Thus,
BL will be discharged through N0-N1, which has larger discharge
path than that of SRAM cell. As shown in BL Boost of Fig. 3, to
catch-up the small BL swing, caused by short WL pulse-width to
prevent the read disturbance, low threshold voltage (LVT) device
is used for P0, N0, and N1 transistors. Otherwise, if the BL com-
putation result is ‘High’, BL boosting scheme is not activated. Af-
ter the acceleration of the BL swing, the single-ended sense am-
plifiers (SAs) generate the BL computation results. At this time,
depending on the number of activated WL, the SA outputs are set
to AB/~(A+B) or A/~A. Here, the A and B indicate the accessed
memory data in the SRAM array.

For the simple logic operations, which is not included in the BL
computation results, an OR gate and three inverters with four
transmission gates (illustrated as switches) are embedded in the
‘FA-Logics’. As shown in ‘Y-Path’ and ‘FA-Logics’ of Fig. 3, by us-
ing the selection signal of multiplexer MX2 and ‘LogicSEL’ signal,
all the logic operations can be generated. For the simple arithmetic
operations, such as addition (ADD) and subtraction (SUB), the
logic results can be mixed cost-effectively in the proposed in-
memory-computing feature. The Boolean equations of the FA out-
puts, e.g. sum and carry-out, can be expressed as:

𝑆[𝑁] = 𝐶[𝑁−1](𝐴[𝑁] ⊙ 𝐵[𝑁]) + ~𝐶[𝑁−1](𝐴[𝑁]𝐵[𝑁]) (1)

𝐶[𝑁] = 𝐶[𝑁−1](𝐴[𝑁]|𝐵[𝑁]) + ~𝐶[𝑁−1](𝐴[𝑁]&𝐵[𝑁]) (2)

As shown in (1)-(2) and ‘FA-Logics’ of Fig. 3, by using the carry-
out of the right-side ‘Y-Path’ (C[N-1]) as switch control signal, the
BL computation results (AB and ~(A+B)) can be converted to the
FA outputs. For the shift and add-and-shift operations, this carry-
propagation path is used by controlling the multiplexers. In case

Table 1: Th supported operations and cycles

Type Operation Cycles Type Operation Cycles

Logic

NAND/AND 1

Integer

ADD 1

NOR/OR 1 SUB 2

XNOR/XOR 1 MULT N+2

NOT, Shift (<<1) 1 ADD-Shift 1

* N represents the data bit-width

Figure 4: Operation principles of the proposed IMC.

Copy(Data 0) in FFs R-Shift for MUX Sel.

Initialize to '0's

ADD(Data0, ~Data 1, 1)

Shift(Data 1)

Copy(Data 1)

f(Data 0, Data 1)f(Data 0)

NOT(Data 1) Initialize to '0's

ADD-Shift(Data 1<<1)

Copy(Data 1)

Data 0 Data 0

Data 1

Data 0

Data 1

Data 0

Data 1

Data 0

Data 1

6T SRAM Array

Dummy Rows

Func() =
INV, Shift, Copy

BL Separator

Func() =
Logic, ADD,
ADD&Shfit

BL Separator

W
L

D
ec

. &
 D

rv
.

C
tr

l.

C
tr

l.

(1)

Single-Cycle Processing

Func() = Mult.

BL Separator

C
tr

l.

Multi-Cycles Processing

Func() = SUB

BL Separator

C
tr

l.

(1')

(1)

(1')

(1)

(2)

(1)

(1',2)

(2')

(1',3)

(2',3)

(1)

(2)

2's complement

(3')

Func() = Mult.
(Continue)

BL Separator

C
tr

l.

(4)

(4,4')

BL Separator

Bitcell
Bitcell

Bitcell

Bitcell
Bitcell

Dummy Cell

Dummy Cell Dummy Cell

Bitcell

Dummy Cell

Main
Array
Access

Dummy
Array
Access

4

of 1-bit shift operation with single-WL activation, the ‘FA-Logics’
outputs the original data (A) to the C[N] node, and the MX1 selects
the write-back data as the propagated data (C[N-1]). On the other
hand, in case of the add-shift operation, the sum value of ‘FA-
Logics’ is passed to the MX0 and propagated to the left-side ‘Y-
Path’. During write-back, the flip-flop releases the propagated
sum value (S[N-1]) to perform the shift operation. Since this prop-
agation path is not only used for ADD and SUB operations, but
also used for shift and add-and-shift operations, the overhead of
the complex arithmetic operation, such as multiplication (MULT),
is alleviated in the proposed in-memory-computing. The detailed
procedure of the MULT operation and comparison in various bit-
precision cases will be discussed in Section 3.2 and Section 4, re-
spectively.

For the SUB operation, the overall procedure is presented in the
bottom-left of Fig. 4. As shown in this figure, the SUB operation is
started with a NOT operation. At this time, the SRAM read path
outputs the stored data (Data 1 in Fig. 4), and the column periph-
eral units write-back the inverted ‘Data 1’ to the dummy array.
Please note that, in the Fig. 4, the numbers below the WL pulse
indicate the accessing cycle, and the prime symbol (‘) separates
the read and write-back operations. After the NOT operation (in-
cluding write-back), an ADD operation is performed to subtract
the ‘Data 1’ from the ‘Data 0’ using two’s complement format. As
shown in Fig. 4, in order to reduce the write-back power consump-
tion, the BL separator adaptively disconnects the large capacitive

BL in the SRAM array. The supported in-memory-computing op-
erations are categorized in Fig. 4 and Table I. As shown in Table I,
except for the SUB, and MULT operation, all the other operations
only take 1 cycle.

3.2 Bit-Parallel Multiplication with Reconfig-
urable Bit-precision

As shown in the top-left illustration of Fig. 5, the conventional
multiplication consists of i) partial products generation, and ii)
summation of all the partial products. When these operations are
performed as is, 6 (1+2+3) shift operations and 3 addition opera-
tions are required for 4×4 multiplication. In the proposed in-
memory-computing architecture, by using the ‘add-and-shift’
function and adopting the left-shift based multiplication algo-
rithm, the multiplication operation can be performed cost-effec-
tively. The left-shift based multiplication is presented in the bot-
tom-left of Fig. 5. As shown in this figure, the reversed multipli-
cand (B[3:0] B[0:3]) makes the accumulation of partial products
to the left-shift based addition operation. As shown in the
‘1010×1011’ example of Fig. 5, the partial products accumulations
in the left-shift based multiplication perform reversely compared
to the conventional approach (pMult0 pMult1 tMult). At this
time, the reversed accumulations can be divided into each add-
and-shift operation groups by inserting an initial ‘0000’ to the add-
ing operation. In the proposed in-memory-computing architec-

Figure 5: Multiplication procedure of the proposed in-memory-computing architecture.

ADD-and-Shift 0

ADD-and-Shift 1

ADD-and-Shift 2

......
0101

0101
0000

0101

1

0

1

1

0

0

1

1

x

A3 A2 A1 A0

B3 B2 B1 B0

1

0

1

1

0

0

1

1

×

A3 A2 A1 A0

B3B2B1B0

000
0101

0101

0

0

01010
0000

001010

010011

0101
001010

0

0100110
0101

1110110 0

MX3
1

MX3
1 10

BL3 BL2 BL0BL1Reconfig.
Ctrl.

Reconfig.
Ctrl.

0 0
0 0
0 0

0 1
0 0
0 0

0 1
1 0
0 0

0 0
1 0
0 0

Left-Shift

+

+

+

+

Left-Shift

Left-Shift

A
dd

-a
nd

-S
hi

ft
 1

A
dd

-a
nd

-S
hi

ft
 2

A
D

D

A
dd

-a
nd

-S
hi

ft
 0In

it
.

pM
ul

t0
pM

ul
t1 tM

ul
t

pMult0

Left-Shift Multiplication

pMult1

tMult

Conv. Multiplication

MX0

FA

Lo
gi

c

+ <
<1

+
, <

<1

WR-
Back

MX0

FA

Lo
gi

c

+ <
<1

+
, <

<1

WR-
Back

MX0

FA

Lo
gi

c

+ <
<1

+
, <

<1

WR-
Back

MX0

FA

Lo
gi

c
+ <

<1
+

, <
<1

WR-
Back

MX0

FA

Lo
gi

c

+ <
<1

+
, <

<1

WR-
Back

......

MX3
1

MX3
- 01

BL3 BL2 BL0BL1Reconfig.
Ctrl.

Reconfig.
Ctrl.

0 0
0 0
0 0

0->1 1->0
0 0
0 0

0->1 1->0
1 0
0 0

0->0 0->0
1 0
0 0

MX0

FA

Lo
gi

c

+ <<
1

+,
 <

<1

WR-
Back

MX0

FA

Lo
gi

c

+ <<
1

+,
 <

<1
WR-
Back

MX0

FA

Lo
gi

c

+ <<
1

+,
 <

<1

WR-
Back

MX0

FA

Lo
gi

c
+ <<

1
+,

 <
<1

WR-
Back

MX0

FA

Lo
gi

c

+ <<
1

+,
 <

<1

WR-
Back

1110110 0

MX0

FA

Lo
gi

c

+ <
<1

+
, <

<1

WR-
Back

MX0

FA

Lo
gi

c

+ <<
1

+,
 <

<1

WR-
Back

......

MX3
-

MX3
- 11

BL3 BL2 BL0BL1Reconfig.
Ctrl.

Reconfig.
Ctrl.

0 0->1
0 0
0 0

1->1 0->0
0 0
0 0

1->0 0->1
1 0
0 0

0->0 0->0
1 0
0 0

MX0

FA

Lo
gi

c

+ <<
1

+,
 <

<1

WR-
Back

MX0

FA

Lo
gi

c

+ <<
1

+,
 <

<1

WR-
Back

MX0

FA

Lo
gi

c

+ <<
1

+,
 <

<1

WR-
Back

MX0

FA

Lo
gi

c
+ <<

1
+,

 <
<1

WR-
Back

MX0

FA

Lo
gi

c

+ <<
1

+,
 <

<1

WR-
Back

MX0

FA

Lo
gi

c

+ <<
1

+,
 <

<1

WR-
Back

B[3:0] -> B[0:3]

 5

ture, since the add-and-shift function is performed in a single-cy-
cle while minimizing data movement, the multiplication overhead
is significantly alleviated compared to the conventional multiple
shift and add combination. The detailed hardware operation prin-
ciple is also illustrated in Fig. 5. During initialization, ‘0’s are writ-
ten to the first row of dummy array, while multiplier data (B[3:0]
= 1011) is stored in the flip-flops. After that, multiplicand data
(A[3:0] = 1010) is copied to the second row of dummy array. Here,
these steps are omitted in Fig. 5. Next, first and second rows are
activated for the add-and-shift operation. During those add-and-
shift operations, the propagated data from lower bit to upper bit
is selected depending on the flip-flop output. As shown in Fig. 5,
in case of the add-and-shift 0 phase (top-right illustration of Fig.
5), since the flip-flop output is ‘1’, the FA output is selected and
wrote back, shifted. On the other hand, in case of add-and-shift 1
phase, since the valid data are stored in second and third rows of
dummy array, the corresponding WLs are activated. At this time,
since the flip-flop output is ‘0’, the data which was propagated
from lower bit and stored in the flip-flop of ‘Y-Path’ is delivered
to the write-back path. Similarly, during the add-and-shift 2 phase,
the second and third rows are activated to add the previously ac-
cumulated data (010100 in Fig. 5) to the multiplicand (1010 in Fig.
5). For the final accumulation of the partial products, the ADD
operation is performed to complete the multiplication result. For
the NxN multiplication, the total number of cycles can be com-
puted with 2 initialization steps and N iterative add-and-shift op-
eration.

Fig. 6 illustrates the reconfigurable unit structure of a 2-bit
precision arithmetic operation and its extension to the 4-bit and
8-bit cases. To distinguish the accessed cells from the unaccessed
cells in the 4:1 column-interleaved SRAM, the accessed cells are

colored grey. As shown in Fig. 6, in order to support 2-bit
precision multiplication, additional 2-bit storages are needed in
the proposed in-memory-computing architecture. When the bit
precision of mulplication is extended two times larger, the
storages also have to increase twice in their size. Thus, 2-bit FF
based structure is a perfect fit for the proposed architecture, since
there will be no redundant hardware in any form of operation.
Our proposed architecture supports up to 8-bit precision mode,
but 16-bit and 32-bit precision can also be implemented in the
same method.

4 IMPLEMENTATION RESULT
In the proposed in-memory computing architecture, a 128KB

memory size (4 banks 128 x 128 macro) has been simulated with a
28nm CMOS process. Fig. 7 (a) shows the bit-line computing delay
(from WL driver to single-ended SA) compared with 0.55V WL
driver based 6T SRAM in-memory computing, in various process
corners. Since a short WL pulse makes small discharge and the
remainder is discharged by an additional pull-down path in the BL
boosting scheme, which consists of larger transistors than 6T
SRAM cells, the delay of BL computing is improved 0.22X com-
pared to the 6T SRAM with 0.55V driven WL at worst case. Also,
Fig. 7 (b) shows the carry propagation delay comparison between
the proposed FA and the logic gate based FA. While the proposed
FA generates added results in advance and they are selected by
the carry signals, logic gate based FA has to perform computation
every time it receives the carry-in. Therefore, the proposed FA

 (a) (b)

Figure 7: Delay Comparisons.

Figure 8: Breakdown and maximum frequency of the pro-
posed in-memory-computing.

SF SS NN FS FF 0.7 0.8 0.9 1.0 1.1
Process Corner

B
L

C
om

pu
ti

ng
 D

el
ay

 (n
s)

FA
 C

ri
ti

ca
l P

at
h

D
el

ay
 (n

s)

0.8

0.6

0.4

0

1.2

1.0

0.2

Voltage (V)

28nm, 0.9V, 25°C 28nm, 0.9V, 25°C, NN

Prop. FA (8bit)
Logic FA (8bit)
Prop. FA (16bit)
Logic FA (16bit)

1.0

1.8

1.4

0.4

x0.22

1.6

1.2

0.8

0.6

0.2

WLUD (0.55V VDD)
Short WL+BL Boost

1
C

yc
le

s

M
ax

im
um

 F
re

qu
en

cy
 [

G
H

z]

222 ps
(36.8%)

60 ps
(10.0%)

130 ps
(21.6%)

140 ps
(23.2%)

51 ps
(8.5%)

Logic Delay
BL Pch. BL Sensing

Write-Back
WL Act.

BL Pch.

WL Act.

BL Sensing

Logic Delay
(16b Adder)

Write-Back
0.6 0.7 0.8 0.9 1.0 1.1

Supply Voltage [V]

28nm, FF, 25°C, 8-bit Op.

En
er

gy
 E

ff
ic

ie
nc

y
(U

ni
t:

x1
 M

U
LT

, x
10

 A
D

D
)

1.5

1.0

3.0

2.5

2.0

0.5

0

0.4

1.0

0.8

0.6

0.2

0

w/ BL Sep.
w/o BL Sep.
ADD
MULT

Figure 6: Reconfigurable bit precision for multiplication.

0

A[1]

AB[0]

Column Peri-Unit

- - - A[0] - - -

B[0:1]

Column Peri-Unit Column Peri-Unit Column Peri-Unit

- - - - - -- -

- - - - - -- -
- - - - - -
- - - - - -- -

- - - - - -- -
0 0

B[1] - - - B[0] - - -
- - - - - -- -

- - - - - -- -
- - - - - -
- - - - - -- -

- - - - - -- -
0 0

AB[1]AB[2]AB[3] - - - - - -- - - - - -
A[1] A[0]

- - - - - -0 0- - - - - -0 0
BL Separator

...
...

...

- - - - - -- - - - - -0

2-bit Precision Unit

2-bit Precision Unit2-bit Precision Unit

2-bit Precision Multiplication

4-bit Precision Multiplication

2-bit Precision Unit2-bit Precision Unit

8-bit Precision Multiplication

2-bit Precision Unit2-bit Precision Unit

1-bit Processing Unit 1-bit Processing Unit1-bit Processing Unit 1-bit Processing Unit

2-bit Precision Unit

6

improves the critical path delay 1.8X-2.2X. In our proposed archi-
tecture, the overall delay consists of components as shown on the
left side of Fig. 8. Due to the reduction of delay of each component,
we can enhance the operating frequency. In the 8-bit precision
case, we have to consider logic delay the same as that of 16-bit
adder delay, which is 222ps. In addition, we can reduce the write-
back delay by controlling the BL separator.

The right side of Fig. 8 presents maximum operation frequency
with various supply voltages, and the TOPS/W of addition/multi-
plication. For the figure that shows TOPS/W of adding operation,
the y-axis values have to be multiplied by 10. Fig. 9 shows cycles
per operation size of 8-bit arithmetic operations depending on the
BL size. Compared to the conventional bit-serial approach, our
bit-parallel architecture shows better cycle performance as the BL
size increases because of the bit-parallel structure. Table II shows
the energy per operation of typical complex computations for
each bit-precision. Energy of subtraction or multiplication, which
requires write-back phase, is denoted with and without the BL
separator. Table III shows the comparison between the proposed
and the state-of-the-arts. Our work shows the best energy effi-
ciency (TOPS/W) with high clock frequency while avoiding read
disturbance issue.

5 CONCLUSIONS
In this paper, we propose 6T SRAM based bit-parallel in-

memory computing. By performing BL computing with a short
WL pulse followed by BL boosting, we enhance the memory op-
eration frequency while avoiding cell read disturbance issues. In
addition, our transmission gate based FA composes ripple carry
adder faster than logic-gate based FA. Moreover, WB delay and
energy consumption are reduced due to BL separator. Due to the
applied techniques, we successfully improved the memory clock
frequency. Also, the bit-parallel architecture allows our IMC to
perform complex operations such as addition/multiplication with

low latency. Furthermore, this work supports reconfigurable bit-
precision operation, so we can implement various algorithms and
increase hardware utilization. The numerical result shows that the
proposed IMC architecture achieves 2.25GHz clock frequency at
0.9V with 5.2% of area overhead. The parallel addition and multi-
plication of the proposed architecture also achieves 0.68, 8.09
TOPS/W for addition and multiplication, respectively. The pro-
posed work also supports a wide range of supply voltage, from
0.6V to 1.1V.

6 ACKNOWLEDGEMENTS

This research was supported by the National Research Foundation
of Korea grant funded by the Korea government (No. NRF-
2020R1A2C3014820), and Samsung Electronics.

REFERENCES
[1] Supreet Jeloka, Naveen Bharathwaj Akesh, et al., A 28nm Configurable

Memory (TCAM/BCAM/SRAM) Using Push-Rule 6T Bit Cell Enabling Logic-
in-Memory. IEEE Journal of Solid-State Circuits (JSSC) (2016).

[2] J. Wang, X. wang, et al., A 28-nm Compute SRAM With Bit-Serial Logic/Arith-
metic Operations for Programmable In-memory Vector Computing. IEEE Jour-
nal of Solid-State Circuits (JSSC) (2019).

[3] Charles Eckert, Xiaowei Wang, et al., Neural Cache: Bit-Serial In-Cache Accel-
eration of Deep Neural Networks. ACM/IEEE International Symposium on
Computer Architecture (ISCA) (2018).

[4] Kaya Can Akyel, Henri-Pierre Charles, et al., DRC2: Dynamically Reconfigura-
ble Computing Circuit based on memory architecture. IEEE International Con-
ference on Rebooting Computing (ICRC) (2016).

[5] A.-W. Simon et al., A fast, reliable and wide-voltage-range in-memory compu-
ting architecture. IEEE/ACM DAC, (2019).

[6] Q. Dong et al., A 4+2T SRAM for searching and in-memory computing with
0.3-V VDDmin. IEEE Journal of Solid-State Circuits (JSSC) (2018)

[7] S. Aga et al. Compute caches. In HPCA (2017).
[8] J. Zhang, Z. Wang, et al., In-memory computation of a machine-learning clas-

sifier in a standard 6T SRAM array. IEEE Journal of Solid-State Circuits (JSSC)
(2017)

[9] Y. Zhang, L. Xu, et al., Recryptor: A reconfigurable cryptographic cortex-M0
processor with in-memory and near-memory computing for IoT security. IEEE
Journal of Solid-State Circuits (JSSC) (2018)

[10] M. Kang, S. K. Gonugondla, et al., A Multi-Functional In-Memory Inference
Processor Using a Standard 6T SRAM Array. IEEE Journal of Solid-State Cir-
cuits (JSSC) (2018)

[11] A. Biswas and A. P. Chandrakasan., CONV-SRAM: An energy-efficient SRAM
with in-memory dot-product computation for low-power convolutional neural
networks. IEEE Journal of Solid-State Circuits (JSSC) (2019)

[12] Y. Tang, J. Zhang, and N. Verma., Scaling up in-memory-computing classifiers
via boosted feature subsets in banked architectures. IEEE Trans. Circuits Syst.
II, Exp. Briefs (2019)

[13] A. Agrawal et al., X-sram: Enabling in-memory boolean computations in cmos
static random access memories. Trans. Circuits Syst. I (2018)

[14] H. Valavi, P. J. Ramadge, et al., A 64-Tile 2.4-Mb in-memory-computing CNN
accelerator employing charge-domain compute. IEEE Journal of Solid-State
Circuits (JSSC) (2019)

Table III: Comparison with state-of-the-arts

Reference

Area overhead
Cell type

Drawback
Read disturb

Supply
Technology

Array size
Max Freq.

Reconfigure

TOPS/W (MULT)

Used
SRAM cell

16' JSSC [1]

-
6T cell

Only bit-wise operation
WL Underdrive

0.7V – 1.0V
28nm FDSOI

64 x 64 (4kB)
787MHz

X

-

19' JSSC [2]

* 4.5%
8T Tranposable

High latency
WL Underdrive

0.6V – 1.1V
28nm CMOS

4 x 128 x 256
475MHz (1.1V)

Programmable

0.56 (0.6V, 114MHz)

19' DAC [5]

* 4.0%
6T w/ local group

Local limited access
Local Read BL

0.6V – 1.1V
28nm CMOS

256 x 128
2.2 GHz (1.0V)

X

-

Prop.

5.2%
6T cell

-
Short WL w/ BL Boosting

0.6V – 1.1V
28nm CMOS

4 x 128 x 128
2.25GHz (1.0V)

2bit/4bit/8bit

0.68 (0.6V, 372MHz)
TOPS/W (ADD) - 5.27 (0.6V, 114MHz) - 8.09 (0.6V, 372MHz)

B
LB

WLR

WLL

B
L WL

C
W

L

CBL
WL

CBLB

G
B

L LB
L

LB
LB

G
B

LB

WL

BL BLB

* Array area overhead is not included

Figure 9: Operation cycle comparison with conventional
bit-serial approach [2].

Table II: Supported operations and their energy
Operation ADD SUB MULT

Bit-Precision 2-bit 4-bit 8-bit 2-bit 4-bit 8-bit 2-bit 4-bit 8-bit

Energy/
Operation

[fJ]
68.2 138.4 274.8

w/o BL Separator w/o BL Separator

152.3 307.5 612.2 357.4 1167.6 4186.4

w/ BL Separator w/ BL Separator

136.5 274.9 545.4 296 922.4 3394.8

Monte-Carlo

Figure 7: Conventional BL computing scheme.

128 256 512
BL size

1024128 256 512
BL size

1024

ADD MULT

128 256 512
BL size

1024

C
yc

le
s

/
O

pe
ra

ti
on

 S
iz

e

SUB

0

0.2

0.1

0.3

0

0.8

0.4

1.2
x0.38

0.1

0

0.3

0.2

Conv.
Prop.

x0.27

x0.17

x0.16

x0.23

x0.18

x0.13
x0.08

x1.19

x0.68
x0.36

x0.19

Conv.
Prop.

Conv.
Prop.

