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Abstract—In this paper, we propose EasyBO, an Efficient ASYn-
chronous Batch Bayesian Optimization approach for analog circuit syn-
thesis. In this proposed approach, instead of waiting for the slowest sim-
ulations in the batch to finish, we accelerate the optimization procedure
by asynchronously issuing the next query points whenever there is an idle
worker. We introduce a new acquisition function which can better explore
the design space for asynchronous batch Bayesian optimization. A new
strategy is proposed to better balance the exploration and exploitation
and guarantee the diversity of the query points. And a penalization
scheme is proposed to further avoid redundant queries during the
asynchronous batch optimization. The efficiency of optimization can thus
be further improved. Compared with the state-of-the-art batch Bayesian
optimization algorithm, EasyBO achieves up to 7.35× speed-up without
sacrificing the optimization results.

I. INTRODUCTION

As device size scales to the nano region, it becomes difficult
to manually design analog circuits. With the increasing variation
space and the narrowing time-to-market, a sophisticated analog circuit
optimization algorithm is in great need to improve the productivity.
Typically, the analog circuit design procedure can be divided into
two parts: topology selection and device sizing [1]. In this paper, we
focus on the device sizing problem with a fixed circuit topology.

To meet the design specifications in a short period of time, the
overall simulation time which dominates the cost of the optimization
process should be reduced. Traditional optimization algorithms for
device sizing fall into two categories: the model-based and the
simulation-based methods. The model-based method investigates the
circuit performance with analytical equations or polynomial models.
By approximating the behavior of the analog circuit, the constructed
model substitutes the computationally expensive simulator to search
the global optimum. One well-known model-based approach is geo-
metric programming [2], [3], which models the circuit performance
with posynomial approximation [4]–[6]. However, the optimization
results of the model-based method largely depend on the modeling
accuracy. The performance deviation between the constructed model
and the real circuit would make the obtained results diverge from the
real optimum.

The simulation-based approaches instead treat the behavior of the
analog circuit as a black-box function. Based on the current simulated
dataset, they explore the state space by proposing the next locations
for evaluation. There are many well-developed simulation-based
algorithms, including the multi-starting point (MSP) algorithm [7]–
[9], simulated annealing (SA) [10]–[12], differential evolution (DE)
[13], and particle swarm optimization (PSO) [14]–[17]. However, a
serious defect that hinders simulation-based approaches from being
widely used is its relatively low convergence rate.

To solve this dilemma, the Bayesian optimization algorithm (BO)
has been recently proposed to accelerate the optimization procedure
by combining both the model-based and simulation-based strategies
[18]. Instead of constructing the model once and search the design
space offline, BO refines the surrogate model incrementally and
invokes the simulation on the fly. Despite the debuts of recent
works [18]–[21] that have proven the effectiveness and efficiency
of the BO framework, the sequential characteristic of the state-of-
the-art acquisition function in the BO framework makes it hard to
be parallelized. Without parallelism, the hardware is not able to
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be fully utilized when multi-core workstations are available. Also,
for circuits that are expensive to evaluate, it is much more cost-
effective to simulate the circuits in a batch rather than one-at-a-
time. In order to further reduce the overall time consumption on
the simulation, efforts have been made to make batch BO possible
[22], [23]. By synchronously sampling several points at each iteration
and evaluating the performances in parallel, they are able to greatly
reduce the overall simulation time compared to the sequential BO.

Nevertheless, the main issue with the synchronous batch BO is
that different design parameters can lead to different simulation time
consumption. And it is a waste of hardware resources to let workers
wait idly for the slowest design in the batch to finish the simulation.
To fill this gap, we propose EasyBO, an asynchronous batch BO
algorithm for analog circuit synthesis. Instead of waiting for the
whole batch to finish the evaluation process, EasyBO issues a new
candidate point whenever there is a worker becomes available in
the current batch. We introduce a new acquisition function which
can better explore the design space for asynchronous batch Bayesian
optimization. EasyBO introduces a new strategy to better balance
the exploration and exploitation and guarantees the diversity of the
query points during the asynchronous batch Bayesian optimization.
The design space can thus be better traversed and thus the optimiza-
tion efficiency can be greatly improved. A penalization scheme is
proposed to further avoid redundant queries during the asynchronous
batch optimization. EasyBO is experimentally evaluated on two real-
world analog circuits. Compared to DE method [13], EasyBO can
achieve up to 1935× speed-up while achieving better optimization
results. Compared with the state-of-the-art synchronous batch BO
algorithm, experimental results demonstrate that EasyBO can achieve
up to 7.35× speed-up with comparable optimization results.

The rest of this paper is organized as follows. A brief review
of the Gaussian process regression model based BO framework
and the synchronous batch BO approaches is presented in §II. Our
proposed asynchronous batch BO algorithm are presented in §III. The
experimental results of two real-world analog circuits are compared
with several state-of-the-art optimization algorithms in §IV. And we
conclude the paper in §V.

II. BACKGROUND

In this section, we first present the problem formulation of the
analog circuit optimization (§II-A). We then give a brief review of
both the Gaussian process regression model based BO framework
(§II-B) and the synchronous batch BO (§II-C).
A. Problem Formulation

For an analog circuit, there are typically several circuit performance
metrics to be optimized simultaneously. In this paper, we formulate
the analog circuit optimization problem into a single-objective opti-
mization problem by assigning each performance metric a weight:

maximize. FOM(x) =

m∑
i=1

αifi(x), (1)

where x is a d-dimensional design variables, FOM(·) represents the
Figure of Merit for optimization, fi(·) denotes the i-th performance
metric and αi is the corresponding assigned weight. Our proposed
approach can also be easily extended to handle constrained optimiza-
tion problem, which will be discussed in future work.
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B. Bayesian Optimization
Generally, there are two basic elements in the Bayesian opti-

mization (BO) framework: the surrogate model and the acquisition
function [24]. The surrogate model captures our prior belief about the
unknown objective function and provides the posterior distribution
with both predictive mean and uncertainty estimations [25].

One most frequently used surrogate model is the Gaussian pro-
cess regression (GPR) model [24]. For a given scalar-valued latent
function f(·) defined over a compact space χ : Rd → R, we
assume the observation noise ε ∼ N(0, σ2

n). By assuming f ∼
GP(m(x), k(x,x)), we encode our prior belief about the unknown
objective function with a mean function m(·) and a kernel function
k(·, ·). In this paper, we set the kernel function as the square exponen-
tial function: kSE(xi,xj) = σ2

fexp(− 1
2
(xi −xj)

T Λ−1(xi −xj)),
where Λ = diag(l21, . . . , l

2
d) is a diagonal matrix, li is the length

scale in i-th dimension, and σf represents the variance.
Let D = {X,y} denotes a dataset with N points, X =
{x1, . . . ,xN} is the input locations and y = {y1, . . . , yN} is the
corresponding observations. The posterior distribution for a given
input design x∗ is [24]:{

µ(x∗) = k(x∗, X)K−1y

σ2(x∗) = k(x∗,x∗)− k(x∗, X)K−1k(X,x∗),
(2)

where k(x∗, X) = {k(x∗,x1), . . . , k(x∗,xN )}, k(X,x∗) =
k(x∗, X)T , and K = k(X,X) + σ2

nI is the covariance matrix.
The acquisition function works as a utility function that provides

the fitness value for each candidate point, and selects the query
point to refine our prior belief [25]. By carefully balancing between
the exploration and exploitation, the acquisition function efficiently
search the design space by avoiding two pitfalls: (1) too much
exploration in the low potential area, (2) too much exploitation around
the sampled region. One commonly used acquisition function is the
upper confidence bound (UCB) [26]:

UCB(x) = µ(x) + κ ∗ σ(x), (3)

where κ is the parameter characterizing the trade-off between the ex-
ploration and exploitation. There are also many other well-developed
acquisition functions, including expected improvement (EI) [27],
probability of improvement (PI) [28], entropy search (ES) [29] and
Thompson sampling (TS) [30]. Extensive researches have proven that
a portfolio of several acquisition functions is also possible [31].

In summary, BO constructs the initial surrogate model with a set
of randomly sampled dataset. By leveraging the predictive mean and
uncertainty estimation, the acquisition function selects the next query
point with the maximum fitness value to incrementally refine the
surrogate model. After a certain number of iterations, the global
optimum will be reached with a theoretical guarantee.
C. Synchronous Batch Bayesian Optimization

In order to improve the utilization of the hardware resources, many
different synchronous batch BO approaches have been proposed to
make evaluation in parallel possible, including MACE [22], pBO
[23], pHCBO [23], BUCB [32], and LP [33]. Although parallelism
can help gather more information in a short period of time, it
also introduces the information gap when selecting future locations
without intermediate observations. Most of the synchronous batch BO
algorithms convert the batch selection into a sequential procedure,
since it is hard or even computationally intractable to maximize the
sample efficiency while maintaining diversity. MACE [22] maintains
diversity for each batch by sampling from the Pareto front of the
multi-objective acquisition function ensemble. LP [33] penalizes the
acquisition function in the neighborhood of the selected locations.
BUCB [32] penalizes around the busy locations by using hallucinated
observations. pBO [23] tries to introduce diversity to the batch selec-
tion by assigning the predictive mean and uncertainty measurement
with different weighting parameters, which can be expressed as [23]:

αpBO(x, wi) = (1− wi) ∗ µ(x) + wi ∗ σ(x), (4)
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Fig. 1. An illustration of asynchronous and synchronous setting when batch
size is 3.

where w = (0, 0.25, 0.5, 0.75, 1)T when batch size is 5. Higher wi

means that we tend to visit the regions with higher uncertainties (ex-
ploration). Lower wi means that we tend to traverse better solutions
with high confidence (exploitation). Thus, different wi corresponds to
different trade-offs between exploration and exploitation. The basic
idea of [23] is to fully explore different trade-offs with a set of
different wi in parallel. However, the query points of explicitly
designed wi in [23] still have high probability to fall into the same
region, which would greatly reduce the efficiency of exploring the
state space.

In order to address this problem, pHCBO [23] penalizes the
acquisition function of pBO with an additional term αHC(x, Db, wi)

αpHCBO(x, wi) = αpBO(x, wi)− αHC(x, Db, wi), (5)

where

αHC(x, Db, wi) = NHC
5

√√√√ 5∏
j=1

exp[(
d

dx
)10]. (6)

Here Db denotes the observed dataset for b-th iteration, d is a
manually defined parameter, dx = ‖x − xb−j,i‖, and xb−j,i is
the query location at (b − j)-th iteration for wi. If x falls into the
neighborhood of the previous 5 points, the penalization term would
be extremely large. The penalization term is thus possible to prevent
clustered sampling by the same acquisition function (with the same
wi value).

III. PROPOSED APPROACH

In this section, we will present the motivation and challenges of
asynchronous batch Bayesian optimization (§III-A) firstly. Then, we
will describe our carefully designed acquisition function (§III-B) and
penalization scheme for asynchronous batch Bayesian optimization
(§III-C). Finally, we summarize EasyBO algorithm (§III-D). The
batch size is denoted as B throughout the rest of the paper.
A. Asynchronous Batch Bayesian Optimization

As illustrated in Figure 1, the synchronous batch BO algorithm
aims to select a batch of candidate points to evaluate in parallel.
The next batch will only be issued when all samples in the previous
batch have been evaluated. Due to variability in simulation times for
different design parameters, there will always be workers waiting idly
for others to finish their jobs in the synchronous batch BO algorithm.
Therefore, the synchronous batch BO algorithm is not able to achieve
B× speed-up for batch size B compared to its sequential counterpart.
As the batch size increases, the time reduction effect will deteriorate
quickly, since more workers will wait idly for others to finish their
jobs.

Instead of waiting for the whole batch to finish the evaluation
process, we propose to asynchronously issue new candidate points
whenever a worker becomes available. The key motivation behind the
asynchronous batch BO algorithm is to make full use of the hardware
resources to reduce the overall time spent on evaluation. Intuitively,
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Fig. 2. An illustration of the UCB acquisition function with different w over
[0,1]. And the sampling probability of our proposed acquisition function with
respect to w.

the asynchronous batch BO algorithm can process a greater number
of evaluations than its synchronous counterpart, in a given period of
time. With the increase of the batch size, the time reduction for a
given number of simulations will be more significant compared to its
synchronous counterpart. And the asynchronous batch BO algorithm
is especially suitable for problems where the simulation time of which
differs greatly for different design parameters. To the best of our
knowledge, this is the first time when an asynchronous mechanism
is proposed for Bayesian optimization of analog circuits.

In general, there are two harsh challenges for the batch BO algo-
rithms to deal with: (1) how to fully leverage our current knowledge
about the latent function, and select the future query points, (2) how
to penalize around the selected locations that are still under evaluation
to prevent redundant samples from being chosen in the busy region.

B. Improved Acquisition Function
In Bayesian optimization, the acquisition function is carefully

designed to balance the exploration and exploitation. For batch
Bayesian optimization, it is also desirable for the acquisition function
to create the diversity of the query points in a batch. The upper
confidence bound (UCB) as shown in (3) is a direct yet powerful
acquisition function. As explained in §II-C, the predictive mean µ(x)
represents the exploitation, while the predictive uncertainty σ(x)
represents the exploration. The parameter κ is introduced to balance
the exploration and exploitation.

In [23], the diversity is introduced to the batch selection by
assigning the predictive mean and uncertainty measurement with
different weighting parameters as shown in (4). We rewrite (4) here

αpBO(x, w) = (1− w) ∗ µ(x) + w ∗ σ(x). (7)

For batch size B, B weights {w1, · · · , wB} which are uniformly
distributed over [0, 1] are selected. With B different weights, the B
different acquisition functions are expected to select B different query
points for a batch. However, such a strategy does not work well in
real applications.

At the starting stage of the optimization procedure, it is important
to gather global information about the underlying behavior of the
objective function. In other words, the acquisition function should
encourage exploration at the initial stage of the optimization process,
which means w should be larger to encourage exploration.

After a limited number of iterations, the predictive uncertainty
σ(x) of the refined model would have a much smaller magnitude
than its predictive mean µ(x). Therefore, the acquisition functions
with smaller w would generate almost the same query points, since
(1− w) ∗ µ(x) dominates the acquisition function in (7). From the
previous analysis, we should encourage larger w for the acquisition
function as shown in (7). The uniformly distributed w in [23] is not
a good choice.

The corresponding distribution of the selected location x with
respect to w parameter is shown in Figure 2. It is worth noting that
x only has small change when w is relatively small and encourages

exploitation. And the value of x changes quickly when w is relatively
large and encourages exploration. Therefore, we need to increase the
sampling density around the region with large w to maintain the
diversity of the selected query points.

In EasyBO, instead of uniformly sampling the w parameter,
we propose a new acquisition function scheme that increases the
sampling density as w increases, which can be expressed as:

α(x, w) = (1− w) ∗ µ(x) + w ∗ σ(x), (8)

where w = κ/(κ + 1). By randomly sampling κ from the uniform
distribution over a proper range [0, λ], w tends to approach 1 to
encourage exploration at the initial stage and the diversity at the
later optimization stage. The corresponding sampling probability of
w is shown in Figure 2. It can be observed that w has higher
probability near the neighborhood of 1. We set λ to a limited value
to prevent the acquisition function from too much exploration during
the optimization. We set λ = 6.0 in this paper.
C. Penalization Scheme

In order to improve the optimization efficiency, penalization is
proposed in [23] to prevent the new query points from falling into the
neighboorhood of the previous 5 points as shown in (6). However,
this penalization is not appropriate for batch Bayesian optimization.
The purpose of the penalization for batch Bayesian optimization is
to guarantee the diversity of the query points in one batch rather
than the diversity of query points across the observation dataset. The
penalization in (6) would significantly impact the convergence rate.
Note that the query points would concentrate in the neighboorhood
of the optimal solution to guarantee the regression accuracy of GPR
in the final stage of optimization. The penalization of diversity in
(6) would thus reduce the regression accuracy around the optimal
solution and reduce the convergence rate.

In this paper, we propose a new penalization scheme to guar-
antee the diversity of the query points of a batch. An interesting
observation is that the predictive uncertainty of GPR model provides
a natural penalization for diversity. The uncertainties are lower in
the neighborhood of already sampled data points while larger in the
unvisited region. Thus, the UCB acquisition function as shown in
(7) can naturally avoid redundant sampling over the neighborhood of
already visited points.

For batch Bayesian optimization, we should include the query
points in the same batch to the training dataset, and incorporate the
corresponding predictive uncertainty into the acquisition function to
guarantee the diversity of the query points in one batch.

Denote D = {X,y} the observed data points. Denote X̂ =
{x̂1, . . . , x̂B−1} the already selected query points in this batch,
where B is the batch size. Note the corresponding observations
y = {y1, . . . , yB−1} are unknown, since the simulations of this
batch are not finished yet. Following the same penalization strategy as
[32], we assumes the underlying objective function follows the same
behavior as the current predictive mean. Let X̂ = {x̂1, . . . , x̂B−1}
denote the query points under evaluations, we approximate the
observations with the predictive mean ŷ = {ŷ1, . . . , ŷB−1} of GPR
model with the observed data points D = {X,y} as training data.
With the observed data points and the pseudo data points, i.e.,
D̂ = {X,y} ∪ {X̂, ŷ}, we could get the predictive uncertainty of
GPR model σ̂(x) according to (2). And this uncertainty estimation
σ̂(x) can naturally be incorporated into our acquisition function
to guarantee the diversity of the query points in one batch. The
acquisition function with penalization scheme can be expressed as:

α(x, w) = (1− w) ∗ µ(x) + w ∗ σ̂(x), (9)

where w = κ/(κ+ 1), and κ is randomly sampled from the uniform
distribution over a proper range [0, λ]. Here, the predictive uncertainty
is replaced by the uncertainty estimation σ̂(x) to guarantee the
exploration as well as diversity simultaneously.
D. Summary of EasyBO approach

We summarize EasyBO algorithm in Algorithm 1.



Algorithm 1 EasyBO Algorithm
1: Initialize a training dataset Do = {X,y}, and define the batch

size B.
2: for t=1 to N do
3: Wait for a worker to be available.
4: Update the training dataset with newly observed data Dt =

Dt−1 ∪ {xt, yt}.
5: Get the predictive mean ŷ = {ŷ1, . . . , ŷB−1} of the remaining

samples X̂ = {x̂1, . . . , x̂B−1} that are still under evaluation.

6: Refine the surrogate model with Dt ∪ {X̂, ŷ}.
7: Propose the next candidate points x̂B for the idle worker by

maximizing the acquisition function.
8: end for
9: Obtain the optimal results max(y).

IV. EXPERIMENTAL RESULTS

In this section, we show the efficiency of EasyBO by comparing it
with several state-of-the-art optimization algorithms in both sequen-
tial and batch modes, in terms of both the number of simulations and
the wall-clock time 1. Our benchmark circuits include an operational
amplifier (§IV-A) and a class-E power amplifier (§IV-B), of which the
simulation results are generated with the commercial HSPICE circuit
simulator. All experiments are conducted on a Linux workstation with
two Intel Xeon X5650 CPUs and 128GB memory.

Our sequential mode baselines include: (1) DE [13], an opti-
mization algorithm based on the evolutionary algorithm, (2) EI
[27], an improvement-based acquisition function that facilitate the
optimization procedure of BO algorithm, (3) LCB [26], an optimistic
strategy that helps BO framework to fully explore the design space.
The reason to evaluate EasyBO in sequential mode is to show that
it still works reasonably well although it is not specifically designed
for this mode.

For experiments in batch mode, we compare EasyBO against two
state-of-the-art algorithms: pBO [23] which combines both PI and
LCB to select the candidate points on each batch, and its modified
version pHCBO [23] with high coverage consideration to penalize
the clustered samples. To further investigate the relative merits of
our proposed algorithm, we run another three alternatives derived
from EasyBO: (1) EasyBO-S which selects the candidate points
synchronously, (2) EasyBO-A which selects the candidate points
asynchronously, (3) EasyBO-SP which synchronously selects the
candidate points with our proposed penalization scheme to reduce
sampling around the same region. EasyBO here represents our
proposed asynchronous Bayesian optimization approach with our
proposed penalization scheme. All the synchronous and asynchronous
batch BO algorithms are presented in different batch sizes to demon-
strate the robustness of our proposed algorithm. For simplicity of
denotation, we label the algorithms with batch size in the tail. For
pBO and pHCBO, we follow the same pattern of the weighting
parameters w = (w1, . . . , wB) in [23] and set wi = (i−1)/(B−1).

A. Operational Amplifier
The operational amplifier circuit is implemented in a 180nm

process, and its schematic is shown in Figure 3. There is a total of 10
design variables, including the lengths and widths of the transistors,
the resistance of the resistors, and the capacitance of the capacitors.
The corresponding design specification is as follow:

maximize. 1.2×GAIN + 10× UGF + 1.6× PM, (10)

where GAIN denotes the gain of the circuit, UGF means the unit
gain frequency and PM is the phase margin.

1Since we only consider the cases when the objective function is expensive
to evaluate, we exclude the time spent on modeling and selecting the candidate
points.
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Fig. 3. Schematic of the operational amplifier, which is reproduced from [34].

TABLE I
THE OPTIMIZATION RESULTS AND THE CORRESPONDING SIMULATION

TIME OF THE OPERATIONAL AMPLIFIER CIRCUIT.

Algo Best Worst Mean Std Time
DE 685.44 680.654 682.19 1.56 216h40m51s

LCB 689.75 674.38 685.98 4.62 1h36m45s
EI 690.29 650.14 682.53 12.48 1h36m52s

EasyBO 690.36 688.10 689.87 0.92 1h36m55s
pBO-5 690.35 665.78 685.17 7.25 21m19s

pHCBO-5 690.35 477.40 618.30 78.17 21m24s
EasyBO-S-5 690.36 456.05 666.78 62.84 21m10s
EasyBO-A-5 690.36 660.92 685.21 9.81 19m21s
EasyBO-SP-5 690.36 688.10 689.97 0.78 21m6s

EasyBO-5 690.36 688.10 690.17 0.58 19m10s
pBO-10 690.35 459.93 639.60 77.01 11m1s

pHCBO-10 690.35 432.51 645.71 67.25 11m3s
EasyBO-S-10 690.34 438.10 662.77 65.18 11m13s
EasyBO-A-10 690.34 667.48 684.34 8.01 9m44s
EasyBO-SP-10 690.36 673.34 688.73 4.34 11m4s

EasyBO-10 690.36 688.10 689.84 0.79 9m42s
pBO-15 688.50 478.17 631.72 67.00 7m44s

pHCBO-15 690.35 538.09 655.05 52.07 7m47s
EasyBO-S-15 690.30 365.41 610.10 90.69 7m52s
EasyBO-A-15 690.34 469.09 647.32 67.28 6m48s
EasyBO-SP-15 690.36 673.21 687.78 4.77 7m47s

EasyBO-15 690.36 678.98 688.09 3.18 6m43s

To ensure a fair comparison, we run all the optimization algorithms
20 times to reduce the random fluctuations. For DE method, we
set the maximum number of simulations to 20000. For algorithms
that are based on the BO framework, we randomly sample 20 initial
data points and limit the number of simulations to 150, regardless of
the batch size. The optimization results and the corresponding time
consumption on simulation are presented in Table I.

We start with examining the performance of EasyBO in sequential
mode. Compared with EI and LCB, EasyBO achieves better optimiza-
tion results while spending similar time on simulation, as is shown
in the top block of Table I. Compared with DE, EasyBO reduces the
simulation time by 134× while obtaining better optimization results.
This clearly shows the EasyBO is efficient and effective even in the
non-batch mode.

Now let’s move on to the batch mode results to witness the full
potential of EasyBO. Results under 3 representative batch sizes (5,
10 and 15) are presented to understand the impact of different batch
size. Overall, EasyBO constantly achieves better optimization results
and less simulation time with respect to the same batch size. In
other words, EasyBO has higher sample efficiency in terms of both
the number of simulations and wall-clock time for the same batch
size. Considering the impact of asynchronous sampling, asynchronous
batch BO algorithm is able to process a greater number of simulations
in a given period of time, intuitively. The experimental results further
give an empirical demonstration that asynchronous batch BO algo-
rithm has a higher hardware utilization compared to its synchronous
counterpart. Also, the alternatives with our proposed penalization
scheme (EasyBO and EasyBO-SP) constantly outperforms EasyBO-S
and EasyBO-A, which demonstrates that our proposed penalization
scheme helps to prevent redundant samples from being chosen and
significantly improve the sample efficiency.
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To further analyze the impact of the batch size, we fix the algorithm
and compare the optimization results across different batch size. For
pBO, pHCBO, EasyBO-S and EasyBO-A, the optimization results
tend to deteriorate rapidly with the increase of the batch size, which
means that the sample efficiency decreases quickly as the batch
size increases. Instead, the optimization results of both EasyBO
and EasyBO-SP are much more stable across different batch size,
which means that our proposed penalization scheme helps to maintain
the sample efficiency as the batch size increases. An interesting
yet unexpected behavior we note is that the optimization results of
EasyBO in batch mode is even competitive compared to its sequential
counterpart. This observation further demonstrates that a relative
magnitude of batch size encourages exploration. Also, from a time
perspective, EasyBO generally reduces B× of the simulation time
compared to the sequential EasyBO.

The above results empirically demonstrate the efficiency and
effectiveness of our proposed EasyBO algorithm. Without sacrificing
the optimization results, EasyBO can achieve up to 1935× speed-
up compared with DE algorithm for B=15. For a fixed number of
simulations, 9.2%, 12.7% and 13.7% of the time reduction can be
achieved by EasyBO compared with its synchronous counterpart,
when the batch size is 5, 10 and 15 respectively. The time reduction
increases as the batch size increases, due to the increased idle
time of the synchronous batch BO framework. In other words, the
time reduction of the synchronous batch BO algorithms efficiency
decreases as the batch size increases. In Figure 4, we present the
optimization results in terms of wall-clock time for B=15. With
the same optimization result, our proposed EasyBO can reduce
47.3% and 37.4% of the simulation time, compared with pBO and
pHCBO respectively. Experimental results from above demonstrate
that EasyBO has a higher sample efficiency in terms of both the
number of simulations and wall-clock time.

B. Class-E Power Amplifier
Implemented in a 180nm process, the schematic of the class-

E power amplifier is presented in Figure 5. There are 12 design
parameters in total, and the corresponding design specification is
constructed as:

maximize. 3× PAE + Pout, (11)

where PAE is the power added efficiency and Pout means the output
power.

Again, to ensure a fair comparison, we run each optimization
algorithm 20 times to average the random fluctuations. The maximum
number of simulations for DE methodology is set to 15000. For the
remaining algorithms, a total of 20 initial data points are randomly
sampled and the maximum number of simulations is set to 450. The
experimental results and the corresponding simulation time of the
class-E power amplifier circuit are presented in Table II.

We again start with examining the performance of EasyBO in
the sequential mode. Compared to EI and LCB, EasyBO achieves
better optimization results while spending similar time on simulation.
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Fig. 5. Schematic of the class-E power amplifier, which is reproduced from
[22].

TABLE II
THE OPTIMIZATION RESULTS AND THE CORRESPONDING SIMULATION

TIME OF THE CLASS-E CIRCUIT.

Algo Best Worst Mean Std Time
DE 4.56 4.33 4.43 0.08 220h20m40s

LCB 4.10 3.59 3.89 0.14 6h35m41s
EI 4.13 3.52 3.85 0.19 6h36m3s

EasyBO 5.15 4.12 4.44 0.24 6h35m18s
pBO-5 4.61 3.76 4.17 0.19 1h48m24s

pHCBO-5 4.42 3.66 4.17 0.16 1h48m32s
EasyBO-S-5 5.36 4.04 4.54 0.39 2h0m17s
EasyBO-A-5 5.25 3.56 4.32 0.37 1h19m44s
EasyBO-SP-5 5.08 3.96 4.47 0.25 1h49m11s

EasyBO-5 4.62 4.10 4.40 0.18 1h19m26s
pBO-10 4.34 3.80 4.11 0.16 1h2m49s

pHCBO-10 4.82 3.79 4.17 0.23 1h2m51s
EasyBO-S-10 5.51 3.54 4.23 0.48 58m11s
EasyBO-A-10 4.78 3.92 4.26 0.19 40m41s
EasyBO-SP-10 5.12 4.15 4.52 0.24 55m6s

EasyBO-10 5.12 4.15 4.53 0.28 40m16s
pBO-15 4.61 3.87 4.17 0.19 44m6s

pHCBO-15 4.31 3.67 4.10 0.16 51m49s
EasyBO-S-15 5.14 3.17 4.14 0.43 41m43s
EasyBO-A-15 5.41 3.59 4.34 0.43 27m14s
EasyBO-SP-15 5.08 4.20 4.47 0.25 41m43s

EasyBO-15 5.74 4.22 4.51 0.32 26m24s

Compared to DE, EasyBO reduces up to 33× of the simulation time
with better optimization results.

In the batch mode, EasyBO and its two alternatives EasyBO-A and
EasyBO-SP constantly achieve better optimization results compared
with both pBO and pHCBO. An interesting observation is that the
optimization results of both EasyBO and EasyBO-SP when batch size
is 10 and 15 are better than when batch size is 5 and 1. This means our
proposed penalization scheme encourages exploration with relative
batch size. From a wall-clock time perspective, EasyBO reduces
the time consumption on simulation by up to 500× compared with
DE methodology, while obtaining better optimization results. Also,
with a fixed number of simulations, EasyBO reduces approximately
26.7%, 35.7% and 40.0% of the simulation time compared with pBO
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Fig. 6. The optimization results of the class-E power amplifier circuit v.s. the
wall-clock time, when the batch size is 15.



and pHCBO when batch size is 5, 10 and 15 respectively. As is
shown in Figure 6, with the same optimization result, EasyBO can
reduce 80.0% and 86.4% of the simulation time for B=15, compared
with pBO and pHCBO respectively. In other words, EasyBO can
achieve up to 7.35× speed-up, with comparable optimization results.
Experimental results demonstrate that EasyBO is more efficient and
effective in terms of both the number of simulations and wall-clock
time.

V. CONCLUSION

EasyBO is a novel asynchronous batch Bayesian optimization
approach for analog circuit synthesis. By asynchronously propos-
ing the next query point, EasyBO makes a higher utilization of
the hardware resources. We developed a new acquisition function
which can better explore the design space for asynchronous batch
Bayesian optimization. And we further penalize around the sampled
area to enhance the sample efficiency. Despite being an efficient
asynchronous batch BO algorithm, EasyBO also provides backward
compatibility to work in both sequential mode and synchronous
batch mode. Compared to the state-of-the-art synchronous batch BO
algorithms, EasyBO achieves up to 7.35× speed-up with comparable
optimization results.
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