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Abstract—Biological systems are often modeled as a system
of ordinary differential equations (ODEs) with time-invariant
parameters. However, cell signaling events or pharmacological
interventions may alter the cellular state and induce multi-
mode dynamics of the system. Such systems are naturally
modeled as hybrid automata, which possess multiple operational
modes with specific nonlinear dynamics in each mode. In this
paper we introduce a model checking-enabled framework than
can model and analyze both single- and multi-mode biological
systems. We tackle the central problem in systems biology–
identify parameter values such that a model satisfies desired
behaviors–using bounded model checking. We resort to the delta-
decision procedures to solve satisfiability modulo theories (SMT)
problems and sidestep undecidability of reachability problems.
Our framework enables several analysis tasks including model
calibration and falsification, therapeutic strategy identification,
and Lyapunov stability analysis. We demonstrate the applica-
blitliy of these methods using case studies of prostate cancer
progression, cardiac cell action potential and radiation diseases.

Index Terms—systems biology, model checking, hybrid sys-
tems, delta-decision, parameter synthesis

I. INTRODUCTION

Biomolecules interact with each other and form large and
complicated networks. A systems-wide view of functional
regulation in the context of biochemical networks is required
for contemporary drug discovery and systems pharmacology to
identify new drug targets, understand drug adverse effects, and
design therapeutic strategies [1]. It is commonly recognized
that systems modeling will play a crucial role in this endeavor.

A standard approach of modeling the dynamics of a bio-
chemical network is through a system of ordinary differential
equations (ODEs) [2]. However, model parameters including
kinetic rate constants and initial concentrations of molecular
species are often unknown and they will have to be estimated
using limited and noisy experimental data. Hence constructing
and calibrating ODE models of realistic biochemical networks
is a challenging problem. Further, ODE models that were
developed for simulating single-cell behaviors were often
calibrated and validated using population-based data. This
constitutes a significant additional challenge.

To address these challenges, we have developed several
model checking-enabled analysis techniques for ODE models.
For example, by reducing the ODE dynamics as a dynamic
Bayesian network (DBN) [3]–[6], one can efficiently per-
form parameter estimation and probabilistic model checking

analysis by exploiting Bayesian inferencing [7], [8]. This
framework has been applied to study complement system [9]
and apoptosis pathway [10].

We also developed statistical model checking (SMC) tech-
niques to calibrate and analyze ODE systems with probabilistic
initial states [11]–[13]. In this setting, bounded linear temporal
logic is used to encode quantitative behavioral constraints and
qualitative properties of biochemical networks. By equipping
existing parameter search algorithms with a SMC-based evalu-
ation method, one can arrive both novel and efficient parameter
estimation and analysis methods. This framework has been
generalized to deal with stochastic rule-based models [14],
[15] and hybrid automata [16] and applied to studies of various
biological systems such as innate immune system [17] and cell
death/survival pathways [18]–[21].

However, in many settings, it is not fruitful to view the
functioning of a biological system in terms of a single entity.
Rather, the system will possess multiple operational modes
with a specific signaling network being active in each mode.
For example, signaling responses to ionizing irradiation expo-
sure within individual cells follow distinct cell death pathways
(Fig. 1). The interconnectivity between these pathways brings
up new challenges on determining the sequence and timing
of medication administration against radiation injuries, since
interventions may alter the cellular state and induce differential
modes of dynamics [22]–[24].

In such situations, using a monolithic approach will result in
a messy and very large model with time-invariant parameters.
Consequently, the modeling and analysis approach based on
the notion of multi-mode biological networks will be very
useful. Multi-mode dynamics and their modeling appear fre-
quently in physical and engineering settings [25]. Multiple
variants of the formalism called hybrid automata [26] are often
used to model biological processes [27]–[32]. However such
models are difficult to analyze and to get around this, most
efforts end up imposing severe restrictions on the dynamic
laws associated with the modes [33]–[35].

In this paper, we present a novel model checking-based
framework for analyzing single- or multi-mode biological
systems with nonlinear dynamics (Fig. 2). Given a dynamical
system, we describe the set of states of interest as a first-
order logic formula and perform bounded model checking to
determine reachability of these states. We adapt an interval
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Fig. 1. Distinct cell death pathways induced by irradiation exposure.

constrains propagation (ICP) based algorithm to explore the
parameter spaces and identify the sets of parameters us-
ing which the model satisfies desired behavior constraints.
Note that determining the truth value of first-order sentences
over the reals with nonlinear real functions is a well-known
undefinable problem. We use δ-decision procedures [36] to
ask for answers that may have one-sided δ-bounded errors.
If the model satisfies the desired behavior (e.g. the model
matches training and testing data), we can carry out analysis
tasks such as stability analysis or identify novel therapeutic
strategies using δ-decision procedures. Otherwise, we will
conduct SMC-based analysis [12] to generate new hypotheses
and refine the model structure iteratively. We demonstrate the
applicability of our framework by “proof-of-concept” studies
on prostate cancer and cardiac disorders [37]–[39].
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Fig. 2. A model checking-enabled modeling framework.

Turning to related work, a survey of modeling and analysis
of biological systems using hybrid models can be found
in [40]. Formal verification of hybrid systems is a well-
established domain [41]. Analyzing the properties of bio-
chemical networks using model checking techniques is being
actively pursued by a number of groups [42]–[45]. Of partic-
ular interest in our context are parameter synthesis methods
which identify parameter values for which some qualitative
behavior [46]–[48].

The rest of the paper is organized as follows. We briefly
introduce model checking in the next section. We describe the
δ-decision procedures in Section III. We then present the ap-
plications of δ-decision-based analysis methods in Section IV.
In the final section, we summarize and discuss future work.

II. MODEL CHECKING

Amir Pnueli introduced temporal logics into the world of
program verification [49]. The algorithmic verification pro-
cedure called model checking was formulated by Clarke and
Emerson and independently by Joseph Sifakis [50]. Briefly,
the model checking procedure operates as follows. Given a
model M with initial state s, a model checker decides if a
property written as a temporal logic formula φ is satisfied,
denoted as M, s |= φ. This can be done by: (i) constructing a
finite (state) transition system corresponding to M in which
each state represents a possible configuration of the system and
each transition represents an evolution of the system from one
configuration to another, and (ii) verify whether φ is satisfied
by exhaustively exploring the set of system executions. The
key feature of the model checking procedure is that it is fully
automated. Further, if it is not the case that M, s |= φ then
the procedure will usually return as a “counter-example” an
execution due to which the property is not being met by
the system. This can serve as a powerful debugging tool for
systems that are large and complex. An excellent starting point
for exploring this whole field is [51].

III. δ-DECISION PROCEDURES

A. LRF -Formulas and δ-Decisions Over The Reals

In [36], we developed a theory of decision problems over
the reals with computable functions. Most common contin-
uous real functions are computable, including solutions of
Lipschitz-continuous ODEs. In fact, the notion of computabil-
ity of real functions directly corresponds to whether they can
be numerically simulated. We write F to denote an arbitrary
collection of symbols representing computable functions over
Rn for various n. We consider the first-order formulas with
a signature LRF = 〈0, 1,F , >〉. Note that constants are seen
as 0-ary functions in F . LRF -formulas are evaluated in the
standard way over the corresponding structure RF = 〈R,F , >
〉. We use atomic formulas of the form t(x1, ..., xn) > 0
or t(x1, ..., xn) ≥ 0, where t(x1, ..., xn) are built up from



functions in F . To avoid extra preprocessing of formulas, we
give an explicit definition of LRF -formulas as follows.

Definition 1 (LRF -Formulas): Let F be a collection of
Type 2 functions, which contains at least 0, unary negation
-, addition +, and absolute value | · |. We define:

t := x | f(t(~x)), where f ∈ F , possibly constant;
ϕ := t(~x) > 0 | t(~x) ≥ 0 | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xiϕ | ∀xiϕ.

In this setting ¬ϕ is regarded as an inductively defined
operation which replaces atomic formulas t > 0 with −t ≥ 0,
atomic formulas t ≥ 0 with −t > 0, swaps ∧ and ∨, and
swaps ∀ and ∃. Implication ϕ1 → ϕ2 is defined as ¬ϕ1 ∨ϕ2.

Definition 2 (Bounded Quantifiers): We define

∃[u,v]x.ϕ =df ∃x.(u ≤ x ∧ x ≤ v ∧ ϕ),

∀[u,v]x.ϕ =df ∀x.((u ≤ x ∧ x ≤ v)→ ϕ),

where u and v denote LRF terms whose variables only contain
free variables in ϕ, excluding x. It is easy to check that
∃[u,v]x.ϕ↔ ¬∀[u,v]x.¬ϕ.

We say a sentence is bounded if it only involves bounded
quantifiers.

Definition 3 (Bounded LRF -Sentences): A bounded LRF -
sentence is

Q
[u1,v1]
1 x1 · · ·Q[un,vn]

n xn ψ(x1, ..., xn).

Q
[ui,vi]
i s are bounded quantifiers, and ψ(x1, ..., xn) is a

quantifier-free LRF -formula.
We write ψ(x1, ..., xn) as ψ[t1(~x) > 0, ..., tk(~x) >

0; tk+1(~x) ≥ 0, ..., tm(~x) ≥ 0] to emphasize that ψ(~x) is a
Boolean combination of the atomic formulas shown.

Definition 4 (δ-Variants): Let δ ∈ Q+∪{0}, and ϕ an LRF -
formula of the form

ϕ : QI11 x1 · · ·QInn xn ψ[ti(~x, ~y) > 0; tj(~x, ~y) ≥ 0],

where i ∈ {1, ...k} and j ∈ {k + 1, ...,m}. The δ-weakening
ϕδ of ϕ is defined as the result of replacing each atom ti > 0
by ti > −δ and tj ≥ 0 by tj ≥ −δ. That is,

ϕδ : QI11 x1 · · ·QInn xn ψ[ti(~x, ~y) > −δ; tj(~x, ~y) ≥ −δ].

We then have the following main decidability result.
Theorem 1 (δ-Decidability): Let δ ∈ Q+ be arbitrary. There

is an algorithm which, given any bounded ϕ, correctly returns
one of the following two answers:
• φ is false (unsat);
• φδ is true (δ-sat).

Note when the two cases overlap, either answer is correct.
We call this new decision problem the δ-decision problem

for LRF -sentences.
Definition 5 (δ-Complete Decision Procedures): If an algo-

rithm solves the δ-decision problem correctly for a set S of
LRF -sentences, we say it is δ-complete for S.

From δ-decidability, δ-complete decision procedures always
exist for bounded LRF -formulas. In practice, we have shown
that the combination of the DPLL(T) framework and ICP
indeed gives us a δ-complete decision procedure [52].

B. Parameterized LRF -Representations of Hybrid Automata

We now describe hybrid automata using LRF -formulas, and
define parameterization and perturbations on them.

A hybrid system is a tuple H = 〈X , Q, flow, guard, reset,
inv, init〉 where X ⊆ Rn specifies the range of the continuous
variables ~x of the system. Q = {q0, ..., qm} is a finite set
of discrete control modes. flow ⊆ Q ×X × R ×X specifies
the continuous dynamics for each mode. The flow predicate is
usually defined either as explicit mappings from ~a0 and t to ~at,
or as solutions of systems of differential equations/inclusions
that specify the derivative of ~x over time. jump ⊆ Q ×X ×
Q × X specifies the jump conditions between modes. inv ⊆
Q×X defines the invariant conditions for the system to stay
in a control mode. init ⊆ Q × X defines the set of initial
configurations of the system. Without loss of generality we
always assume that q0 is the only intial mode, and initq0 ⊆ X
denotes the initial values for the continuous variables.

Definition 6 (LRF -Representations): Let H = 〈X , Q, flow,
jump, inv, init〉 be an n-dimensional hybrid automaton. Let F
be a set of real functions, and LRF the corresponding first-
order language. We say that H has an LRF -representation, if
for every q, q′ ∈ Q, there exists quantifier-free LRF -formulas

φqflow(~x, ~x0, t), φ
q→q′
jump (~x, ~x′), φqinv(~x), φqinit(~x)

such that for all ~a,~a′ ∈ Rn, t ∈ R:
• R |= φqflow(~a,~a′, t) iff (q,~a,~a′, t) ∈ flow.
• R |= φq→q

′

jump (~a,~a′) iff (q, q′,~a,~a′) ∈ jump.
• R |= φqinv(~a) iff (q,~a) ∈ inv.
• R |= φqinit(~a) iff q = q0 and ~a ∈ initq0 .

We can write H = 〈X,Q, φflow, φjump, φinv, φinit〉 to emphasize
that H is LRF -represented. But from now on we simply write
flow, jump, inv, init to denote these logic formulas, so that we
can use H = 〈X,Q, flow, jump, inv, init〉 directly to denote
the LRF -representation of H .

Definition 7 (Computable Representation): We say a hybrid
automaton H has a computable representation, if H has an
LRF -representation, where F is an arbitrary set of computable
functions.

Combining continuous and discrete behaviors, the trajecto-
ries of hybrid systems are piecewise continuous. This moti-
vates a two-dimensional structure of time, with which we can
keep track of both the discrete changes and the duration of
each continuous flow.

Definition 8 (Hybrid Time Domain): A hybrid time domain
T is a subset of N × R of the form Tm = {(i, t) : i <
m and t ∈ [ti, t

′
i] or [ti,+∞)}, where m ∈ N ∪ {+∞},

{ti}mi=0 is an increasing sequence in R+, t0 = 0, and
t′i = ti+1.

We write the set of all hybrid time domains as H.
Definition 9 (Hybrid Trajectories): Suppose X ⊆ Rn and

Tm is a hybrid time domain. A hybrid trajectory is any
continuous function ξ : Tm → X.

We write ΞX to denote the set of all possible hybrid
trajectories from H to X . We can now define trajectories of
a given hybrid automaton. The intuition behind the following



definition is straightforward. The labeling function σHξ (i) is
used to map a step i to the corresponding discrete mode in
H . In each mode, the system flows continuously following
the dynamics defined by flow(q, ~x0, t). Note that (t − tk) is
the actual duration in the k-th mode. When a switch between
two modes is performed, it is required that ξ(k + 1, tk+1) is
updated from the exit value ξ(k, t′k) in the previous mode,
following the jump conditions.

Definition 10 (Trajectories of a Hybrid Automaton): Let H
be a hybrid automaton, and ξ : Tm → X a hybrid trajectory.
We say that ξ : Tm → X is a trajectory of H of discrete depth
m, if there exists a labeling function σHξ : N→ Q such that:

• σHξ (0) = q0 and RF |= initq0(ξ(0, 0)).
• For any (i, t) ∈ Tm, RF |= invσHξ (i)(ξ(i, t)).
• When i = 0, RF |= flowq0(ξ(0, 0), ξ(0, t), t).
• When i = k + 1, where 0 < k + 1 < m,

RF |= flowσHξ (k+1)(ξ(k + 1, tk+1), ξ(k + 1, t),

(t− tk+1)) and
RF |= jump(σH(k)→σH(k+1))(ξ(k, t

′
k), ξ(k + 1, tk+1)).

We write JHK to denote all possible trajectories of H .
Definition 11 (Reachability Properties): Let H be a hybrid

automaton and U ⊆ X ×Q be a subset of its state space. Let
U ⊆ X × Q be a subset of the state space of H . H reaches
U if there exists ξ ∈ JHK such that there exists t ∈ R and
n ∈ N satisfying

(ξ(t, n), σHξ (n)) ∈ U.

Let H be a hybrid system. Parameter synthesis for reachability
properties asks for a set of parameters such that some mode
can be reached.

Definition 12 (Parameterized Hybrid Automaton): We say a
hybrid automaton H is parameterized by ~p, if We say H is
parameterized by ~p = (p1, ..., pm), if

H(~p) = 〈X,Q, flow(~p), jump(~p), inv(~p), init(~p)〉,

where ~p are among the free variables in the LRF -representation
of H .

Definition 13 (Parameter Synthesis for Reachability Prop-
erties): Let H(~p) be a hybrid automaton parameterized by
variables ~p = (p1, ..., pm), and U ⊆ X×Q a subset of its state
space. Thus, the parameter synthesis problem for reachability
asks for an assignment for ~a ∈ Rm such that H(~a) reaches
U .

C. Synthesizing Parameters with δ-Decisions

We now show how to encode parameter synthesis prob-
lems for LRF -represented hybrid systems using LRF -formulas.
Throughout the following two definitions, let H = 〈X , Q,
flow, jump, init〉 be an n-dimensional LRF -represented hybrid
system with |Q| = m, and unsafe an LRF -formula that
encodes a subset U ⊆ X × Q. Let k ∈ N and M ∈ R be
the bounds on steps and time respectively. Recall that q0 ∈ Q
always denotes the starting mode.

ReachkH,q′(~x
t
k) defines the states that H can reach, if after

k steps of discrete changes it is in mode q′. From there, if H
makes a jump from mode q′ to q, then the states have to make
a discrete change following jumpq′→q(~x

t
k, ~xk+1). As last, in

mode q′, any state ~xtk+1 that H can reach should satisfy the
flow conditions flowq(~x

t
k+1, ~xk+1, t) in mode q. Note that after

each discrete jump, a new time variable tk is introduced and
independent from the previous ones.

The (k,M)-reachability encoding of H and U ,
Reachk,M (H,U), is defined as:

∃~a∃X~x0∃X~xt0 · · · ∃X~xk∃X~xtk∃[0,M ]t0 · · · ∃[0,M ]tk(
initq0(~x0) ∧ flowq0(~a, ~x0, ~x

t
0, t0)

∧ ∀[0,t0]t∀X~x (flowq0(~a, ~x0, ~x, t)→ invq0(~a, ~x))

∧
k−1∨
i=0

( ∨
q,q′∈Q

(
jumpq→q′(~a, ~x

t
i, ~xi+1) ∧ flowq′(~a, ~xi+1, ~x

t
i+1, ti+1)

∧ ∀[0,t0]t∀X~x (flowq′(~a, ~xi+1, ~x, t)→ invq0(~a, ~x)))
))

∧ unsafe(~a, ~xtk)
)
.

H reaches U in k steps of discrete jumps with time duration
less than M for each state iff Reachk,M (H,U) is true.

IV. APPLICATIONS

A. Model Calibration and Falsification

The δ-decision problems can be solved using our dReal
tool [52]. Parameter estimation of single-mode ODE models
can be encoded as SMT formulas by BioPSy [53] and solved
by dReal, while for multi-mode models we ask a k-step
reachability question: Is there a set of parameter values using
which the model reaches the goal region in k steps? The
dReach tool [54] can automatically build such reachability
formulas from a multi-mode model and a goal description,
which are then verified by dReal. If unsat is returned, the
model is unfeasible, which means that the model is unable to
satisfy a desired behavior no matter which parameter values
are used. This can be used to reject model hypotheses. For
example, we have showed that the Fenton-Karma model [55]
of cardiac cells is unable to reproduce the “spike-and-dome”
morphology of action potential which has been observed in
epicardial cells [37]. On the other hand, if the model is δ-
sat, a witness (i.e. a set of parameter values) is returned.
For example, using the Bueno-Cherry-Fenton model [56], we
have identified critical parameter ranges that can cause cardiac
disorders such as tachycardia and fibrillation [37].

B. Identification of Therapeutic Strategies

The δ-decision procedures can be used to design optimal
therapeutic strategies. For example, Fig. 3 illustrates a multi-
mode model of the TBI-induced signaling network shown in
Fig. 1. The starting point Mode 0 corresponds to live cells
under no treatment for 24 h after TBI. Mode 1 is the “point of
no return” which leads to cell death. Modes A-E represent live
cells subjected to particular treatments (e.g. Balcalein-induced



ferroptosis inhibition). The jump conditions are defined by the
molecular signature. For example, starting with Mode 0, if the
oxidized CL level exceeds a threshold θ1, the system jumps to
Mode A, which means that we deliver the apoptosis inhibitor
JP4-039. The system then evolves according to the ODEs in
Mode A, until another jump condition–e.g. the level of acti-
vated RIP3 above threshold θ2–is reached, which implies the
onset of necroptosis, or Mode B. We then deliver necroptosis
inhibitor necrostatin-1. Suppose the system next jumps back
to Mode 0 and stays. The mode path 0 → A → B → 0
suggests a successful treatment scheme defined by a set of
jump conditions. Note that we also aim to minimize the
number of drugs used (i.e. path length) to avoid potential
side effects. Thus, the problem of determining which drug
to deliver at what time, evolves into a parameter synthesis
problem for hybrid automata and can be tackled by δ-decision
procedures. In a “proof-of-concept” study [38], we have used
this approach to identity personalized therapeutic strategies for
prostate cancer patients.

0 1
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Fig. 3. Multi-mode modeling. Mode 0: live cell, no treatment; Mode A:
apoptosis inhibition; Mode B: necroptosis inhibition; Mode C: Ferroptosis
inhibition; Mode D: Pyroptosis inhibition; Mode E: Parthanatos inhibition
Mode 1: dead cell.

C. Stability Analysis

The robustness of biological systems often refers to the con-
sistency of system behavior in response to small perturbations.
For example, cardiac cells filter out insignificant stimulations
to ensure proper functioning in noisy environments. Using
the δ-decision procedures, we can verify this by checking if
the action potential can be successfully triggered by a small
range of stimulation. An unsat answer returned by dReach
will guarantee that the model is robust to the corresponding
stimulation amplitude [37].

In addition to “time-bounded” robustness, the δ-decision
procedures can also be used to analyze the infinite-time
stability of nonlinear dynamical systems [57], [58]. Such
stability–often referred as structural stability–exists in the
systems that have unique globally asymptotically stable steady
states. A standard way of verifying this property is to find a
Lyapunov function [59] that provides theoretical guarantees on
qualitative behavior of the system. Lyapunov-enable analysis
has been applied to mass-action law based kinetic models of
signaling networks such as T-cell kinetic proofreading and
ERK signaling [60]. Our δ-decision procedures enable the
Lyapunov stable analysis for systems with non-polynomial

nonlinearity in two ways: (i) Given a template function, we
can synthesize a Lyapunov function by solving ∃∀-formulas
that encode the corresponding non-convex, multi-objective and
disjunctive optimization problem [57]; (ii) We can provide a
sound and relative-complete proof system for induction rules
that robustify the standard notions of Lyapunov functions [58].

V. CONCLUSION AND FUTURE WORKS

We have presented a model checking-enabled framework
for analyzing systems biology models with the help of δ-
decision procedures. We used the LRF -formulas to describe
parameterized hybrid automata and encode parameter syn-
thesis problems. We employed the δ-decision procedures to
perform bounded model checking and obtain parameters using
which the model can satisfy desired properties. We have
showed that the δ-decision procedures can be used to estimate
unknown model parameters, reject model hypothesis, analyze
the model’s Lyapunov stability, as well as design combination
therapies. These tasks can be assembled as a unified workflow
for understanding the mechanism of diseases and identify-
ing therapeutic options. Our preliminary studies on prostate
cancer, cardiac disorders, and radiation diseases have shown
promising results.

An interesting direction is extending our method for proba-
bilistic settings to address the inherent variability in biological
systems. To cope with the model complexity, an idea is to
approximate the hybrid system as a multi-mode network of
DBNs by extending the approximation technique we have
developed for a single system of ODEs [5]. We plan to
explore this in our future work. In this respect, the Chow-Liu
tree representation-based approximation scheme used in [61]
promises to offer helpful pointers.
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