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Abstract—Many convolutional neural network (CNN) accelerators face
performance- and energy-efficiency challenges which are crucial for
embedded implementations, due to high DRAM access latency and
energy. Recently, some DRAM architectures have been proposed to
exploit subarray-level parallelism for decreasing the access latency.
Towards this, we present a design space exploration methodology to
study the latency and energy of different mapping policies on different
DRAM architectures, and identify the pareto-optimal design choices. The
results show that the energy-efficient DRAM accesses can be achieved
by a mapping policy that orderly prioritizes to maximize the row buffer
hits, bank- and subarray-level parallelism.

Index Terms—DRAM mapping, DRAM architectures, subarray-level
parallelism, convolutional neural networks, CNNs, CNN accelerators.

I. INTRODUCTION

The widespread use of machine learning (ML) algorithms for
organizing, analyzing, and inferring information from digital data
is growing fast. Among many ML algorithms, convolutional neural
network (CNN) algorithms have demonstrated state-of-the-art per-
formance in data analytic tasks, such as image classification, object
recognition, smart environment, health care, and automotive [1].
Since the CNN algorithms require data-intensive processing, CNN
hardware accelerators are typically required to expedite the inference
process. Over the past few years, several CNN accelerators have been
proposed [2]-[12]. These accelerators offer higher performance- and
energy-efficiency as compared to general-purpose CPUs. However,
many CNN accelerators still face performance- and energy-efficiency
challenges due to the high off-chip memory (i.e., DRAM) access la-
tency and energy, which are higher than the latency and energy for the
other compute operations [13||. Therefore, reducing the DRAM access
latency and energy are required for improving the performance- and
energy-efficiency of CNN accelerators.

A. The State-of-the-Art and Limitations

Previous works have proposed different techniques to reduce the
DRAM access energy, by minimizing the number of DRAM accesses
[31 [14] [15]]. Their main ideas are similar, i.e., (i) defining layer
partitioning'| and then transferring each partition from DRAM to on-
chip memory/buffer in a defined schedule, and (ii) maximally reusing
the data that are already in the on-chip buffer. The state-of-the-art [[14]
considers adaptive layer partitioning and scheduling, to minimize the
number of DRAM accesses, by adaptively switching the reuse priority
between different data types: input activations/feature maps (ifins),
output activations/feature maps (ofmms), and weights (wghs), across
the layers of a network. Although all these works result in a reduced
number of DRAM accesses (which also means reduced DRAM access
energy), they do not consider improving (i) the DRAM latency-per-
access, and (ii) DRAM energy-per-access. Therefore, performance-
and energy-efficiency improvements achieved by the state-of-the-art
are sub-optimal, thereby limiting the CNN accelerators to achieve

ILalyer partitioning determines portions of data in the form of block/tile to be accessed
from DRAM to on-chip memory at one time. A detailed explanation is provided in

Section E

further performance- and energy-efficiency improvements. We will
illustrate this with the help of the following motivational case study.

B. Motivational Case Study and Associated Research Challenges

Motivational Case Study: Although there are various types of
commodity DRAM (e.g., DDR3, DDR4, etc.), they have similar in-
ternal organization and operations [|16] (detailed DRAM organization
and operations are provided in Section [[I-B). Therefore, different
types of commodity DRAM have similar behavior regarding latency-
per-access and energy-per-access. The DRAM latency-per-access and
energy-per-access vary depending upon whether a single DRAM
access faces a row buffer hit, a row buffer miss, or a row buffer
conflict. A row buffer hit means that the requested row is already
available in the row buffer, hence the data access can be performed
directly without additional operations. In case of a row buffer miss or
conflict, the requested row has to be opened first before a data access
can be performed. In this manner, a row buffer miss and conflict
require higher latency-per-access and energy-per-access than a row
buffer hit. To illustrate this, we performed an experimental analysis
to observe the DRAM latency-per-access and energy-per-access for
different conditions (i.e., a row buffer hit, miss, and conflict), and
the experimental results are presented in Fig. [I] Furthermore, in
commodity DRAM, each request that goes to a DRAM bank can
only access a single DRAM subarray at a time, although each bank
is composed of multiple subarrays. This limits the DRAM capability
to offer lower DRAM access latency and energy. Recently, several
DRAM architectures that offer subarray-level parallelism (SALP) in
a DRAM bank, have been proposed in the literature. In [17]], three
variants of SALP architectures are presented, i.e., SALP-1, SALP-
2, and SALP-MASA (detailed SALP architectures are provided in
Section [[I-C). Our observation results in Fig. [T] show that SALP
architectures have the potential to further reduce the DRAM latency-
per-access and energy-per-access as compared to commodity DRAM.
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Fig. 1. DRAM latency-per-access and DRAM energy-per-access for different
conditions (a row buffer hit, a row buffer miss, a row buffer conflict, subarray-
and bank-level paralellism) in different DRAM architectures (DDR3, SALP-1,
SALP-2, and SALP-MASA). Data are obtained from our experiments using
a state-of-the-art cycle-accurate DRAM simulators [[18]] [19] for DDR3-1600
2Gb x8 and SALP 2Gb x8 with 8 subarrays-per-bank.

Associated Research Challenges: From above observations, the
energy efficiency of DRAM accesses for CNN accelerators can be



improved by minimizing the DRAM latency-per-access and energy-
per-access. Therefore, there is a need of a generic DRAM mapping
policy that can achieve maximum row buffer hits while exploiting
subarray- and bank-level parallelism. Furthermore, to justify that the
proposed DRAM mapping policy is applicable to different design
choices, a design space exploration (DSE) is required. This DSE
explores different DRAM mapping policies in different DRAM
architectures with different layer partitioning and scheduling schemes,
to find the minimum energy-delay-product (EDP) of DRAM accesses.
This EDP is used as a measure of the energy-efficiency of a CNN
accelerator. Therefore, an analytical model for estimating the EDP
of different DRAM mapping policies in the DSE, is also required.

C. Our Novel Contributions

In this paper, we make the following novel contributions (the over-
view is illustrated in Fig.2) to overcome the associated challenges.
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Fig. 2. The overview of our novel contributions, highlighted in the green
boxes. We use separate on-chip buffers for different data types: input buffer
(iB) for ifms, weight buffer (wB) for wghs, and output buffer (oB) for ofins.

1) We propose DRMap: a generic DRAM data Mapping policy
that offers minimum energy-delay-product (EDP) of DRAM ac-
cesses, for a given DRAM architecture, layer partitioning and
scheduling scheme. DRMap orderly prioritizes to maximize row
buffer hits, bank- and subarray-level parallelism.

2) We propose a design space exploration (DSE) algorithm to find
a DRAM mapping that offers minimum EDP, while considering
different DRAM architectures, different layer partitioning and
scheduling schemes.

3) We propose an analytical model for estimating EDPs of differ-
ent DRAM mapping policies, which will be used in the DSE.
The EDP for each DRAM mapping is estimated by multiplying
the number of DRAM accesses with the respective number of
cycles and energy values.

Key results: DRMap orderly prioritizes to maximize the row
buffer hits, bank- and subarray-level parallelism. It improves the
EDP compared to the other mapping policies, up to 96% for DDR3,
94% for SALP-1, 91% for SALP-2, and 80% for SALP-MASA on
AlexNet [20].

II. PRELIMINARIES
A. Layer Partitioning and Scheduling in CNNs

The full CNN processing usually cannot be mapped at once on
the accelerator fabric due to the limited on-chip buffer capacity (i.e.,
100KB-500KB [13]]), hence layer partitioning and scheduling are
required. To illustrate this, a pseudo-code of a convolutional layer
processing in a CNN accelerator is shown in Fig. [3] It has two parts,
i.e., inner loops and outer loops. The inner loops represent the on-chip
processing. The outer loops represent the scheduling of processing
different portions of data (from all data types: ifins, wghs, and ofins),
whose sizes have to be less than or equal to the sizes of respective
buffers (iB, wB, and oB). These data are partitioned in the form of
blocks/tiles which are represented with the step sizes. Furthermore,

the sequence of the outer loops represents the order in which the tiles
are accessed from DRAM to the on-chip buffer. It thereby reflects the
number of DRAM accesses required to process a layer of a network.

(for( b =0; b<B; b++){ // B: number of images in a batch
for(h=0;h<H; h+=T,){ // H: height of ofms
for(w=0; w<W; w+=T,){ // W: width of ofms
for(j=0;j<J;j+=T,){ //J: depth of ofms
for (i=0;i<l;1+=T,){ //I: depth of ifms & wghs
// load ifms, wghs, and ofms
for (p=0; p<P; p++){ // P: height of wghs Inner loops i
for(g=0;q<Q; g++){ // Q: width of wghs  (on-chip processing)
for (h,=h; hy<min(h+T,, H); ht+) { H
for (w, =w; w, < min(w,+T,, W); w++) {
for (j=J; jy< min(i+T, J); j++ ) !
for (i, =ii < min(iT, 1);ic++) {
ofms [b][h,][w,]lj,] += wahs [p](q]li,]li] * i
ifms [b][str*h,+p][str*w,+q][i,] }

Outer loops
(off-chip data access)

hIn):

// store ofms

Qi

Fig. 3. Pseudo-code of the tiled convolutional neural network processing.

B. DRAM Overview

DRAM Organization: From top to bottom perspective, the or-
ganization of a commodity DRAM is composed of channel, rank,
chip, bank, row, and column [16] [21], as shown in Fig. Eka). In
commodity DRAM, banks are the lowest hierarchy in DRAM, which
can be accessed in parallel, and referred to as bank-level parallelism
[22]. Actually, a DRAM bank is nor implemented in a monolithic
design (a large array of cells with a single row buffer). Instead, it
is implemented in multiple subarrays, each of which has its local
row buffer, as shown in Fig f]b). Multiple subarrays in a bank share
(i) global bitlines, which connect local row buffers to a global row
buffer, and (ii) a global row address decoder [17].
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(a) DRAM organization overview (b) Physical implementation of a DRAM bank

Fig. 4. (a) DRAM organization overview, and (b) physical implementation
of a DRAM bank, showing multiple subarrays in a bank.

DRAM Operations: If there is a single DRAM request, a rank
will respond and thereby multiple chips within this rank can be
accessed in parallel, contributing to a DRAM word. For each chip,
the request is routed to a specific bank and decoded into addresses
of a row and a column. The Activation (ACT) command triggers a
row activation, and data from the requested row are copied to the
row buffer. Afterward, a read (RD) or write (WR) command can be
issued to a specific column in the activated row buffer. If the requested
row is already activated, then the data in this row is already in the
row buffer (a row buffer hit). Therefore, it does not need a new row
activation. If the requested row is not activated yet, then it is either
a row buffer miss or a row buffer conflict. In a row buffer miss, there
is no activated row yet in the row buffer and it requires to activate
the requested row. Meanwhile, in a row buffer conflict, there is an
activated row in the row buffer, but it is not the one that the request
is expecting. Therefore, this condition requires to close the activated
row first using the precharging (PRE) command, and then activate
the requested row using the activation (ACT) command.



DRAM Data Mapping: The default data mapping prioritizes to
map the subsequently accessed data in the different columns of the
same row of a bank (for increasing row buffer hits) and the different
banks of the same rank (for exploiting bank-level parallelism).
However, it does not exploit subarray-level parallelism and does
not consider different possible layer partitioning and scheduling.
Therefore, the default data mapping solution is suboptimal.

C. DRAM Architectures that Exploit Subarray-level Parallelism

In a commodity DRAM, each request that goes to a DRAM
bank, can only access a single subarray at a time. This limits the
potential to reduce the DRAM access latency and energy. To address
this limitation, [17] has proposed three DRAM architectures and
mechanisms that exploit subarray-level paralellism (SALP) in the
same bank, called SALP-1, SALP-2, and SALP-MASA. Following
are the key ideas of these SALP architectures.

o SALP-1 reduces the DRAM service time by overlapping the
precharging of one subarray with the activation of another sub-
array, since mostly the precharging and activation are local to a
subarray. To enable this mechanism, re-interpretation of the existing
timing constraint for precharging, is required.

o SALP-2 reduces the DRAM service time even more than SALP-1,
by overlapping the write-recovery latency of an active subarray,
with the activation of another subarray. To enable this, additional
circuitry to activate two subarrays at the same time is required.

o Multitude of Activated Subarrays (MASA) reduces the DRAM
service time even more than SALP-2, by activating multiple
subarrays at the same time (the activations of different subarrays
are overlapped). To enable this, additional circuitry (more than
SALP-2) to activate multiple subarrays at the same time is required.

III. OUR DESIGN METHODOLOGY FOR DRAM MAPPING IN
CNN ACCELERATORS

A. DRMap: A Generic DRAM Data Mapping Policy

Our observations from the results in Fig. [T] show that different
DRAM architectures have similar behavior in terms of latency-per-
access and energy-per-access. Therefore, we propose DRMap, a
generic DRAM mapping policy for energy-efficient DRAM accesses
in CNN accelerators. Its main idea is to orderly prioritize the data
mapping that maximizes DRAM row buffer hit, bank- and subarray-
level parallelism. The flowchart of DRMap mechanism in a DRAM
chip is presented in Fig. 5] while its pseudo-code and physical
representation of mapping policy are illustrated in Fig. [f] DRMap
considers tile-based partitioning in its mechanism, thereby DRMap
can be performed for each data tile using the following steps:

1) If we consider accessing a DRAM bank, then DRMap prioritizes
to map a data partition to different columns in the same row to
achieve maximum row buffer hits. If multiple chips are available
within a rank, then this step can be performed in different chips
for exploiting the chip-level parallelism.

2) If all columns in the same row of a bank are fully filled, then the
remaining data are mapped to different banks in the same chip,
to exploit bank-level parallelism. If multiple chips are available,
then this step can be performed in different chips.

3) If all columns in the same row of all banks are fully filled, then
the remaining data are mapped to a different subarray in the same
bank, to exploit subarray-level parallelism. If multiple chips are
available, then this step can be performed in different chips.

4) If there are remaining data left, then step 1) to 3) can be performed
again for different subarray, until all data are mapped within the
same rank. In this manner, DRMap can achieve maximum row

buffer hits, while maximally exploiting bank- and subarray-level
parallelism within a DRAM rank.

5) If there are remaining data left, they can be mapped in different
rank (channel) if available, using the same steps as 1) to 4). In
this manner, our DRMap can achieve maximum row buffer hits,
while maximally exploiting bank- and subarray-level parallelism
in another DRAM rank (channel) as well.
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Fig. 5. Flowchart of the DRMap that illustrates how the mapping policy is
performed in a DRAM chip.
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Pseudo-code of DRMap

for (ch=0, ch<#channels, ch++) {
for (ra=0, ra<#ranks, ra++) {
for (ro=0, ro<#rows, ro++) { ~.
for (sa=0, sa<#subarrays, sa++) { o

for (ba =0, ba < #banks, ba++) {
‘ map

v
v

for (co =0, co <# columns, co++) {
// map a tile of data to
DRAM (ch, ra, ba, sa, ro, co];
111}

a data tile
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Fig. 6. Pseudo-code of DRMap and its conceptual implementation in DRAM.

To illustrate that our DRMap always achieves the minimum
energy-delay-product (EDP) of DRAM accesses in different possible
conditions, we perform an extensive design space exploration (DSE).
The DSE investigates different DRAM mapping policies, different
DRAM architectures, as well as different layer partitioning and
scheduling schemes on CNN, and estimates EDP for these different
combinations. This DSE is important to corroborate that the best
solution that provides the minimum EDP in each given combination
is always the same as provided by our DRMap technique.



B. Design Space Exploration for Evaluating Different DRAM Map-
ping Policies

To evaluate the impact of different DRAM mapping policies and
see the performance of DRMap as compared to others, we performed
an extensive design space exploration (DSE). An overview of the DSE
is shown in Fig. [7] and its algorithm is presented in Algorithm [T

Evaluate different DRAM mapping policies

For each layer of a network
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Fig. 7. The operational flow of the our DSE methodology. Our contributions
are highlighted in the green boxes.

Algorithm 1 Pseudo-code of the proposed DSE algorithm

INPUT: (1) CNN configuration: number of layers (L);
(2) Buffer size: ifms (iB), wghs (wB), ofims (oB);
(3) Analytical models of EDP (ED P);
(4) Layer partitioning for ifms, wghs, and ofmms (Partitioning);
(5) DRAM access scheduling (Scheduling);
(6) DRAM mapping policies (DRAMmaps);
OUTPUT: (1) Efficient DRAM mapping (map);
(2) Minimum EDP (minE D P);
BEGIN
Initialization:
T, =P;
Ty =Q;
: EDP[| =0;
: minEDPI[| = 0;
Process:
: for (I =1to L) do
for (each Partitioning) do
for (each Scheduling) do
for (each DRAMmaps) do
if (ifms tile size < iB) and (wghs tile size < wB) and
(ofms tile size < oB) then
10: Calculate EDP]l];
11: if (first loop) then
12: minEDPIl] = EDP|l];
13: else if (EDP[l] < minEDP][l]) then
14: minEDPIl] = EDPIl];
15: Save map, minEDP;
16: end if
17: end if
18: end for
19: end for
20:  end for
21: end for
22: return (1) map; 2) minEDP;
END

0w

For each layer of a network, the DSE performs three key steps:
(1) defining different sizes of data tiles and scheduling schemes, (2)
defining different DRAM mapping policies, (3) performing the DSE
to find a DRAM mapping policy that offers minimum EDP. The
operational flow of the DSE is explained in the following points:

Step-D. Define different sizes of data tiles for all data types
(ifms, wghs, and ofims), and different scheduling schemes. The
tile sizes are determined by the step sizes in the outer loops of the
Fig. 3] The tile sizes of ifins, wghs, and ofims have to fit in the
corresponding buffers ( iB, wB, and oB). Each combination of the tile
sizes for all data types defines one possible partitioning, which will
be considered in the DSE. The scheduling schemes are determined
by the sequence of the outer loops of the Fig. |3] In this work, we
consider four scheduling schemes, based on the reuse priority of
the data type: ifins-reuse, wghs-reuse, ofms-reuse, and adaptive-reuse
scheduling schemes. The ifims-reuse scheduling means that ifins data
type will be maximally reused when the data are available in the
on-chip buffer. Similar definition is also applied for wghs-reuse and
ofms-reuse. Meanwhile, the adaptive-reuse scheduling means that the
reuse priority changes across different layers of a network, according
to which one among ifins-/wghs-/lofms-reuse scheduling that offers
minimum number of DRAM accesses.

Step-(). Define different DRAM mapping policies, by determining
the different orders of mapping loops to different columns, rows,
subarrays, and banks in the same DRAM chip. For DDR3, orders of
mapping loops are permutation of banks, rows, and columns, in the
same DRAM chip; meanwhile for SALP, orders of mapping loops
are permutation of banks, subarrays, rows, and columns, in the same
DRAM chip. Here, we narrow down the design space by selecting
the DRAM mapping policies that have the least frequent subsequent
accesses to different rows, since it is the most expensive access in
the same DRAM chip, for both latency and energy (as validated by
Fig. [T). Therefore, there are six mapping policies to be explored in
the DSE, as presented in Table [I]

Step-®. Perform the DSE to find a DRAM mapping policy that
offers minimum EDP, across different DRAM architectures, different
layer partitioning and scheduling schemes. The minimum EDP and
the corresponding DRAM mapping are the outputs of the DSE, for
a given DRAM architecture, layer partitioning and scheduling.

Note that the time and energy are already included in the DSE, for
determining the EDP in the final results. For each layer of a network,
EDP is obtained by multiplying the DRAM access energy and latency
consumed by each combination of different DRAM mapping policies,
different DRAM architectures, as well as different sizes of layer
partitioning and scheduling schemes. Therefore, DSE will be able
to find the combination that offers minimum EDP for each layer of
a network and minimum total EDP for a whole network.

TABLE 1
DIFFERENT DRAM MAPPING POLICIES FOR THE DSE.

[ Mapping | Inner-most- to outer-most-loops ]

1 column, subarray, bank, row
2 subarray, column, bank, row
3 column, bank, subarray, row
4 bank, column, subarray, row
5 subarray, bank, column, row
6 bank, subarray, column, row

C. Analytical Model of Energy-Delay-Product (EDP) Estimation for
Different DRAM Mapping Policies
Based on the proposed DSE, the optimization problem is formu-

lated to minimize the EDP of DRAM accesses for each layer of a
network and can be stated as

Objective : minimize (EDPqyer) €8

The EDP-per-layer (EDPjqyer) is obtained by multiplying the
energy-per-layer and latency-per-layer. The energy-per-layer is ob-



tained by accumulating all access energy values incurred from the
DRAM accesses for all data tiles. The latency-per-layer is obtained by
accumulating all access latency values incurred from the DRAM ac-
cesses for all data tiles. The access latency and energy are calculated
on the basis of DRAM accesses for each data tile since we consider
layer partitioning approach. Therefore, for each tile, the number of
cycles required for DRAM accesses can be formulated as Eq. [2] and
the DRAM access energy can be formulated as Eq. [3]
Nceyclegie :Naccessdif_column . NCyCledif_column+
Naccessdif_rows . NCyCledif_rows'i' @)
Naccessdif_subarrays . NCyCledif_Subarrays+

Naccessqif_panks - Neyclegif_panks

Eyile :Naccessdif_column . Edif_column""
Naccessdif_rows * Edif_rows+
Naccessdif_subarrays - Pdif_subarrays~+
Naccessgif_vanks * Edif_banks

Term Naccessqif_ denotes the number of accesses to different
DRAM-z. Ncyclegifs_. denotes the number of cycles incurred when
accessing different DRAM-z. FEg;¢_, denotes the access energy

incurred when accessing different DRAM-z. For all terms, © €
{columns, rows, subarrays, banks}.

IV. EVALUATION METHODOLOGY

Cycle-accurate DRAM Simulator
(Ramulator)

To evaluate our proposed methodology, we built the experimental
Our In-house Simulator for DSE

setup, as presented in Fig. [§]
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Fig. 8. Experimental setup and tool flow.
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TABLE II
CONFIGURATION OF THE CNN ACCELERATOR.

[ Module [

CNN Processing Array
On-chip Buffers
Memory Controller

Description ]
Size = 8 x 8 MACs
iB: 64KB, wB: 64KB, 0B: 64KB
Policy = open row, scheduler = FCFS
Configuration: 2Gb x8

DDR3-1600 1 channel, 1 rank-per-channel,
1 chip-per-rank, 8 banks-per-chip
Configuration: 2Gb x8

SALP 1 channel, 1 rank-per-channel,

1 chip-per-rank, 8 banks-per-chip,
8 subarrays-per-bank

Tool flow: We used a cycle-accurate DRAM simulator, Ramulator
[18], to obtain the statistics (i.e, number of cycles) of different
DRAM access conditions: a row buffer hit, row buffer miss, row
buffer conflict, subarray- and bank-level paralellism. To profile the
energy, we used a real experiments-based DRAM energy simulator,
VAMPIRE [19]. Information of energy and number of cycles are
used for the DSE, which considers different DRAM mapping poli-
cies, different DRAM architectures, different layer partitioning and
scheduling schemes to find the DRAM mapping policy that offers

minimum EDP. For DSE, we considered a state-of-the-art Tensor
Processing Unit (TPU) [7]-like CNN accelerator with a reduced size
of on-chip buffers and MAC array engine, as specified in Table[M] To
represent different DRAM architectures, we used DDR3 and SALP
architectures (SALP-1, SALP-2, and SALP-MASA). For scheduling,
we considered ifins-reuse, wghs-reuse, ofims-reuse, and adaptive-reuse
scheduling schemes. For mapping, we considered the six mapping
policies presented in Table [l For the input, we used AlexNet [20]
with ImageNet dataset.

V. RESULTS AND DISCUSSIONS
A. Comparisons of Different DRAM Mapping Policies

We evaluated the impact of different DRAM mapping policies and
the results are presented in Fig. [0

Key Observation-D: Our DRMap (Mapping-3) achieves the
lowest EDP across different layers of the network, across different
DRAM architectures, and across different scheduling schemes. It
indicates that the DRMap is the most effective DRAM mapping
policy for different possible conditions. According to Table[[} DRMap
(Mapping-3) orderly prioritizes to map the data to different columns
in the same row (leading to row buffer hits in SALP and DDR3), to
different banks in the same chip (exploiting bank-level parallelism in
SALP and DDR3), to different subarrays in the same bank (exploiting
subarray-level parallelism in SALP, but leading to row buffer conflicts
in DDR3), and to different rows in the same subarray (leading to
row buffer conflicts in SALP and DDR3). Therefore, the DRMap is
proven as a generic DRAM mapping policy that offers the lowest
EDP. Moreover, different DRAM access scheduling schemes can
make use of the DRMap, so that the CNN accelerators with different
scheduling schemes can optimize their DRAM access latency and
energy. DRMap improves the EDP up to 96% in DDR3, 94% in
SALP-1, 91% in SALP-2, and 80% in SALP-MASA, as compared
to other mapping policies.

Key Observation-2): Mapping-2 and Mapping-5 obtain worse
EDPs (across different layers of the network, across different DRAM
architectures, and across different scheduling schemes) than rest of
the mapping policies. The reason is that, Mapping-2 and Mapping-5
prioritize to map data across different subarrays in the same bank
(exploiting subarray-level parallelism in SALP, but leading to row
buffer conflicts in DDR3), that incurs higher latency and energy, as
compared to row buffer hits and exploiting bank-level parallelism.

Key Observation-Q): Mapping-1 and Mapping-3 obtain compara-
ble EDPs. The reason is that, Mapping-1 and Mapping-3 prioritize
to map data across different columns in the same row (leading to
row buffer hits in SALP and DDR3). The difference comes when
Mapping-1 proritizes to exploit subarray-level parallelism over bank-
level parallelism, while Mapping-3 is the opposite. From Fig. [I] it
is apparent that exploiting subarray-level parallelism incurs higher
latency and energy than exploiting bank-level parallelism.

B. Comparisons of Employing Different DRAM architectures

In general, employing SALP architectures provides EDP improve-
ments as compared to employing DDR3. It is mainly due to latency
and energy saving that are offered when exploiting subarray-level par-
allelism. Key Observation-@: For instance, if we consider adaptive-
reuse scheduling, EDP improvements achieved by employing SALP
architectures as compared to DDR3 are:

« For Mapping-1: 0.59% (SALP-1), 3.89% (SALP-2), and 1.05%

(SALP-MASA).

o For Mapping-2: 29.18% (SALP-1),

81.04% (SALP-MASA).

19.91% (SALP-2), and



Mapping 1
100000

1000 (a) Ifms-reuse
10 schedule
0.1
0.001
100000
1000 (b) Wahs-reuse
10 schedule
o
2 0.1
a 0.001 _*_lu_li
g
<= 100000
0 1000 (c) Ofms-reuse
=3 schedule
a 10
] 0.1
0.001
100000
(d) Adaptive-reuse
1000 schedule
10
0.1
0.001

SALP-MASA
SALP-MASA |
SALP-MASA
SALP-MASA

Mapping2 ® Mapping3 B Mapping4 ™ Mapping5 B Mapping6

SALP-MASA
SALP-MASA ]
SALP-MASA )
SALP-MASA
SALP-MASA

Fig. 9. The EDP in AlexNet for different DRAM mapping policies across different DRAM architectures (DDR3, SALP-1, SALP-2, and SALP-MASA), while
considering different scheduling schemes: (a) ifins-reuse scheduling, (b) wghs-reuse scheduling, (c) ofms-reuse scheduling, and (d) adaptive reuse scheduling.

« For Mapping-3 (DRMap): 0.6% (SALP-1), 3.87% (SALP-2), and
1.01% (SALP-MASA).

« For Mapping-4: 0.71% (SALP-1), 0.54% (SALP-2), and 1.41%
(SALP-MASA).

« For Mapping-5: 29.67% (SALP-1), 19.79% (SALP-2), and
81.76% (SALP-MASA).

« For Mapping-6: 3.15% (SALP-1), 3.39% (SALP-2), and 7.62%
(SALP-MASA).

The results show that employing SALP architectures is beneficial
for improving energy-efficiency of DRAM accesses, as along as an
effective mapping policy like DRMap is employed. The EDP of
employing different DRAM architecture would be different, due to
the different DRAM access energy and latency. However, since the
internal organization of all DRAM architectures is similar (i.e., it is
composed of channel, rank, chip, bank, subarray, row, and column
as seen from top to bottom perspective), our DRMap can also be
employed for all DRAM architectures to achieve the energy-efficient
processing of convolutional neural networks in CNN accelerators.

VI. CONCLUSION

In this paper, we present DRMap, a generic DRAM mapping policy
that offers the lowest EDP of DRAM accesses for CNN accelerators,
as compared to other mapping policies. It is proven through an
extensive design space exploration that study the latency and energy
of different mapping policies, in different DRAM architectures as
well as different layer partitioning and scheduling schemes. We
expect that this work could enable further studies on energy-efficient
CNN accelerators and help the existing CNN accelerators to optimize
their DRAM access latency and energy.
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