Invited: Bambu: an Open-Source Research
Framework for the High-Level Synthesis of
Complex Applications

Fabrizio Ferrandi*, Vito Giovanni Castellanal, Serena Curzel*, Pietro Fezzardi*, Michele Fiorito*,
Marco Lattuada*, Marco Minutolif, Christian Pilato*, Antonino Tumeo!

*Politecnico di Milano, Italy, TPaciﬁc Northwest National Laboratory, USA

Abstract—This paper presents the open-source high-level syn-
thesis (HLS) research framework Bambu. Bambu provides a
research environment to experiment with new ideas across
HLS, high-level verification and debugging, FPGA/ASIC design,
design flow space exploration, and parallel hardware accelerator
design. The tool accepts as input standard C/C++ specifications
and compiler intermediate representations (IRs) coming from
the well-known Clang/LLVM and GCC compilers. The broad
spectrum and flexibility of input formats allow the electronic
design automation (EDA) research community to explore and
integrate new transformations and optimizations. The -easily
extendable modular framework already includes many optimiza-
tions and HLS benchmarks used to evaluate the QoR of the tool
against existing approaches [1]. The integration with synthesis
and verification backends (commercial and open-source) allows
researchers to quickly test any new finding and easily obtain
performance and resource usage metrics for a given application.
Different FPGA devices are supported from several different
vendors: AMD/Xilinx, Intel/Altera, Lattice Semiconductor, and
NanoXplore. Finally, integration with the OpenRoad open-source
end-to-end silicon compiler perfectly fits with the recent push
towards open-source EDA.

I. THE BAMBU FRAMEWORK

Bambu is a command-line tool aimed at assisting the
designer during the HLS of complex applications. It supports
most of the C/C++ constructs, including function calls and
sharing of the modules, pointer arithmetic and dynamic res-
olution of memory accesses, accesses to arrays and structs,
parameters passed by reference or copy, and many more. Like
in a standard software compilation flow, Bambu has three
phases (see Figure 1): front-end, middle-end, and back-end.

Bambu front-end. Bambu interfaces with existing compil-
ers, such as GCC and Clang. With GCC, a plugin extracts the
call graph and the control data flow graph of the functions
under analysis from GCC’s internal IR. Similarly, a Clang
plugin extracts the same information and serializes them into
a textual format easy to parse. Bambu then parses back all
the compiler serialized information plus all the annotations
to build a Static Single Assignment in-memory IR. This
approach decouples the compiler front-end code from the rest
of the HLS process. Localizing all the changes in a GCC or
LLVM/Clang plugin allows rapid and easy integration of many
different versions of the compilers. Bambu supports GCC

2 (""J ;
Bambu HLS tool l
s
@?9_, compilation & 4
Annotations
extractions
FRONT-END

y

https://panda.deib.polimi.it
https://github.com/ferrandi/PandA-bambu

Range Value & BitValue I | . I
Arithmetic lrans!urmallons’ I optimizations LUT insertions
\ I Code Motions / | . '
and Speculations | CFG simplifications

x CSE
> DCE
kNHDDLErEND

Constraints
I Resourcea\locaﬂonl I Memory allocation I l Function Allocation |

IPs library
Scheduling
Binding: reg&FU
Debugging
| Controller creation l |Da(apalh cveallonl

RTL tool wrapper !
];9"‘5' QE”E'E"ﬂ synthesis & simulation
] l

Fig. 1. Bambu Compilation flow.

\SVNTHES\S BACK-END

versions ranging from 4.5 to 8, and LLVM/CLANG versions
ranging from 4.0 to 11. Moreover, the Vivado HLS front-
end [2], based on a customized version of LLVM/CLANG and
recently released in open-source, was effortlessly integrated
into the Bambu framework.

Bambu middle-end. Starting from the intermediate rep-

978-1-6654-3274-0/21/$31.00 ©2021 IEEE

resentation extracted from GCC/Clang, Bambu rebuilds data
structures, such as the Call Graph and the Control Data Flow
Graphs, and builds additional data structures such as the
Program Dependence Graphs. Next, it applies a set of device-
independent analyses and transformations. Some of these steps
are commonly used in a software compilation flow (e.g.,
data flow analysis, loop recognition, dead code elimination,
constant propagation, LUT expression insertion, etc.). Multi-
plications and divisions by constant values are transformed
into expressions that use only shifts and adders to reduce area
utilization and improve timing. The resulting expression struc-
ture depends on the target device and technology, since adders
and multipliers may have different performances on different
devices. Differently from general-purpose software compilers,
designed to target a processor with a fixed-sized data-path
(usually 32 or 64 bits), a HLS compiler can exploit custom-
size operators (e.g., a multiplier with the minimum number
of I/O bits) and registers. Consequently, we can select the
minimal number of bits required for the specific algorithm’s
operations and value storage, which leads to less area, less
power, and shorter critical paths. At this stage, Bambu also
performs Bitwidth and Range Analysis, aiming at reducing the
number of bits required by data-path operators. This analysis is
crucial during the optimization process because it impacts all
non-functional requirements (e.g., performance, area, power)
of a design without affecting its behavior.

Bambu synthesis back-end. In this phase, Bambu per-
forms the actual architectural synthesis of the specification.
The synthesis process acts on each function separately. The
resulting architecture reflects the structure of the call graph. A
single function includes at least two sub-modules: the control
logic and the data-path. Control logic modeled as a Finite
State Machine handles the routing of the data values and
the temporal execution of the operations. The data-path is a
custom mux-based architecture with optimized data types to
reduce the number of flip-flops and bit-level multiplexers. It
implements all the operations and memories required during
the function execution. The following paragraphs describe the
sequence of steps that Bambu implements to generate control
and data-path modules.

Function Allocation. Functions Allocation associates the
high-level functions with specific resources available in the
technology library associated with the target device. The tech-
nology library coming with Bambu integrates standard func-
tions described in Verilog or VHDL, standard system libraries
such as 1ibc and libm, and designer-defined components
written in Verilog or VHDL. Bambu supports function pointers
and sharing of (sub)modules across module boundaries [3].
Sharing is obtained through function proxies, which act as for-
warders of function calls in the original specification to shared
modules. Sharing through function proxies provides valuable
area savings when complex call graphs are considered, with
no significant impact on the execution delays.

Memory Allocation. Memories Allocation defines the mem-
ories used to store aggregate variables (arrays and structures),
global variables, and how the dynamic memory allocation

is implemented. Bambu adopts an architecture for memory
accesses that support a wide range of cases. Statically analyz-
ing the memory accesses, Bambu builds a hierarchical data-
path where memories can be classified as read-only, local,
with aligned or unaligned memory accesses, or which require
dynamic resolutions. The memory interconnection accordingly
defines multiple busses connecting the load/store components
to their respective memories. Dual-port BRAMs or memory
controllers with complex parallel channels are supported by
replicating such memory interconnections as needed. The same
memory infrastructure can also connect to external compo-
nents (e.g., scratchpads, caches, and DRAMs) or directly to
the bus to access off-chip memory. Supporting protocol-based
accesses (e.g., FIFO or stream-based access) is obtained by
generating specific components that replace the load/store
instructions.

Resource Allocation. Resource allocation associates opera-
tions not mapped on a function to resource units (RU) available
in the resource library. During the middle-end phase, the
specification is inspected to identify the characteristics of
the operations: these include the type of the operation (e.g.,
addition, multiplication, etc.) and the types of the operands
(e.g., integer, float, etc.). Floating-point operations are sup-
ported through the HLS of a soft-float library containing
basic soft-float operators, or alternatively by exploiting the
FloPoCo software [4], a generator of arithmetic Floating-
Point Cores. The allocation step maps operations on the set
of available RUs; their characterization includes information
such as latency, area, and the number of pipeline stages.
Usually, more operation/RU matchings are feasible: in this
case, selecting a proper RU is driven by design constraints. The
library of RUs used by Bambu is quite rich, and may include
several implementations for the same operation. Moreover,
the library contains RUs described as templates in a standard
hardware description language (i.e., Verilog or VHDL). These
templates can be retargeted and customized according to the
characteristics of the target technology. In this case, it will be
the underlying logic synthesis tool that determines the best
architecture to implement each operation (for example, multi-
pliers can be mapped either on dedicated DSP blocks or im-
plemented with LUTs). To perform aggressive optimizations,
each library component is annotated with information useful
during the entire HLS process, such as resource occupation
and latency. Bambu adopts a pre-characterization approach:
the performance estimation considers a generic template of the
RU, which can be parametric with respect to the bit widths
and pipeline stages; latency and resource occupation are then
obtained by synthesizing each configuration and storing the
resulting metrics in the library as an XML file.

Scheduling. By default, Bambu employs a List scheduling
algorithm. In its basic formulation, List scheduling associates
each operation with a priority according to particular metrics.
The List scheduling proceeds iteratively, associating a set
of operations to be executed with each control step. Ready
operations (i.e., whose dependencies have been satisfied in
previous iterations of the algorithm) can be scheduled in

the current control step considering the availability of the
resources. If multiple ready operations compete for a resource,
then the one having a higher priority is scheduled. In addition
to this old but efficient algorithm, Bambu also features a more
aggressive scheduling algorithm, the Speculative scheduling
algorithm based on System of Difference Constraints [5]. This
algorithm builds an integer linear programming formulation of
the scheduling problem, allowing code motion and speculation
of operations that belong to different basic blocks.

Module Binding. Within the computed schedule, operations
that execute concurrently are not allowed to share the same
resource instance. In Bambu, binding is performed through
a clique covering algorithm on a weighted compatibility
graph [6]. The compatibility graph is built by analyzing the
schedule: operations scheduled on different control steps are
compatible. Weights express how much it is profitable for
two operations to share the same hardware resource. They are
computed considering area/delay trade-offs caused by sharing;
for example, RUs that occupy a large area will be more
likely shared. Weights computation also considers the cost
of interconnections required by the steering logic. Bambu
also offers several other algorithms for solving the covering
problem on compatibility/conflict graphs.

Register Binding. Register binding associates storage values
to registers and requires a preliminary analysis step, the
liveness analysis [6]. Liveness analysis starts from the schedule
to identify each variable’s life intervals, i.e., the sequence of
control steps in which a temporary value needs to be stored.
Variables with non-overlapping life intervals may share the
same register.

Interconnection Binding. Interconnections are bound ac-
cording to the outcome of the previous steps: if a functional
or memory resource is shared, then the algorithm introduces
steering logic on its inputs. It also identifies the set of control
signals that will be driven by the controller.

Netlist Generation. The final architecture is then generated
and represented through a hyper-graph, highlighting the in-
terconnection between modules. The netlist generation step
translates such representation in a register transfer-level (RTL)
description in Verilog or VHDL. The process accesses the re-
source library, which embeds the RTL implementation of each
resource. This process is target-dependent, and the hardware
descriptions may differ for different technologies (e.g., ASIC
or FPGA) or target devices.

Generation of Synthesis and Simulation Scripts. Bambu au-
tomatically generates synthesis and simulation scripts that can
be customized via XML configuration files. The RTL-synthesis
tools currently supported are AMD/Xilinx ISE, AMD/Xilinx
Vivado, Yosis-Vivado, Intel/Altera Quartus, Lattice Diamond,
NanoXplore, and OpenRoad. Supported simulators are Mentor
Modelsim, Xilinx ISIM, Xilinx XSIM, Verilator, and Verilog
Icarus.

II. RESEARCH LINES

This section summarizes the research topics that we are
exploring with Bambu. They range from parallelized hardware

accelerator design, dynamic scheduling, verification and de-
bugging, design exploration of the compilation flow, machine
learning accelerator design, IR development, and integration
with logic synthesis tools.

Parallelization. Current HLS tools generate serial or par-
allel accelerators for regular, easily partitionable, arithmetic-
intensive workloads typical of digital signal processing (e.g.,
through OpenCL annotations); generally not considering the
large data sets and variable latency memory accesses typical of
irregular applications and graph algorithms. In Bambu, we in-
troduce an architectural template that exploits both instruction-
level and task-level parallelism [7]. The solution includes
a hardware scheduler that dynamically binds tasks to the
available hardware resources. Bambu introduces single-cycle
hardware context switching for components implementing the
parallel region to maximize memory parallelism and through-
put. Standard OpenMP pragma annotations are parsed by
Bambu to extract coarse-grained parallelism. The evaluation
shows scalability in area and performance with respect to
the solutions based on spatial parallelism with a simple fork-
join approach, and even with respect to solution implementing
dynamic scheduling. Moreover, the addition of temporal mul-
tithreading positively impacts resource consumption.

Dynamic vs static scheduling. Most of the current syn-
thesis methodologies in academic and commercial HLS tools
employ the Finite State Machine with data-path model. While
this is very successful, more dataflow-oriented approaches are
possible. In Bambu, it is possible to control the execution
of a task-based parallel application with an adaptive con-
troller [8]. The adaptive controller is composed of a set of
interacting control elements that independently manage tasks’
execution. These control elements check dependencies and
resource constraints at runtime, enabling as-soon-as-possible
execution. To support parallel access to shared memories
and synchronization, the approach also introduces a novel
hierarchical memory interface.

Verification and Debug. Verification and Debug support for
circuits generated with HLS has received increasing attention.
Current approaches focus on the low-level details of the
infrastructure necessary for on-chip debugging. Users need to
explicitly instruct the tools about where to place tracepoints
and manually inspect the traces to spot malfunctions. As HLS
frameworks grow in complexity, this can become a real burden,
especially if users have little previous exposure to hardware
design and to the HLS internals. Bug identification is very
time-consuming and error-prone, especially in complex sys-
tems generated with HLS including third-party IPs and hand-
written modules. Bambu tackles these problems by introducing
a new automated technique for bug identification for HLS-
based hardware-generated designs. The methodology com-
pares the HLS-generated hardware execution with the software
obtained from the same source code and automatically finds
where the discrepancies arise [9].

Design space exploration for HLS Designing, describing,
and running a complex customized HLS flow is not a trivial
task. State-of-the-art compilers and HLS tools are usually

based on static sequences of passes, possibly declined into
different flavors. The sequences can indeed be completely
fixed, based on pre-analysis results, or selected after multiple
evaluations of different static flows. These approaches have
significant limitations since several scenarios cannot be ad-
dressed, such as the dynamic update of the set of functions to
be processed, complex fixed-point analyses and optimizations
composed of sequences of several passes, re-execution of the
design flow to exploit the information collected in following
stages. The design flow of Bambu follows an approach where
the design, the description, and the execution of HLS steps
are not precomputed, but rather dynamically built and updated
during their execution [10]. This approach allows perform-
ing code motions and speculations after the first scheduling
step [5]. Another possible place where this dynamic approach
may be relevant is in the integration of some preliminary logic
synthesis results that could be used to change the scheduling
or that may affect LUT expression insertion. Currently, Bambu
exploits [11] as fast logic synthesis tool, but nothing prevents
to include tools such as the ones used by the OpenRoad design
flow [12] or the LSOracle logic synthesis framework [13].
Machine Learning accelerators. HLS has been recently
used to speed up the design and development process of
FPGA-based accelerators for Machine Learning to address
the wide abstraction gap between algorithm development and
RTL implementation. For example, both Xilinx’s FINN com-
piler [14] and the hls4ml framework [15] rely on Vivado HLS
to generate their designs, adding a pre-processing step where a
python-based Machine Learning model is translated into a C++
representation. Bambu can be used within similar design flows:
once the input ML model has been translated into either a
C/C++ or LLVM representation, it can be processed by Bambu
as any other specification. In comparison to other HLS tools,
Bambu offers the additional benefits of a broader selection of
hardware targets, and the possibility of integrating domain-
specific optimizations within the compilation flow described
earlier. This is a highly active research topic, considering
also that a standard way of describing and compiling ML
models does not exist yet. For example, one existing stan-
dard format for the exchange of Neural Network models is
ONNX: Bambu has already been used to generate hardware
accelerators starting from ONNX models, exploiting the TVM
compiler [16] to translate them into LLVM code. Alternatively,
hls4ml proposes an approach where the pre-processing step
relies on a library of C++ components optimized for HLS:
the intermediate representation produced by hls4ml is highly
specialized and dependent on Vivado HLS, but it will be
possible to adapt it so that Bambu can be used instead.
MLIR integration. The introduction of MLIR opened
further research lines that may be of interest to Bambu. In the
front-end, MLIR dialects that can be translated to an LLVM
IR could be used to perform domain-specific optimizations
before lowering to LLVM code. For example, exploiting the
onnx-mlir project [17] it is possible to progressively translate
a Neural Network model into an LLVM IR: analyses and
transformations can be added as MLIR passes so that the input

to Bambu is optimized for HLS rather than for execution on
a CPU/GPU target. Instead, efforts coming from the CIRCT
project [18] could be integrated within Bambu itself, to lever-
age MLIR during the compilation and synthesis flow.

III. CONCLUDING REMARKS

This paper presents the open-source HLS research frame-
work Bambu. Bambu supports the synthesis of complex C/C++
specifications and allows the experimentation of new ideas
on many problems related to the HLS of complex acceler-
ators. We discussed several possible research lines enabled
by Bambu, including parallel hardware accelerator design,
dynamic scheduling, verification and debugging, design explo-
ration of complex flows, machine learning accelerator design,
IR development, and integration with logic synthesis tools
(e.g., OpenRoad).

REFERENCES

[1] R. Nane et al., “A survey and evaluation of FPGA high-level synthesis
tools,” IEEE Transactions CAD Integrated Circuits and Systems, vol. 35,
no. 10, Oct. 2016.

[2] “Xilinx Vitis HLS LLVM 2020.2,” https://github.com/Xilinx/HLS.

[3] M. Minutoli et al., “Inter-procedural resource sharing in high level
synthesis through function proxies,” in International Conference on
Field Programmable Logic and Applications, FPL, Sept 2015, pp. 1-8.

[4] F. de Dinechin et al., “Designing custom arithmetic data paths with
FloPoCo,” IEEE Design & Test of Computers, vol. 28, no. 4, pp. 18-27,
Jul. 2011.

[5] M. Lattuada and F. Ferrandi, “Code transformations based on speculative
SDC scheduling,” in IEEE/ACM International Conference on Computer-
Aided Design, ser. ICCAD 15, Nov 2015, pp. 71-77.

[6] L. Stok, “Data path synthesis,” Integration, vol. 18, no. 1, pp. 1-71,
1994.

[71 M. Minutoli et al., “Svelto: High-level synthesis of multi-threaded
accelerators for graph analytics,” IEEE Transactions on Computers,
no. 01, pp. 1-14, feb 2021.

[8] V. G. Castellana et al., “High-level synthesis of parallel specifications
coupling static and dynamic controllers,” in /EEE International Parallel
and Distributed Processing Symposium, IPDPS 2021, Virtual confer-
ence, May 17-21, 2021, 2021, pp. 1-11.

[9] P. Fezzardi and F. Ferrandi, “Automated bug detection for high-level

synthesis of multi-threaded irregular applications,” ACM Transactions

on Parallel Computing, vol. 7, no. 4, Sep. 2020.

M. Lattuada and F. Ferrandi, “A design flow engine for the support of

customized dynamic high level synthesis flows,” ACM Transactions on

Reconfigurable Technology and Systems (TRETS), vol. 12, no. 4, pp.

19:1-19:26, Oct. 2019.

M. Soeken et al., “The EPFL logic synthesis libraries,” Nov. 2019,

arXiv:1805.05121v2.

T. Ajayi et al., “Toward an open-source digital flow: First learnings from

the OpenROAD project,” in IEEE/ACM Design Automation Conference

2019, DAC 2019, June 02-06, 2019, 2019, p. 76.

W. L. Neto et al, “LSOracle: a logic synthesis framework driven

by artificial intelligence: Invited paper,” in IEEE/ACM International

Conference on Computer-Aided Design (ICCAD), 2019, pp. 1-6.

M. Blott et al., “FINN-R: An end-to-end deep-learning framework for

fast exploration of quantized neural networks,” ACM Transactions on

Reconfigurable Technology and Systems (TRETS), vol. 11, no. 3, pp.

1-23, 2018.

J. Duarte et al., “Fast inference of deep neural networks in FPGAs for

particle physics,” Journal of Instrumentation, vol. 13, no. 07, p. P07027,

2018.

T. Chen et al., “TVM: An automated end-to-end optimizing compiler

for deep learning,” in 13th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 18), 2018, pp. 578-594.

T. D. Le et al., “Compiling ONNX neural network models using MLIR,”

arXiv preprint arXiv:2008.08272, 2020.

“CIRCT. Circuit IR compilers and tools,” https://github.com/llvm/circt.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

https://github.com/Xilinx/HLS
https://github.com/llvm/circt

	The Bambu framework
	Research lines
	Concluding Remarks
	References

