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Abstract—Traditional methodologies for analyzing electromigration
(EM) in VLSI circuits first filter immortal wires using Blech’s criterion,
and then perform detailed EM analysis on the remaining wires. However,
Blech’s criterion was designed for two-terminal wires and does not extend
to general structures. This paper demonstrates a first-principles-based
solution technique for determining the steady-state stress at all the nodes
of a general interconnect structure, and develops an immortality test
whose complexity is linear in the number of edges of an interconnect
structure. The proposed model is applied to a variety of structures. The
method is shown to match well with results from numerical solvers, to
be scalable to large structures.

I. INTRODUCTION

Electromigration (EM) aging in metal wires is caused by material
transport of atoms, triggered by electron current through the wires.
EM has become a major concern in electronic circuits due to the
increase in current density. Previously, EM was considered a problem
only in upper metal layers that carry the largest current, but with
scaling, as transistors drive increasing amounts of current through
narrow wires, EM hotspots have emerged through the stack.

The conventional method for EM analysis for interconnects in-
volves a two-stage process. In the first stage, EM-immune wires are
filtered out using the Blech criterion [1], which compares the product
of the current density j through a wire with its length, l. This jl
product is compared against a technology-specific threshold, and any
wires that fall below this product are deemed immortal, while others
are potentially mortal. In the second stage, wires in the latter class
undergo further analysis to check whether or not the EM failure
may occur during the product lifespan. Traditionally, this involves
a comparison of the current density through these wires against a
global limit, set by the semi-empirical Black’s equation [2]; more
recent approaches include [3]–[6].

However, this approach is predicated on analyses/characterizations
of single-wire-segment test structures, which determine the critical jl
product threshold for the Blech criterion, and the upper bound on j in
Black’s equation. In practice, wires typically have multiple segments
with different current densities. The criterion for immortality under
this scenario is quite different from the Blech criterion, and while
the limitations of the criterion have been widely recognized in past
work, there is no computationally simple test similar to the Blech
criterion to determine immortality for general interconnects.

As opposed to the empirical Black’s equation based approach,
there has been an emerging thread on using physics-based analysis
for EM in interconnects. Building upon past work such as [7]–[9],
the work in [10] presented a canonical treatment of EM equations
in a metallic interconnect, with exact solutions for a semi-infinite
and finite line. This paper has formed the basis of much work since
then, with techiques that attempt to obtain solutions for a single-
segment lines [3], [11]. For multisegment lines, several attempts have
been made to solve the general transient analysis problem [3], [4]
through detailed simulations, but the key to checking for immortality
is to solve the steady-state problem. The methods in [12], [13],
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Figure 1: Cross section of a Cu wire indicating the electron wind force
and back-stress force [6].

subsequently extended in [14], used a sum of jl products along wire
segments: if ji is the current density through the ith segment of
length li, then the largest

∑
jili on any path in a tree was taken to

be the worst-case stress: as observed in [15], this is incorrect.
In [16], a system of equations describing steady-state analysis in an

interconnect tree was presented and solved. However, the structure of
the difference equations was not exploited to obtain a generalizable
solution. The analyses in [17], [18] solve a related problem for a
simple two- or three-segment structure with a passive reservoir. The
work in [19] develops analysis principles and applies them to several
structures, with closed-form formulas for simple topologies. However,
it does not provide a scalable algorithm for general structures.

Thus, there is no truly general, scalable formula for immortality
detection to replace the Blech criterion. This work solves this problem
with a linear-time algorithm for general multisegment interconnects.
On comparable CPUs, our approach provides solutions to IBM PG
benchmarks in a few minutes, while [19] requires over an hour.

II. BACKGROUND

Figure 1 illustrates the electromigration mechanism in a Cu dual-
damascene (DD) wire. As the current flows in a metal wire, metal
atoms are transported from the cathode towards the anode, in the
direction of electron flow, by the momentum of the electrons. This
electron wind force causes a depletion of metal atoms at the cathode,
potentially resulting in void formation, leading to open circuits. In a
Cu DD interconnect, the movement of migrating atoms occurs in a
single metal layer, and atoms are prevented from migrating to other
metal layers due to the capping or barrier layer, which acts as a
blocking boundary for mass transport [20], [21]. Consequently, within
a metal layer, mass depletion of atoms occurs at the cathode terminal
and mass accumulation occurs at the anode terminal. A tensile stress
is created near the anode, and a compressive stress near the cathode.

The concentration gradient caused by metal migration creates a
tendency for atoms to diffuse back to the cathode. This force, acting
against the electron wind, is proportional to the stress gradient.

A. Notation

For a general interconnect structure with multiple segments, we
define the following notation. This is represented by an undirected
graph G(V,E) with |E| segments and |V | nodes. The vertices
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Figure 2: (a) A simple net fragment. (b) Its equivalent graph, with
arrows showing the reference current direction for each edge.

V = {v1, · · · , v|V |} are the set of nodes in the structure, and edges
E = {e1, · · · , e|E|} are the set of wire segments. A vertex of degree
1 is referred to as a terminus.

Each edge ei is associated with a reference current direction, and
has three attributes: length li, width wi, and current density ji. The
sign of current density is relative to the reference direction of the
edge: it is negative if the current is opposite to the reference direction.
Figure 2 shows a net fragment and its graph model for a tree with four
nodes and three edges: since the current direction in eb is opposite
to the reference direction, the current density is shown as −j2.

Along each edge, we use a local coordinate system along each
segment i. If the edge has a reference direction from node va to
node vb, we represent the position of node a as x = 0 and that of
node b as x = li. As part of our analysis, we will compute stresses
induced within the interconnect. Specifically,

• σi(x, t) is the stress within wire segment i at time t at a location
x, where 0 ≤ x ≤ li and 1 ≤ i ≤ |E|.

• σk is the steady-state stress at node vk, 1 ≤ k ≤ |V |.

B. Stress equations for interconnect structures

A single interconnect segment injects electron current at a cathode
at x = 0 towards an anode at x = li. The temporal evolution of
EM-induced stress, σ(x, t), in the segment is modeled as [10]:

∂σ

∂t
=

∂

∂x

[
κ

(
∂σ

∂x
+ βji

)]
(1)

Here, x is the distance from the cathode; β = (Z∗eρ)/Ω; ji is the
current density through the wire; Z∗ is the effective charge number; e
is the electron charge; ρ is the resistivity; and Ω is the atomic volume
for the metal (in the literature, βji is often denoted as G). Here,
κ = DaBΩ/(kT ), where B is the bulk modulus of the material, k is
Boltzmann’s constant, and T is the temperature, Da = D0e

−Ea/kT

is the diffusion coefficient, with Ea being the activation energy. The
boundary conditions (BCs) depend on wire topology.

When no current is applied, the stress in the wire is given by σT ,
the thermally-induced stress due to differentials in the coefficient of
thermal expansion (CTE) in the materials that make up the intercon-
nect stack. The differential equation with the boundary conditions can
be solved numerically to obtain the transient behavior of stress over
time. Due to superposition, the stress in the wire can be computed in
this way and σT can then be added to account for CTE effects. The
impact of σT is to offset the critical stress, σcrit, to (σcrit − σT ).

As in [10], the sign convention for ji is in the direction of electron
current, i.e., opposite to conventional current and the electric field.
The atomic flux attributable to the electron wind force is proportional
to the second term on the right hand side that contains ji, while
the flux related to the back-stress force is proportional to the first
term containing the stress gradient ∂σ

∂x
. In both cases, the constant

of proportionality varies linearly with the cross-sectional area of the
wire. The sum, (∂σ/∂x+βji), is proportional to the net atomic flux.

BCs for single-segment interconnect When electron current is
injected through the anode and flows to the cathode at the other
end, we have zero-flux conditions at each end:

∂σ

∂x
+ βj1 = 0 ∀ t at x = 0, x = l1. (2)

BCs for a multisegment interconnect trees/meshes The boundary
conditions at the terminus nodes (i.e., nodes of degree 1) require zero
flux across the blocking boundary, i.e.,

∂σe
∂x

∣∣∣∣
terminus

+ βje = 0 (3)

where edge e connected to the terminus has current density je.
For any internal node n of the structure with degree d ≥ 2,

let the incident edges with reference current directed into the node
be {e1, . . . , em}, and the edges directed away from the node be
{em+1, . . . , ed}; if either set is empty, m = 0 or d. The flux
boundary conditions at such a node are given by∑

k∈{1,··· ,m}

wek

(
∂σek
∂x

∣∣∣∣
n

+ βjek

)
= (4)

∑
k∈{m+1,··· ,d}

wek

(
∂σek
∂x

∣∣∣∣
n

+ βjek

)
and the continuity boundary conditions are:

σe1 |n = σe2 |n = · · · = σed |n (5)

where σek |n and ∂σek/∂x|n are the values of the stress and its
derivative at the location corresponding to node n.

III. ANALYSIS OF STEADY-STATE STRESS

A. Equations for steady-state analysis in a wire segment

We will work with (1) as a general representation of the stress in
any multisegment line or tree. In the steady state, when the electron
wind and back-stress forces reach equilibrium, then for each segment
i, over its entire length, 0 ≤ x ≤ li,

∂σi
∂x

+ βji = 0, i.e.,
∂σi
∂x

= −βji (6)

The Blech criterion for immortality in a single-segment line states
that in the steady state, if the maximum stress falls below the critical
stress, σcrit, required to nucleate a void, then the wire is considered
immortal, i.e., immune to EM. This translates to the condition [1]:

jl ≤ (jl)crit (7)

where (jl)crit is a function of the critical stress, σcrit.
The derivation of the Blech criterion is predicated on the presence

of blocking boundary conditions at either end of a segment carrying
constant current, and is invalid for multisegment wires, even though
it has been (mis)used in that context. For a general multisegment
structure, from (6), a linear gradient exists along each segment of
a general multisegment structure (this has been observed for multi-
segment lines [12], [13] and meshes [16]).
Lemma 1: For edge ek with reference current direction from vertex
va to vb, the steady-state stress along the segment is:

σk(x) = σa − βjkx (8)

and σb − σa = −βjklk (9)

where σa (σb) denotes the steady-state stress at node a (b).
Proof: The first expression follows directly from (6), and the second
is obtained by substituting x = lk at node vb. �
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The following corollary follows directly from (8):
Corollary 1: For edge ek = (va, vb) in an interconnect structure,∫ lk

0

σk(x)dx =

∫ lk

0

(σa − βjkx)dx = σalk − βjk
l2k
2

(10)

Corollary 2: In a segment, the largest stress is at an end point.
Proof: This follows from (9): if jk ≥ 0, the stress on the segment is
maximized at node va; otherwise at node vb. �

B. Equations for steady-state analysis in a general structure

The existence of cycles in a graph requires careful consideration: we
show that the solution can be found by analyzing a spanning tree.

Figure 3: A cycle in G(V,E).

Theorem 1: Consider any undirected simple cycle, without repeated
vertices or edges, C in G(V,E), consisting of edges e1, · · · , em
containing vertices v1, v2, · · · , vm, with edge reference directions
from vi to vi+1 (where vm+1

∆
= v1), as shown in Fig. 3. The m

steady-state stress equations (9) representing this cycle are linearly
dependent. A linearly independent set of equations is obtained by
dropping one equation, i.e., breaking the cycle by dropping one edge.
Proof: Let Vi be the voltage at vertex vi, Ri be the resistance of
wire segment i, ρ be the wire resistivity, and hi be the wire thickness
(constant in layer i). Then Ri = ρli/(wihi) and by Ohm’s law,

ji = (Vi+1 − Vi)/(Riwihi) = (Vi+1 − Vi)/(ρli) (11)

According to (9), along each edge ei = (vi, vi+1),

σi+1 − σi = −βjili = −β(Vi+1 − Vi)/ρ (12)

Adding up all equations (12) around the cycle, the left hand side sums
up to zero, because each σk term in one equation has a corresponding
−σk term in the next equation (modulo m, so that−σ1 and σ1 appear
in the last and first equation, respectively). Similarly, the right-hand
side also sums up to zero due to telescopic cancelations of V k in
each equation and −V k in the next equation (modulo m).

Therefore, the m equations (12) are linearly dependent. They
can be represented by m − 1 equations: by breaking the cycle at
an arbitrary position and removing one edge, the simple cycle is
transformed to a path with a set of independent linear equations. �

The implications of Theorem 1 are profound, namely:
The steady-state stress in any structure with cycles can be solved by
removing edges to make it acyclic, yielding a spanning tree structure,
which is then solved to obtain the stress at all nodes.

C. Solving the steady-state analysis equations

We will first analyze a tree structure, since, as shown above, the
steady state difference equations (9) are to be solved over a spanning
tree of a general interconnect structure.

We choose an arbitrary leaf node of the tree as a reference; without
loss of generality, we will refer to it as node v1, and the stress at that
node as σ1. For any node vi in the tree, there is a unique directed
path Pi from v1 to vi, where each edge ek = (vs,k, vt,k) ∈ Pi has
a direction from vs,k to vt,k where vs,k is the vertex that is closer
to v1. Note that edges on this path are directed from v1 towards vi.

Figure 4: An example undirected graph of a tree-structured
interconnect, showing path Pi from reference node v1 to node vi.

However, it is built on an undirected graph for the tree, where each
undirected edge of the tree has a reference current direction.

To illustrate this point, consider the tree in Fig. 4, with path Pi
from vertex v1 to vi. Vertex vs,3 is the vertex of e3 that is closer to
v1. The reference current directions on the undirected graph are as
shown: the direction of j1 is along the direction of path Pi, while
j2, j3, and j4 are in the opposite direction.
Definition: We define BPi , the “Blech sum” for a path Pi, as:

BPi =
∑
ek∈Pi

ĵklk (13)

where the summation is carried out over all edges ek on path Pi.
The term ĵk = jk if the reference current direction for edge ek is in
the same as path Pi; otherwise, ĵk = −jk. Informally, BPi is the
algebraic (jl) sum along Pi from v1 to vi.

In the example of Fig. 4, the Blech sum to vs,3 is

BPs,3 = j1l1 − j2l2

Lemma 2: The stress, σi at node vi is related to σ1 as follows:

σi = σ1 − βBPi (14)

Proof: In a tree, the path Pi must be unique [22]. Along this path,
the current on each edge ek from vs,k to vt,k is ĵk, i.e., jk if the
reference current direction is from vs,k to vt,k, and −jk otherwise.
Therefore, from (9),

σt,k − σs,k = −βĵklk (15)

The continuity boundary condition (5) ensures that the stress at the
distal end of an edge on Pi is identical to that on the proximal end
of its succeeding edge, i.e., for successive edges ek and el on Pi,
σt,k = σs,l. Therefore, adding these equations over all edges on path
Pk, we see that as successive edges on the path share a vertex v, σv

cancels out telescopically, except for v = v1 or vi. Meanwhile, the
βĵklk terms add up, so that the sum of all equations yields

σi − σ1 = −β
∑
ek∈Pi

ĵklk (16)

This leads to the result in (14). �
However, (14) in Lemma 2 stops short of determining σi at each

node: for a tree with |V | nodes, the lemma provides (|V | − 1) linear
equations in |V | variables, leading to an underdetermined system
where each node stress is related to the stress, σ1, at an arbitrarily
chosen leaf node, n1. The |V |th equation is obtained from the
principle of the conservation of mass: atoms are transported along
a wire, but with zero net change in the number of atoms in the wire.
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Lemma 3: For a general tree/mesh interconnect with |E| edges, with
edge k having width wk and height hk,

|E|∑
k=1

wkhk

∫ lk

0

σk(x)dx = 0 (17)

The proof of the lemma is in the appendix and generalizes a similar
result from [16]. In effect, this is an integral form of the BCs (4),
which conserve flux at the boundary of each segment in the tree.
Theorem 2: A tree or mesh interconnect with |E| edges and |V |
vertices is immortal when:

max
1≤i≤|V |

(
σi
)
< σcrit (18)

where σi = β

∑|E|k=1 wkhk
[
ĵk
l2k
2
−BPs,k lk

]
∑|E|
k=1 wkhklk

−BPi

 (19)

where BPi is the “Blech sum” defined in (13).
Proof: We first show that expression (19) provides the stress at node
ni of the interconnect, and is obtained by combining the result of
Lemma 3 with the (|V | − 1) equations from (14).

Let edge ek connect vertices vs,k and vt,k, where vs,k is the vertex
that is closer in the tree to the reference node v1. Then, substituting
the result of Lemma 2 into Corollary 1,∫ lk

0

σ(x)dx =
(
σ1 − βBPs,k

)
lk − βĵk

l2k
2

(20)

where BPs,k is the Blech sum from node n1 to node vs,k.1

Substituting the integral expressions in (17) from Lemma 3:

|E|∑
k=1

wkhk

[(
σ1 − βBPs,k

)
lk − βĵk

l2k
2

]
= 0 (21)

After further algebraic manipulations, we obtain

σ1 =
β
∑|E|
k=1 wkhk

[
ĵk
l2k
2

+BPs,k lk
]

∑|E|
k=1 wkhklk

(22)

Finally, we substitute the above into (14) to obtain (19), the expres-
sion for the steady-state stress values at each node i.

For the interconnect to be immortal, the largest value of stress in
the tree must be lower than σcrit, the critical stress required to induce
a void. From Corollary 2, in finding the maximum stress in the tree,
it is sufficient to examine the stress at the nodes of the tree, so that
the largest node stress is below σcrit. This proves (18). �

IV. LINEAR-TIME IMMORTALITY CALCULATION

As we have established, a general interconnect on a graph can be
solved by considering the solution of Theorem 1 on a tree of the
graph. Identifying such tree is straightforward, and standard methods
such as depth-first or breadth-first traversal can be used.

After arriving at a tree structure, although Theorem 2 provides
a useful, closed-form result, a simple-minded computation would
calculate σi at each node vi in the tree through repeated incantations
of (19). However, as we will show, this computation can be performed
in O(|E|) time for a structure with |E| edges. We rewrite (19) as:

σi = β

[
Q

A
−BPi

]
(23)

where Q =
∑|E|
k=1 wkhk

[
ĵk
l2k
2

+BPs,k lk
]

(24)

A =
∑|E|
k=1 wkhklk (25)

1The use of ĵk allows for the traversal from v1 to vi to include edges
in a direction opposite to the reference current direction: the stress difference
between nodes on such edges should have the opposite sign as (9) in Lemma 1.

This computation requires the calculation of three summations for A,
Q, and for the Blech sum, BPi from reference node v1 to each node
i in the tree. It proceeds in the following steps:

1. To compute BPi , we traverse the tree from v1 using a standard
traversal method, e.g., the breadth-first search (BFS). At node
v1, we initialize BPv1

= 0. As we traverse each edge ek =
(vs,k, vt,k), we compute BPt,k .

2. Using the above Blech sums to each node, we compute Q
(Eq. (24)) and A (Eq. (25)), summing over all edges.

3. Finally, we compute σi at each node i using (23).
Complexity analysis: The BFS traversal in Step 1 over a tree
traverses O(|E|) edges. For each edge, Step 2 performs a constant
number of computations to obtain A and Q ( (25)–(24)). The final
computation of (23) in Step 3, and the immortality check that
compares the computed value with (σcrit − σT ) according to (18),
perform a constant number of computations for |V | nodes. Therefore,
the computational complexity for any tree structure is O(|E|).

Figure 5: A two-segment interconnect line.

Example: We illustrate our computation for a two-segment line
(Fig. 5) in a single layer (with constant hk) in Table I, using the
leftmost node v1 as the reference. Starting from v1, the two edges
are traversed to compute B. The symbol BPt,k represents the Blech
sum calculated at the distal vertex vt,k of the edge; note that the
computation of Q uses the Blech sum at the proximal vertex, vs,k.

Table I: Sequence of computations for a two-segment wire.

A BPt,k
Q

Initializaton 0 0 0
Edge (v1, v2) w1l1 j1l1 w1j1l21/2

Edge (v2, v3) w1l1 + w2l2 j1l1 + j2l2
w1j1l21/2 + w2j2l22/2

+w2l2(j1l1)

Based on the table, we compute the stress at each node as:

σv1 = β
w1j1l

2
1 + w2j2l

2
2 + 2w2j1l1l2

2(w1l1 + w2l2)
(26)

σv2 = σv1 − β(j1l1) ; σv3 = σv1 − β(j1l1 + j2l2)

The analysis of this line in [19] yields an identical result; unlike our
method, [19] cannot analyze arbitrary trees/meshes in linear time.

V. RESULTS

We present three sets of results. The first set shows comparisons with
a numerical solver in Section V-A. Next, in Section V-B, we use our
method to analyze large public-domain IBM power grid benchmarks.
These were designed for old Al lines, but we assume them to be
modern Cu DD wires. The large sizes of these benchmarks test
the scalability of our approach. Finally, in Section V-C, we perform
analysis of power grids on designs synthesized on a commercial 28nm
and Nangate 45nm parameters, both based on Cu DD interconnects.

In Cu DD based technologies, each layer can be treated separately
due to the presence of barrier/capping layers that prevent atomic flux
from flowing across layers through vias. The methods in this paper
are applied to each layer to find the steady-state stress, which is then
used to predict immortality. This limits the size of the EM problem,
since it must be solved in a single layer at a time. Moreover, since it
is common to use a reserved layer model where all wires in a layer
are in the same direction, effectively this implies that each layer
consists of a set of metal lines with a limited number of nodes. In
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Figure 6: Comparison of the steady-state stress in three structures: a T, a tree, and a mesh. The stress at each node (in GPa) is shown as a tuple,
with our closed-form solution in black and the COMSOL solution in blue text. The color bar is based on a COMSOL solution. The width of each

segment is 1µm, and length scales are shown in the figure. The current densities in the T are j1 = 6× 1010A/m2 , j2 = −4× 1010A/m2 ,
j3 = 3× 1010A/m2. For the tree, j1 = −1× 1010A/m2, j2 = 5× 1010A/m2, j3 = −4× 1010A/m2, j4 = j6 = 2× 1010A/m2, j5 = 4× 1010A/m2.

For the mesh structure, j1 = 1× 1010A/m2, j2 = 1.5× 1010A/m2, j3 = 2× 1010A/m2, j4 = 3× 1010A/m2.

such scenarios, the EM problem reduces to the analysis of a large
number of line/tree structures, each with tens of nodes. The IBM
benchmarks contain mesh structures within layers, which enable us
to better evaluate our method.

A. Comparison with COMSOL
We show comparisons between our approach and numerical simu-
lations using COMSOL on Cu DD based structures. The material
parameters, provided to COMSOL, are [14]: ρ = 2.25e-8Ωm, B =
28GPa, Ω = 1.18e-29m3, D0 = 1.3e-9m2/s, Ea = 0.8eV, Z∗ = 1,
σcrit = 41MPa, T = 378K. COMSOL is limited to analyzing small
structures, which is reflected the topologies shown in Fig. 6:
• An interconnect tree with three segments
• A larger interconnect tree
• A simple mesh structure
The color maps in the figure show the spatial variation of steady-

state stress over each interconnect, where the numbers next to each
node represent the values computed using our approach and by
COMSOL. It is easily seen that the numbers match; since our
approach is exact, any discrepancies can be attributed to numerical
inaccuracies in COMSOL.

B. Analysis on IBM power grid benchmarks
The only widely available power grid benchmarks are the IBM
benchmarks [23]. Each benchmark contains Vdd and Vss networks
and multiple voltage domains, and general tree/mesh structures in
individual layers. We implement a BFS traversal over these struc-
tures using Python3.6 and Deep Graph Library [24] on a GPU by
modifying the message passing functions. Run times are shown on a
3.6GHz Intel Core i7-7820X and NVIDIA RTX 2080Ti GPU.

Figure 7: Inaccuracy of the traditional Blech filter (ibmpg6).

The traditional Blech criterion is only accurate for a single-segment
wire: next, we evaluate its accuracy. We consider our approach

Table II: Comparison of our approach against the traditional Blech
filter on the IBM benchmarks (TP = true positive, TN = true negative,

FP = false positive, FN = false negative.)

|E| TP TN FP FN Runtime
GPU CPU

pg1 29750 1557 10144 17372 677 7s 6s
pg2 125668 7703 33534 82025 2406 12s 19s
pg3 835071 200158 3539 630979 395 36s 184s
pg6 1648621 916094 1365 730995 167 88s 280s

as the accurate result since it is rigorously derived for multiseg-
ment structures by generalizing the same physics-based modeling
framework used by the Blech criterion for one-segment wires, and
it is validated on COMSOL. Therefore a positive identification of
immortality implies that our method finds the segment to be immortal;
a negative identification implies mortality.

Fig. 7 plots the current density j vs. the wire length l within the
segments of the ibmpg6 benchmark. The currents in the Vdd and
Vss lines may be either positive or negative, and their magnitude
affects EM. The black triangles show the contours of jl = (jl)crit:
when the magnitude lies within this frontier for a segment of
the grid, the traditional Blech criterion (7) would label the wire
as immortal; otherwise it is potentially mortal. To help highlight
erroneous predictions, the figure shows green markers for correct
predictions and red markers for incorrect predictions. The Blech
criterion shows significant inaccuracy on multisegment wires.

Table II summarizes the results on IBM benchmarks. True positives
(TP) and true negatives (TN) correspond to correct predictions where
the Blech criterion agrees with our accurate analysis. The errors
correspond to false negatives (FN), where an immortal segment is
deemed potentially mortal by the traditional Blech criterion, and false
positives (FP), where an mortal segment is labeled as potentially
immortal by Blech. FPs cause failures to be overlooked, and FNs may
lead to overdesign as EM-immortal wires are needlessly optimized.

The table shows that:

• the inaccuracies in the Blech filter are seen across benchmarks.
• our method is scalable to large mesh sizes with low runtimes.

From the data, it is apparent that the traditional Blech criterion can
provide misleading results. The reasons for this are twofold:

• A high-jl segment could be immortal if it has numerous down-
stream segments with low jl, so that the total jl sum may be
low. For example, in Fig. 5, if the current density j1 = 0, then
the segment acts as passive reservoir, bringing down the stress
in the right segment to be lower than the case of an identical
isolated segment carrying the same current, but with a blocking
boundary at v2 [18].
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Table III: Comparison of our approach against the traditional Blech
filter on a 28nm technology with Cu interconnects.

Circuit |E| TP TN FP FN

28nm
gcd 678 634 8 31 5
aes 11,361 8,039 0 3,297 25
jpeg 123,220 63,889 71 58,696 564

45nm

dynamic node 6,270 2,617 256 3,059 338
aes 7,212 3,255 322 3,160 475
ibex 12,128 4,645 1,112 4,964 1,407
jpeg 35,848 10,052 5,047 15,479 5,270
swerv 59,049 14,545 9,762 23,366 11,376

• A low-jl segment could be labeled immortal by the traditional
criterion, but it may be mortal due to a high stress at one node,
caused by a high Blech sum for downstream wire segments,
which could raise the stress at the other node.

C. Analysis on OpenROAD power grids

We show simulations based on power grids from circuits designed
using a commercial 28nm and Nangate45 technologies using Cu DD
interconnects. The circuits are taken through synthesis, placement and
routing in these technology nodes (some circuits are implemented in
both nodes) using a standard design flow. The power grid is synthe-
sized using an open-source tool, OpeNPDN [25] from OpenROAD.
The IR drop and currents are computed using PDNSim [26], with
currents scaled to provide an IR drop of 5mV.

Fig. 8 shows a scatter plot that analyzes the inaccuracy of the
traditional Blech criterion on a Cu-based technology, using (jl)crit =
0.27A/µm, based on material parameters listed in Section V-A. Due
to the regular structure of the power grid, many lines have the same
length. As in the earlier case, it is easily seen that the Blech criterion
leads to numerous false positives and false negatives. Results for more
circuits are listed in Table III, and show similar trends.

Figure 8: Inaccuracy of traditional Blech filter (jpeg/28nm).

VI. CONCLUSION

A linear-time approach for checking immortality in a general
tree/mesh interconnect is proposed. The results are validated against
COMSOL and shown to be fast and scalable to large power grids.

APPENDIX: PROOF OF LEMMA 3
Proof: The stress on a wire segment causes a displacement of ui
in segment i of the interconnect structure. The stress has no shear
component since the current in a line is unidirectional. Due to
conservation of mass, the net material coming from all |E| wire
segments is zero, and therefore,∑|E|

k=1 wkhkuk = 0 (27)

where wk is the width of the kth wire segment. The displacement
uk is the integral of displacements duk over the segment caused by

stress σk(x) applied on elements of size dx in segment k. If B is
the bulk modulus, from Hooke’s law,

uk =
∫ lk

0
duk(x) = B

∫ lk
0
σk(x)dx (28)

Combining this with (27) leads to the result of Lemma 3. �

REFERENCES

[1] I. A. Blech, “Electromigration in thin aluminum films on titanium
nitride,” J. Appl. Phys., vol. 47, no. 4, pp. 1203–1208, 1976.

[2] J. R. Black, “Electromigration failure modes in aluminum metallization
for semiconductor devices,” Proc. IEEE, vol. 57, no. 9, pp. 1587–1594,
1969.

[3] H.-B. Chen, et al., “Analytical modeling and characterization of electro-
migration effects for multibranch interconnect trees,” IEEE T. Comput.
Aid D., vol. 35, no. 11, pp. 1811–1824, 2016.

[4] S. Chatterjee, et al., “Power grid electromigration checking using
physics-based models,” IEEE T. Comput. Aid D., vol. 37, pp. 1317–
1330, July 2018.

[5] V. Mishra and S. S. Sapatnekar, “The impact of electromigration in
copper interconnects on power grid integrity,” in Proc. DAC, pp. 88:1–
88:6, 2013.

[6] V. Mishra and S. S. Sapatnekar, “Predicting electromigration mortality
under temperature and product lifetime specifications,” in Proc. DAC,
pp. 43:1–43:6, 2016.

[7] R. Rosenberg and M. Ohring, “Void formation and growth during
electromigration in thin films,” J. Appl. Phys., vol. 42, no. 13, pp. 5671–
5679, 1971.

[8] M. Schatzkes and J. R. Lloyd, “A model for conductor failure consid-
ering diffusion concurrently with electromigration resulting in a current
exponent of 2,” J. Appl. Phys., vol. 59, pp. 3890–3893, 1986.

[9] J. J. Clement and J. R. Lloyd, “Numerical investigations of the electro-
migration boundary value problem,” J. Appl. Phys., vol. 71, pp. 1729–
1731, 1992.

[10] M. A. Korhonen, et al., “Stress evolution due to electromigration in
confined metal lines,” J. Appl. Phys., vol. 73, no. 8, pp. 3790–3799,
1993.

[11] V. Sukharev, “Beyond Black’s equation: Full-chip EM/SM assessment in
3D IC stack,” Microelectronic Engineering, vol. 120, pp. 99–105, 2014.

[12] S. P. Riege, et al., “A hierarchical reliability analysis for circuit design
evaluation,” IEEE T. Electron Dev., vol. 45, pp. 2254–2257, Oct. 1998.

[13] J. J. Clement, et al., “Methodology for electromigration critical threshold
design rule evaluation,” IEEE T. Comput. Aid D., vol. 18, pp. 576–581,
May 1999.

[14] S. M. Alam, et al., “Circuit-level reliability requirements for Cu metal-
lization,” IEEE T. Device Mater. Rel., vol. 5, no. 3, pp. 522–531, 2005.

[15] A. Abbasinasab and M. Marek-Sadowska, “Blech effect in interconnects:
Applications and design guidelines,” in Proc. ISPD, pp. 111–118, 2015.

[16] H. Haznedar, et al., “Impact of stress-induced backflow on full-chip
electromigration risk assessment,” IEEE T. Comput. Aid D., vol. 25,
pp. 1038–1046, June 2006.

[17] M. H. Lin and A. S. Oates, “An electromigration failure dis-
tribution model for short-length conductors incorporating passive
sinks/reservoirs,” IEEE T. Device Mater. Rel., vol. 13, pp. 322–326, Mar.
2013.

[18] M. H. Lin and A. S. Oates, “Electromigration failure of circuit intercon-
nects,” in Proc. IRPS, pp. 5B–2–1–5B–2–8, 2016.

[19] Z. Sun, et al., “Fast electromigration immortality analysis for multi-
segment copper interconnect wires,” IEEE T. Comput. Aid D., vol. 37,
pp. 3137–3150, Dec. 2018.

[20] J. Gambino, “Process technology for copper interconnects,” in Handbook
of Thin Film Deposition (K. Seshan and D. Schepis, eds.), ch. 6, pp. 147–
194, Amsterdam, The Netherlands: Elsevier, 3rd ed., 2018.

[21] L. Zhang, et al., “Grain size and cap layer effects on electromigration
reliability of cu interconnects: Experiments and simulation,” in AIP Conf.
Proc., vol. 1300, 3, 2010.

[22] T. H. Cormen, et al., Introduction to Algorithms. Boston, MA: MIT
Press, 3rd ed., 2009.

[23] “IBM power grid benchmarks.” https://web.ece.ucsb.edu/∼lip/
PGBenchmarks/ibmpgbench.html, Accessed April 6, 2021.

[24] M. Wang, et al., “Deep graph library: A graph-centric, highly-performant
package for graph neural networks,” in arXiv:1909.01315 [cs.ar], 2020.

[25] V. A. Chhabria, et al., “Template-based PDN synthesis in floorplan and
placement using classifier and CNN techniques,” in Proc. ASP-DAC,
pp. 44–49, 2020.

[26] “PDNSim.” github.com/The-OpenROAD-Project/OpenROAD/tree/
master/src/PDNSim. Accessed April 6, 2021.

6

https://web.ece.ucsb.edu/~lip/PGBenchmarks/ibmpgbench.html
https://web.ece.ucsb.edu/~lip/PGBenchmarks/ibmpgbench.html
github.com/The-OpenROAD-Project/OpenROAD/tree/
master/src/PDNSim

	I Introduction
	II Background
	II-A Notation
	II-B Stress equations for interconnect structures

	III Analysis of Steady-state Stress
	III-A Equations for steady-state analysis in a wire segment
	III-B Equations for steady-state analysis in a general structure
	III-C Solving the steady-state analysis equations

	IV Linear-Time Immortality Calculation
	V Results
	V-A Comparison with COMSOL
	V-B Analysis on IBM power grid benchmarks
	V-C Analysis on OpenROAD power grids

	VI Conclusion
	References

