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Abstract – Domain-specific neural network accelerators have seen 
growing interest in recent years due to their improved energy 
efficiency and inference performance compared to CPUs and GPUs. 
In this paper, we propose a novel cross-layer optimized neural 
network accelerator called CrossLight that leverages silicon 
photonics. CrossLight includes device-level engineering for resilience 
to process variations and thermal crosstalk, circuit-level tuning 
enhancements for inference latency reduction, and architecture-level 
optimization to enable higher resolution, better energy-efficiency, 
and improved throughput. On average, CrossLight offers 9.5× lower 
energy-per-bit and 15.9× higher performance-per-watt at 16-bit 
resolution than state-of-the-art photonic deep learning accelerators.   
 

I. INTRODUCTION 
Many emerging applications such as self-driving cars, autonomous 

robotics, fake news detection, pandemic growth and trend prediction, and 
real-time language translation are increasingly being powered by 
sophisticated machine learning models. With researchers creating deeper 
and more complex deep neural network (DNN) architectures, including 
multi-layer perceptron (MLP) and convolution neural network (CNN) 
architectures, the underlying hardware platform must consistently deliver 
better performance while satisfying strict power dissipation limits. This 
endeavor to achieve higher performance-per-watt has driven hardware 
architects to design custom accelerators for deep learning, e.g., Google’s 
TPU [1] and Intel’s Movidius [2], with much higher performance-per-
watt than conventional CPUs and GPUs.  

Unfortunately, electronic accelerator architectures face fundamental 
limits in the post Moore’s law era where processing capabilities are no 
longer improving as they did over the past several decades [3]. In 
particular, moving data electronically on metallic wires in these 
accelerators creates a major bandwidth and energy bottleneck [4]. Silicon 
photonics is a promising technology to enable ultra-high bandwidth, low-
latency, and energy-efficient communication solutions [5]. CMOS-
compatible photonic interconnects have already replaced metallic ones 
for light-speed data transmission at almost every level of computing, and 
are now actively being considered for chip-scale integration [6].  

Remarkably, it is also possible to use optical components to perform 
computation, e.g., matrix-vector multiplication [7]. Thus, it is now 
possible to conceive of a new class of DNN accelerators that employ 
photonic interconnects and photonic integrated circuits (PICs) built with 
on-chip waveguides, electro-optic modulators, photodetectors, and lasers 
for low-latency and energy-efficient optical domain data transport and 
computation. Not only can such photonics-based accelerators address the 
fan-in and fan-out problems with linear algebra processors, but their 
operational bandwidth can approach the photodetection rate (typically in 
the hundreds of GHz), which is orders of magnitude higher than 
electronic systems today that operate at a clock rate of a few GHz [8]. 

Despite the above benefits, a number of obstacles must be overcome 
before viable photonic DNN accelerators can be realized. Fabrication 
process and thermal variations can adversely impact the robustness of 
photonic accelerator designs by introducing undesirable crosstalk noise, 
optical phase shifts, resonance drifts, tuning overheads, and photo-
detection current mismatches. For example, experimental studies have 
shown that micro-ring resonator (MR) devices used in chip-scale 
photonic interconnects can experience significant resonant drifts (e.g., ~9 
nm reported in [9]) within a wafer due to process variations. This matters 

because even a 0.25 nm drift can cause the bit-error-rate (BER) of 
photonic data traversal to degrade from 10-12 to 10-6. Moreover, thermal 
crosstalk in silicon photonic devices such as MRs can limit the achievable 
precision (i.e., resolution) of weight and bias parameters to a few bits, 
which can significantly reduce DNN model accuracy. Common tuning 
circuits that rely on thermo-optic phase-change effects to control 
photonic devices, e.g., when imprinting activations or weights on optical 
signals, also place a limit on the achievable throughput and parallelism 
in photonic accelerators. Lastly, at the architecture level, there is a need 
for a scalable, adaptive, and low-cost computation and communication 
fabric that can handle the demands of diverse MLP and CNN models.   

In this paper, we introduce CrossLight, novel silicon photonic neural 
network accelerator that addresses the challenges highlighted above 
through a cross-layer design approach. By cross-layer, we refer to the 
design paradigm that involves considering multiple layers in the 
hardware-software design stack together, for a more holistic optimization 
of the photonic accelerator. CrossLight involves device-level engineering 
for resilience to fabrication-process variations and thermal crosstalk, 
circuit-level tuning enhancements for inference latency reduction, and an 
optimized architecture-level design that also integrates the device- and 
circuit-level improvements to enable higher resolution, better energy-
efficiency, and improved throughput compared to prior efforts on 
photonic accelerator design. Our novel contributions in this work include: 

 

 Improved silicon photonic device designs that we fabricated to make 
our architecture more resilient to fabrication-process variations; 

 An enhanced tuning circuit to simultaneously support large thermal-
induced resonance shifts and high-speed, low-loss device tuning;  

 Consideration of thermal crosstalk mitigation methods to improve 
the weight resolution achievable by our architecture; 

 Improved wavelength reuse and use of matrix decomposition at the 
architecture-level to increase throughput and energy-efficiency; 

 A comprehensive comparison with state-of-the-art accelerators that 
shows the efficacy of our cross-layer optimized solution. 
 

II. BACKGROUND AND RELATED WORK 
Silicon-photonics based DNN accelerator architectures represent an 

emerging paradigm that can immensely benefit the landscape of deep 
learning hardware design [10]-[14]. A photonic neuron in these 
architectures is analogous to an artificial neuron and consists of three 
components: a weighting, a summing, and a nonlinear unit. Noncoherent 
photonic accelerators, such as [11]-[13], typically employ the Broadcast 
and Weight (B&W) protocol [10] to manipulate optical signal power for 
setting and updating weights and activations. The B&W protocol is an 
analog networking protocol that uses wavelength-division multiplexing 
(WDM), photonic multiplexors, and photodetectors to combine outputs 
from photonic neurons in a layer. Coherent photonic accelerators, such 
as [8], [14], manipulate the electrical field amplitude rather than signal 
power and typically use only a single wavelength. Weighting occurs with 
electrical field amplitude attenuation proportional to the weight value, 
and phase modulation that is proportional to the sign of the weight. The 
weighted signals are then coherently accumulated with cascaded Y-
junction combiners. For both types of accelerators, non-linearity can be 
implemented with devices such as electro-absorption modulators [8].  

Due to the scalability, phase encoding noise, and phase error 
accumulation limitations of coherent accelerators [15], there is growing 
interest in designing efficient noncoherent photonic accelerators. In 
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particular, the authors of DEAP-CNN [11] have described a noncoherent 
neural network accelerator that implements the entirety of the CNN 
layers using connected convolution units. In these units, the tuned MRs 
assume the kernel values by using phase tuning to manipulate the energy 
in their resonant wavelengths. Holylight [12] is another noncoherent 
architecture that uses microdisks (instead of MRs) for its lower area and 
power consumption. It utilizes a “whispering gallery mode” resonance 
for microdisk operation, which unfortunately is inherently lossy due to a 
phenomenon called tunneling ray attenuation [16]. More generally, these 
noncoherent architectures suffer from susceptibility to process variations 
and thermal crosstalk, which are not addressed in these architectures. 
Microsecond-granularity thermo-optic tuning latencies further reduce the 
speed and efficiency of optical computing [17]. We address these 
shortcomings as part of our proposed cross-layer optimized noncoherent 
photonic accelerator architecture in this work. 

III.    NONCOHERENT PHOTONIC COMPUTATION OVERVIEW 
 

As mentioned earlier, noncoherent photonic accelerators typically 
utilize the Broadcast and Weight (B&W) photonic neuron configuration 
with multiple wavelengths. Fig. 1 shows an example of this B&W 
configuration with n neurons in a layer where the colored-dotted box 
represents a single neuron. Each input to a neuron is imprinted onto a 
unique wavelength (λi) emitted by a laser diode (LD) using a Mach–
Zehnder modulator (MZM). The wavelengths are multiplexed (MUXed) 
into a single waveguide using arrayed waveguide grating (AWG), and 
split into n branches that are each weighted with a micro-ring resonator 
(MR) bank that alters optical signal power proportional to weight values. 
A balanced photodetector (BPD) performs summation across positive 
and negative weight arms at each branch. Optoelectronic devices such as 
electro-absorption modulators (not shown for brevity) introduce non-
linearity after the multiplication and summation operations. 

 
Fig. 1: Noncoherent Broadcast-and-weight (B&W) based photonic neuron. 

 

MRs are the fundamental components that impact the efficiency of 
this configuration. Weights (and biases) are altered by tuning MRs so that 
the losses experienced by wavelengths—on which activations have been 
imprinted—can be modified to realize matrix-vector multiplication. MR-
weight banks have groups of these tunable MRs, each of which can be 
tuned to drain energy from a specific resonant wavelength so that the 
intensity of the wavelength reflects a specific value (after it has passed 
near the MR). As an example of performing computation in the optical 
domain, consider the case where an activation value of 0.8 must be 
weighted by a value of 0.5 as part of a matrix-vector multiplication in a 
DNN model inference phase. Let us assume that the red wavelength (λ1) 
is imprinted with the activation value of 0.8 by using the MZM in Fig. 1 
(alternatively, MRs can be used for the same goal, where an MR will be 
tuned in such a way that 20% of the input optical signal intensity is 
dropped as the wave traverses the MR). When λ1 passes through an MR 
bank, e.g., the one in the dotted-blue box in Fig. 1, the MR in resonance 
with λ1 can be tuned to drop 50% of the input signal intensity. Thus, as λ1 
passes this MR, we will obtain 50% of the input intensity at the through 
port, which is 0.4 (=0.8×0.5). The BPD shown in Fig. 1 then converts the 
optical signal intensity from that wavelength (and other wavelengths) 
into an electrical signal that represents an accumulated single value.    

An MR is essentially an on-chip resonator which is said to be in 
resonance when an optical wavelength on the input port matches with the 

resonant wavelength of the MR, generating a Lorentzian-shaped signal at 
the through port. Fig. 2 shows an example of an all-pass MR and its 
output optical spectrum. The extinction ratio (ER) and free-spectral range 
(FSR) are two primary characteristics of an MR. These depend on several 
physical properties in the MR, including its width, thickness, radius, and 
the gap between the input and ring waveguide [18]. Changing any of 
these properties changes the effective index (neff) of the MR, which in 
turn causes a change in the output optical spectrum. For reliable operation 
of MRs, it is crucial to maintain the central wavelength at the output 
optical spectrum. However, MRs are sensitive to fabrication-process 
variations (FPVs) and variations in surrounding temperature. These cause 
the central wavelength of the MR to deviate from its original position, 
causing a drift in the MR resonant wavelength (ΔλMR) [19]. Such a drift 
(due to FPV or thermal variations) can be compensated using thermo-
optic (TO) or electro-optic (EO) tuning mechanisms. Both of these have 
their own advantages and disadvantages. EO tuning is faster (~ns range) 
and consumes lower power (~4 µW/nm) but with a smaller tuning range 
[20]. In contrast, TO tuning has a larger tunability range, but consumes 
higher power (~27 mW/FSR) and has higher (~µs range) latency [17]. 

 

 
Fig. 2: An all-pass MR with output spectral characteristics at the through port with 
extinction ratio (ER) and free spectral range (FSR) specified in the figure. 
 

A large number of MRs must be used at the architecture-level to 
support complex MLP and CNN model executions. As the number of 
MRs increase, so does the length of the waveguide which hosts the banks. 
Unfortunately, this leads to an increase in the total optical signal 
propagation, modulation, and through losses experienced, which in turn 
increases the laser power required to drive the optical signals through the 
weight banks, so that they can be detected error-free at the photodetector. 
An excessive number of parallel arms with MR weight banks (the dotted 
box in Fig. 1 represents one arm working in parallel with other arms) also 
increases optical splitter losses. Moreover, without considering crosstalk 
mitigation strategies (as is the case with previously proposed photonic 
accelerators), there is increased crosstalk noise in the optical signals, 
which drives down the weight resolution of the architecture. 

In summary, to design efficient photonic accelerators, there is a need 
for (i) improved MR device design to better tolerate variations and 
crosstalk; (ii) efficient MR tuning circuits to quickly and reliably imprint 
activation and parameter values; and (iii) a scalable architecture design 
that minimizes optical signal losses. Our novel Crosslight photonic 
accelerator design addresses all of these concerns and is discussed next.  

 

IV.    CROSSLIGHT ARCHITECTURE 
Fig. 3 shows a high-level overview of our CrossLight noncoherent 

silicon photonic neural network accelerator. The photonic substrate 
performs vector dot product (VDP) operations using silicon photonic MR 
devices, and summation using optoelectronic photodetector (PD) devices 
over multiple wavelengths. An electronic control unit is required for the 
control of photonic devices, and for communication with a global 
memory to obtain the parameter values, mapping of the vectors, and for 
partial sum buffering. We use digital to analog converter (DAC) arrays 
to convert buffered signals into analog tuning signals for MRs. Analog to 
digital converter (ADC) arrays are used to map the output analog signals 
generated by PDs to digital values that are sent back for post-processing 
and buffering. We break down the discussion of this accelerator into three 
parts (subsections A-C), corresponding to the contributions at the device, 
tuning circuit, and architecture levels, as discussed next.  
 

A. MR device engineering and fabrication 
Process variations are inevitable in CMOS-compatible silicon 



 
Fig. 3: An overview of CrossLight, showing dedicated vector dot product (VDP) 
units for CONV and FC layer acceleration, and the internal architecture. 
 
photonic fabrications, causing undesirable changes in resonant 
wavelength of MR devices (ΔλMR). We fabricated a 1.5×0.6 mm2 chip 
with high-resolution Electron Beam (EBeam) lithography and performed 
a comprehensive design-space exploration of MRs to compensate for 
FPVs while improving MR device insertion loss and Q-factor. In this 
exploration, we varied the input and ring waveguide widths to find an 
MR device design that was tolerant to FPVs. We found that in an MR 
design of any radii and gap, when the input waveguide is 400 nm wide 
and the ring waveguide is 800 nm wide at room temperature (300 K), the 
undesired ΔλMR due to FPVs can be reduced from 7.1 to 2.1 nm (70% 
reduction). This is a significant result, as these engineered MRs require 
less compensation for FPV-induced resonant wavelength shifts, which 
can reduce the power consumption of architectures using such MRs. 

Unfortunately, even with such optimized MR designs, the impact of 
FPVs is not completely eliminated, and there is still a need to compensate 
for FPVs. Thermal variations are another major factor to cause changes 
in MR neff which also leads to undesirable ΔλMR. Thermo-optic (TO) 
tuners are used to compensate for such deviations in ΔλMR. These TO 
tuners use microheaters to change the temperature in the proximity of an 
MR device, which then alters the neff of the MR, changing the device 
resonant wavelength, and correcting the ΔλMR. Unfortunately, high 
temperatures from such heaters can cause thermal energy dissipation, 
creating thermal crosstalk across MR devices placed close to each other. 
One can avoid such thermal crosstalk by placing devices at an appropriate 
distance from each other, typically 120 µm to 200 µm (depending on the 
number of MR devices in proximity within an MR bank). But such a large 
spacing hurts area efficiency and also increases waveguide length, which 
increases propagation losses and its associated laser power overhead. We 
propose to address this challenge at the circuit level, as discussed next.  

 

B. Tuning circuit design 
To reduce thermal crosstalk, we must reduce the reliance on TO 

tuning, an approach that is used in all prior photonic neural network 
accelerators, but one that entails high overheads. We propose to use a 
hybrid tuning circuit where both thermo-optic (TO) and electro-optic 
(EO) tuning are used to compensate for ΔλMR. Such a tuning approach 
has previously been proposed in [22] for silicon photonic Mach–Zehnder 
Interferometers with low insertion loss. Such an approach can be easily 
transferred to an optimized MR for hybrid tuning in our architecture. The 
hybrid tuning approach supports faster operation of MRs with fast EO 
tuning to compensate for small ΔλMR shifts and, when necessary, using 
TO tuning when large ΔλMR shifts need to be compensated. 

To further reduce the power overhead of TO tuning in this hybrid 
approach, we adapt a method called Thermal Eigen Decomposition 
(TED), which was first proposed in [23]. Using TED, we can collectively 
tune all the MRs in an MR bank to compensate for large ΔλMR shifts. By 
doing so, we can cancel the effect of thermal crosstalk (i.e., an undesired 
phase change) in MRs with much lower power consumption. The TO 
tuning power can be calculated by the amount of phase shift necessary to 
apply to the MRs in order for them to be at their desired resonant 
wavelength. The extent of phase crosstalk ratio (due to thermal crosstalk) 
as a function of the distance between an MR pair is shown in Fig. 4, for 
our fabricated MR devices. The results are based on detailed analysis 
with a commercial 3D heat transport simulation EDA tool for silicon 
photonic devices (Lumerical HEAT [21]). It can be seen from the orange 
line that as the distance between an MR pair increases, the amount of 
phase crosstalk reduces exponentially. Such a trend has also been 
observed in [24]. To find a balance between tuning power savings while 
having reduced crosstalk, we perform a sensitivity analysis based on the 
distance between two adjacent MRs in our architecture. We placed the 
optimized MRs (described in the previous section) in such a manner that 
maximum tuning power is saved when they are close to each other while 
compensating for thermal crosstalk. Results from our analysis (the solid-
blue line in Fig. 4) indicate that placing each MR pair at a distance of 5 
µm is optimal, as increasing or decreasing such a distance causes an 
increase in power consumption of individual TO heaters in the MRs. Fig. 
4 also shows the tuning power required without using the TED approach 
(blue dotted line), which can be seen to be notably higher.  

 

 
 

Fig. 4: Phase crosstalk ratio and tuning power consumption in a block of 10 
fabricated MRs with variable distance between adjacent pair of MRs. 
 

The workflow of our circuit-level hybrid tuning approach can be 
summarized as follows. When the accelerator is first booted at runtime, a 
one-time compensation for design-time FPVs is applied using TO tuning. 
The extent of compensation for crosstalk is calculated offline during the 
test phase, where the required phase shift in each of the MRs is calculated, 
and once the system is online, the respective phase shift values are 
applied to cancel the impact of thermal crosstalk. Subsequently, we apply 
EO tuning due to its extremely low latency to represent vector elements 
in each vector operation with MRs (discussed in more detail in the next 
section). If large shifts in temperature are observed at runtime, we can 
perform a one-time calibration with TO tuning to compensate for it. In 
our analysis, runtime TO tuning would be required rarely beyond its first 
use after the initial bootup of the photonic accelerator platform.  

 

C. Architecture design 
The optimized MR devices, layouts, and tuning circuits are utilized 

within optical vector dot product (VDP) units, which are shown in Fig. 
3. We use banks (groups) of MRs to imprint both activations and weights 
onto the optical signal. At the architecture level, we compose multiples 
of VDP units into two architectural sub-components: one to support 
convolution (CONV) layer acceleration and the other to support fully 
connected (FC) layer acceleration. We focus on these two types of layers 
as they are the most widely used and consume the most significant 
amount of latency and power in computational platforms that execute 
DNNs. In contrast, other layer types (e.g., pooling, batch normalization) 
can be implemented very efficiently in the electronic domain. Note also 



that we focus on inference acceleration, as done in all photonic DNN 
accelerators, and almost all electronic DNN accelerators.  
C.1   Decomposing vector operations in CONV/FC layers 

To map CONV and FC layers from DNN models to our accelerator, 
we first need to decompose large vector sizes into smaller ones. In CONV 
layers, a filter performs convolution on a patch (e.g., 2×2 elements) of 
the activation matrix in a channel to generate an element of the output 
matrix. The operation can be represented as follows: 

 

ܭ               ⊗ ܣ = ܻ                             (1) 
For a 2×2 filter kernel and weight matrices, (1) can be expressed as: 

൤݇ଵ ݇ଶ
݇ଷ ݇ସ

൨ ⨂ ቂ
ܽଵ ܽଶ
ܽଷ ܽସ

ቃ =  ݇ଵܽଵ + ݇ଶܽଶ +  ݇ଷܽଷ + ݇ସܽସ           (2) 

Rewriting (2) as a vector dot product, we have:  

[݇ଵ  ݇ଶ   ݇ଷ  ݇ସ]. ቈ
ೌభ
ೌమ
ೌయ
ೌర

቉ = ݇ଵܽଵ +  ݇ଶܽଶ + ݇ଷܽଷ + ݇ସܽସ              (3) 

Once we are able to represent the operation as a vector dot product, it is 
easy to see how it can be decomposed into partial sums. For example: 

  [݇ଵ  ݇ଶ ]. ቂ௔భ
௔మ

ቃ = ݇ଵܽଵ +  ݇ଶܽଶ =  ܲ ଵܵ   

  [݇ଷ  ݇ସ ]. ቂ௔య
௔ర

ቃ = ݇ଷܽଷ + ݇ସܽସ =  ܲܵଶ                
ܲ ଵܵ + ܲܵଶ = ܻ                               (4) 

In FC layers, typically much larger dimension vector multiplication 
operations are performed between input activations and weight matrices: 
 

ܹܣ =  ቎

ܽଵ
ܽଶ
⋮

ܽ௡

቏ ଵݓ] ଶݓ  ௡]                                 (5)ݓ …

ܹܣ =  ൦

ܽଵ ∙ ଵݓ + ܽଵ ∙ ଶݓ + ⋯ ܽଵ ∙ ௡ݓ

ܽଶ ∙ ଵݓ + ܽଶ ∙ ଶݓ + ⋯ ܽଶ ∙ ௡ݓ
⋮

ܽ௡ ∙ ଵݓ + ܽ௡ ∙ ଶݓ + ⋯ ܽ௡ ∙ ௡ݓ

൪                 (6) 

In (5), ܽଵ to ܽ௡ represent a column vector of activations (A) and ݓଵ 
to ݓ௡ represent a row vector of weights (W). The resulting vector is a 
summation of dot products of vector elements (6). Much like with CONV 
layers, these can be decomposed into lower dimensional dot products. 

 

C.2   Vector dot product (VDP) unit design 
We separated the implementation of CONV and FC layers in 

CrossLight due to the vastly different orders of vector dot product 
computations required to implement each layer. For instance, typical 
CONV layer kernel sizes vary from 2×2 to 5×5, whereas in FC layers it 
is not uncommon to have 100 or more neurons (requiring 100×100 or 
higher order multiplication). State-of-the-art photonic DNN accelerators, 
e.g., [11], only consider the scales involved at the CONV layer, and either 
only support CONV layer acceleration in the optical domain, or use the 
same CONV layer implementation to accelerate FC layers. This will lead 
to increased latencies and reduced throughput as the larger vectors 
involved with FC layer calculation must be divided up into much smaller 
chunks, in the order of the filter kernel size of the CONV layer.  

For improved efficiency, we separately support the unique scale and 
requirements of vector dot products involved in CONV layers and FC 
layers. For CONV layer acceleration, we consider n VDP units, with each 
unit supporting an N×N dot product. For FC layer acceleration, we 
consider m units, with each unit supporting a K×K dot product. Here n>m 
and K>N, as per the requirements of each of the distinct layers. In each 
of the VDP units, the original vector dimensions are decomposed into N 
or K dimensional vectors, as discussed above. We performed an 
exploration to determine the optimal values for N, K, n, and m. The results 
of this exploration study are presented in Section V. 

 

C.3   Optical wavelength reuse in VDP units 
Prior work on photonic DNN accelerator design typically considers a 

separate wavelength to represent each individual element of a vector. 
This approach leads to an increase in the total number of lasers needed in 
the laser bank (as the size of the vectors increases) which in turn increases 
power consumption. Beyond employing the decomposition approach 

discussed above, we also consider wavelength reuse per VDP unit to 
minimize laser power. In this approach, within VDP units, the N or K 
dimensional vectors are further decomposed into smaller sized vectors 
for which dot products can be performed using MRs in parallel, in each 
arm of the VDP unit. The same wavelengths can then be reused across 
arms within a VDP to reduce the number of unique wavelengths required 
from the laser. PDs perform summation of the element-wise products to 
generate partial sums from decomposed vector dot products. The partial 
sums from the decomposed operations are then converted back to the 
photonic domain by VCSELs (bottom right of Fig. 3), multiplexed into a 
single waveguide, and accumulated using another PD, before being sent 
for buffering. Thus, our approach leads to an increase in the number of 
PDs compared to other accelerators but significantly reduces both the 
number of MRs per waveguide and the overall laser power consumption.  

In each arm within a VDP unit, we used a maximum of 15 MRs per 
bank for a total of 30 MRs per arm, to support up to a 15×15 vector dot 
product. The choice of MRs per arm considers not only the thermal 
crosstalk and layout spacing issues (discussed earlier), and the benefits 
of wavelength reuse (discussed in previous para), but also the fact that 
optical splitter losses become non-negligible as the number of MRs per 
arm increases, which in turn increases laser power requirements. Thus, 
the selection of MRs per arm within a VDP unit was carefully adjusted 
to balance parallelism within/across arms, and laser power overheads.  

V. EVALUATION AND SIMULATION RESULTS 
A.   Simulation setup 

To evaluate the effectiveness of our CrossLight accelerator, we 
conducted several simulation studies. These studies were complemented 
by our MR-device fabrication and optimization efforts on real chips, as 
discussed in Section IV.  We considered the four DNN models shown in 
Table I for execution on the accelerator. Model 1 is Lenet5 [25] and 
models 2 and 3 are custom CNNs with both FC and CONV layers. Model 
4 is a Siamese CNN utilizing one-shot learning. The datasets used to train 
these models are also shown in the table. We designed a custom 
CrossLight accelerator simulator in Python to estimate its performance 
and power/energy. We used Tensorflow 2.3 along with Qkeras [26], for 
analyzing DNN model accuracy across different parameter resolutions.  
 

Table I: Models and datasets considered for evaluation 
Model no. CONV layers FC layers Parameters Datasets 

1 2 2 60,074 Sign MNIST 
2 4 2 890,410 CIFAR10 
3 7 2 3,204,080 STL10 
4 8 4 38,951,745 Omniglot 

 

Table II: Parameters considered for analyses of photonic accelerators 
Devices Latency Power 

EO Tuning [20]  20 ns 4 μW/nm 
TO Tuning [17] 4 μs 27.5 mW/FSR 

VCSEL [32] 10 ns 0.66 mW 
TIA [33] 0.15 ns 7.2 mW 

Photodetector [34] 5.8 ps 2.8 mW 
 

We compared CrossLight with the DEAP-CNN [11] and Holylight 
[12] photonic DNN accelerators from prior work. Table II shows the 
optoelectronic parameters considered for this simulation-based analysis. 
We considered photonic signal losses due to various factors: signal 
propagation (1 dB/cm [6]), splitter loss (0.13 dB [27]), combiner loss (0.9 
dB [28]), MR through loss (0.02 dB [29]), MR modulation loss (0.72 dB 
[30]), microdisk loss (1.22 dB [31]), EO tuning loss (6 dB/cm [20]), and 
TO tuning loss (1 dB/cm [17]). We also considered the 1-to-56-Gb/s 
ADC/DAC-based transceivers from recent work [37]. To calculate laser 
power consumption, we use the following laser power model: 

 

    ௟ܲ௔௦௘௥ − ܵௗ௘௧௘௖௧௢௥ ≥ ௣ܲ௛௢௧௢_௟௢௦௦ + 10 × logଵ଴ ఒܰ                        (7) 

where ௟ܲ௔௦௘௥  is laser power in dBm, ܵௗ௘௧௘௖௧௢௥ is the PD sensitivity in 
dBm, and ௣ܲ௛௢௧௢_௟௢௦௦ is the total photonic loss encountered by the optical 
signal, due to all of the factors discussed above. 



B.  Results: CrossLight resolution analysis 
We first present an analysis of the resolution that can be achieved 

with CrossLight. We consider how the optical signals from MRs impact 
each other due to their spectral proximity, also known as inter-channel 
crosstalk. For this, we use the equations from [35]: 

߮(݅, ݆) =  ఋమ

൫ఒ೔ିఒೕ൯మାఋమ
                                  (8) 

In (8), ߮(݅, ݆) describes the noise content from the jth MR present in 
the signal from the ith MR. As the noise content increases, the resolution 
achievable with CrossLight will decrease. Also, (ߣ௜ −  ௝) is theߣ
difference between the resonant wavelengths of ith MR and jth MR, while 
 denotes the 3dB bandwidth of the MRs, with Q being the (λi/2Q =) ߜ
quality factor (Q-factor) of the MR being considered. The noise power 
component can thus be calculated as: 

௡ܲ௢௜௦௘ = ∑ ߮(݅, ݆) ௜ܲ௡
௡ିଵ
௜ [݅]                                      (9)   

For unit input power intensity, resolution can then be computed as:  
݊݋݅ݐݑ݈݋ݏܴ݁ =  ଵ

௠௔௫|௉೙೚೔ೞ೐|
                             (10)               

From this analysis, we found that with the FSR value of 18 nm and 
the Q value of ~8000 in our optimized MR designs, and the wavelength 
reuse strategy in CrossLight, which allows us to have large (λi – λj) values 
(>1 nm), our MR banks will be able to achieve a resolution of 16 bits for 
up to 15 MRs per bank (Section IV.C.2). This is much higher than the 
resolution achievable by many photonic accelerators. For instance, 
DEAP-CNN can only achieve a resolution of 4 bits, whereas Holylight 
can only achieve a 2-bit resolution per microdisk (they however combine 
8 microdisks to achieve an overall 16-bit resolution). Higher resolution 
ensures better accuracy in inference, which can be critical in some 
applications. Fig. 5 shows the impact of varying the resolution across the 
weights and activations from 1 bit to 16 bits (we used quantization-aware 
training to maximize accuracy), for the four DNN models considered 
(Table I). It can be observed that model inference accuracy is sensitive to 
the resolution of weight and activation parameters. Models such as the 
one for STL10 are particularly sensitive to the resolution. Thus, the high 
resolution afforded by CrossLight can allow achieving higher accuracies 
than other photonic DNN accelerators, such as DEAP-CNN. 

 

 
 

Fig. 5: Inference accuracy of the four DNN models considered, across quantization 
(resolution) range from 1 bit to 16 bits (for both weights and activations). 

 

C.  Results: CrossLight sensitivity analysis 
We performed a sensitivity analysis by varying the number of VDP 

units in the CONV layer accelerator (n) and FC layer accelerator (m), 
along with the complexity of the VDP units (N and K, respectively).  
Fig. 6 shows the frames per second (FPS; a measure of inference 
performance) vs. energy per bit (EPB) vs. area of various configurations 
of CrossLight. We selected the best configuration as the one that had the 
highest value of FPS/EPB. In terms of (N, K, n, m), the values of the four 
parameters for this configuration are (20, 150, 100, 60). This 
configuration also ended up being the one with the highest FPS value, but 
had a higher area overhead than other configurations. Nonetheless, this 
area is comparable to that of other photonic accelerators. We used this 
configuration for comparisons with prior work, as discussed next.  

 
 

Fig. 6: Scatterplot of average FPS vs. average EPB vs. area of various CrossLight 
configurations. The configuration with highest FPS/EPB (and FPS) is highlighted. 
 
D.  Results: Comparison with state-of-the-art accelerators 

We compared our CrossLight accelerator against two well-known 
photonic accelerators: DEAP-CNN and Holylight, within a reasonable 
area constraint for all accelerators (~16-25 mm2). We present results for 
four variants of the CrossLight architecture: 1) Cross_base utilizes 
conventional MR designs (without FPV resilience) and traditional TO 
tuning; 2) Cross_opt utilizes the optimized MR designs from Section 
IV.A, and traditional TO tuning; 3) Cross_base_TED utilizes the 
conventional MR designs with the hybrid TED-based tuning approach 
from Section IV.B; and 4) Cross_opt_TED utilizes the optimized MR 
designs and the hybrid TED-based tuning approach.  

 

 
Fig. 7: Power consumption comparison among variants of CrossLight vs. photonic 
accelerators (DEAP-CNN, Holylight), and electronic accelerator platforms (P100, 
Xeon Platinum 9282, Threadripper 3970x, DaDianNao, EdgeTPU, Null Hop) 

 
Fig. 7 shows the power consumption comparison across the four 

CrossLight variants and the two photonic accelerators from prior work. 
We also include comparison numbers for electronic platforms: three deep 
learning accelerators (DaDianNao, Null Hop, and EdgeTPU), a GPU 
(Nvidia Tesla P100), and CPUs (Intel Xeon Platinum 9282 denoted as 
IXP9282, and AMD Threadripper 3970x denoted as AMD-TR) [36].  The 
difference in power values between the CrossLight variants arises due to 
the optimization approaches adopted in each of the variant. The variants 
which considered conventional MR design instead of the optimized 
designs have larger power consumption for compensating for FPV. This 
value becomes non-trivial as the number of MRs increase, and thus 
having reduced tuning power requirement per MR (in Cross_opt and 
Cross_opt_TED) becomes a significant advantage. Using the TED based 
hybrid tuning approach provides further significant power benefits for 
Cross_opt_TED over Cross_opt, which uses conventional TO tuning. 
Cross_opt_TED can be seen to have lower power consumption than both 
photonic accelerators, as well as the CPU and GPU platforms, although 
this power is higher than that of the edge/mobile electronic accelerators.  

 

 
Fig. 8: Comparison of EPB values of the photonic DNN accelerators 

 
Fig. 8 shows a comparison of energy-per-bit (EPB) across all of the 

photonic accelerators, for the four DNN models. On average, our best 
CrossLight configuration (Cross_opt_TED) has 1544× and 9.5× lower 



EPB compared to DEAP-CNN and Holylight, respectively. The reason 
for CrossLight’s lower EPB is because we comprehensively took into 
consideration various losses and crosstalk that a photonic DNN 
accelerator would experience, and put in place novel approaches at the 
device, circuit, and architecture layers to counteract their impact in 
CrossLight. The utilization of TED-based thermal crosstalk management 
allows us to have MRs placed much closer together, which in turn reduces 
propagation losses. In addition, CrossLight considers a combination of 
TO and EO tuning which enables the reduction of power and EPB as well. 
The use of EO tuning in our hybrid tuning approach also provides the 
advantage of lower latencies, which is apparent in the EPB values. 

Table III summarizes the average values of EPB (in pJ/bit) and 
performance-per-watt (in kiloFPS/Watt) of the photonic accelerators as 
well as the electronic accelerators considered in this work. It can be 
observed that the best CrossLight configuration (Cross_opt_TED) 
achieves significantly lower EPB and higher performance-per-watt 
values than all of the accelerators considered. Specifically, against 
Holylight, which is the best out of the two photonic DNN accelerators 
considered, CrossLight achieves 9.5× lower energy-per-bit and 15.9× 
higher performance-per-watt. Our work demonstrates the effectiveness 
of cross-layer design of deep learning accelerators with the emerging 
silicon photonics technology. With the growing maturity of silicon 
photonic device fabrication in CMOS-compatible processes, it is 
expected that the energy costs of device tuning, losses, and laser power 
overheads will go further down, making an even stronger case for 
considering optical-domain accelerators for deep learning inference.  

 
Table III: Average EPB and kiloFPS/Watt values across accelerators 
 

Accelerator  Avg. EPB (pJ/bit) Avg. kiloFPS/watt 
P100 971.31 24.9 

IXP 9282 5099.68 2.39 
AMD-TR 5831.18 2.09 

DaDianNao 58.33 0.65 
Edge TPU 697.37 17.53 
Null Hop 2727.43 4.48 

DEAP_CNN 44453.88 0.07 
Holylight 274.13 3.3 

Cross_base 142.35 10.78 
Cross_base_TED 92.64 16.54 

Cross_opt 75.58 20.25 
Cross_opt_TED 28.78 52.59 

 

VI. CONCLUSION 
In this paper, we presented a novel cross-layer optimized photonic 

neural network accelerator called CrossLight. Utilizing silicon photonic 
device-level fabrication-driven optimizations along with circuit-level and 
architecture-level optimizations, we demonstrated 9.5× lower energy-
per-bit and 15.9× higher performance-per-watt compared to state-of-the-
art photonic DNN accelerators. CrossLight also shows improvements in 
these metrics over several CPU, GPU, and custom electronic accelerator 
platforms considered in our analysis. CrossLight shows the promise of 
cross-layer optimization strategies in countering various challenges such 
as crosstalk, fabrication-process variations, high laser power, and 
excessive tuning power. The results presented in this paper demonstrate 
the promise of photonic DNN accelerators in addressing the need for 
energy-efficient and high performance-per-watt DNN acceleration. 
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