
Submitted to arXiv

SeMPE: Secure Multi Path Execution Architecture
for Removing Conditional Branch Side Channels

Andrea Mondelli∗, Paul Gazzillo† and Yan Solihin‡
Department of Computer Science

University of Central Florida
Orlando, FL

∗mondelli@knights.ucf.edu, †paul.gazzillo@ucf.edu, ‡yan.solihin@ucf.edu

Abstract—One of the most prevalent source of side chan-
nel vulnerabilities is the secret-dependent behavior of condi-
tional branches (SDBCB). The state-of-the-art solution relies on
Constant-Time Expressions, which require high programming
effort and incur high performance overheads. In this paper, we
propose SeMPE, an approach that relies on architecture support
to eliminate SDBCB without requiring much programming
effort while incurring low performance overheads. The key idea
is that when a secret-dependent branch is encountered, the
SeMPE microarchitecture fetches, executes, and commits both
paths of the branch, preventing the adversary from inferring
secret values from the branching behavior of the program. To
enable that, SeMPE relies on an architecture that is capable
of safely executing both branch paths sequentially. Through
microbenchmarks and an evaluation of a real-world library, we
show that SeMPE incurs near ideal execution time overheads,
which is the sum of the execution time of all branch paths of
secret-dependent branches. SeMPE outperforms code generated
by FaCT, a constant-time expression language, by up to a factor
of 18×.

I. INTRODUCTION

As more computation is performed in the cloud, secure and
private computation becomes more and more critical. Sharing
of hardware resources in the cloud is crucial to keeping their
utilization rate high, but it opens the way for side channel
vulnerabilities where an application may leak secret data
through the usage patterns it exhibits on the shared hardware.
Applications that share a hardware resource can then observe
the resource usage pattern to infer secrets.

An important and prevalent source of side channels is
the the secret-dependent behavior of conditional branches
(SDBCB). Code such as if (secret) {if-path} else {else-path}
reveals information to the attacker through secret-dependent
differences in the performance characteristics of the two paths
resulting from the conditional. For instance, the leak is a
timing channel when two paths differ in execution time, a
cache access channel if the paths differ in cache access
counts or occurrences, a memory access pattern channel if the
memory accesses occur to different addresses in the two paths,
and a branch predictor channel when the branch predictor
state captures the past outcomes of the branch. Rather than
designing an architecture support to close each different side
channel, in this paper we propose an architecture that removes
a sources of these side channels.

Figure 1 is classic example of a side-channel attack, the
modular exponentiation routine from RSA public-key cryp-
tography. The secrets are the bits of the key (e), tested on
line 4 (ei = 1). The attacker can indirectly infer the value
of ei by observing the time it takes to execute the operation.
Closing secret-dependent conditional branches as a source of
side channels is critical and challenging: the routines have to
be carefully rewritten manually to eliminate secret-dependent
conditionals [1]–[3], [5], [6], [9], [41].

1: for i = n− 1 to 0 do
2: r ← square(r)
3: r ← modulo(r,m)
4: if ei = 1 then
5: r ← multiply(r, b)
6: r ← modulo(r,m)
7: end if
8: end for

Fig. 1: Modular exponentiation in RSA with ei as secret.

The large human resources involved in manually rewriting
code means only the most sensitive software are protected,
leaving secret user data in general-purpose applications unpro-
tected. Currently, there are several approaches to eliminating
the secret-dependent behavior of conditional branches (SD-
BCB). A popular software technique, used in many crypto-
graphic libraries, is to use Constant Time Expression (CTE).
CTE eliminates conditional statements by manually converting
the conditions into arithmetic expressions used in the branch
paths.

Figure 2a shows an example of a nested if-else state-
ment that operates on secret user data A, B, and C. Figure 2b
is the same program after a CTE transformation. Each secret
condition (A, B, and C) is converted into a binary value (bA,
bB, and bC). Each statement is converted into an expression
that includes the logical combination of the binaries that
produces the statement. For example, in line 3, j is assigned
the value of j + 1 when bA and bB are true, bA is true and
bB is false, or when bA is false and bB is true. Otherwise,
when both bA and bB are false, j is assigned its old value,
i.e., it is not mutated.

Other approaches have also been proposed. Memory Trace
Obliviousness (MTO) [31] and GhostRider [30] transform

1

ar
X

iv
:2

00
6.

16
34

5v
2

 [
cs

.C
R

]
 2

9
Ju

l 2
02

0

1: @secret A,B,C
2: if A ∨B then
3: j ← j + 1
4: else
5: if C then
6: k ← k + 1
7: else
8: k ← k − 1
9: end if

10: end if

(a)

1: @secret A, bA,B, bB,C, bC
2: bA← (bool)A
3: bB ← (bool)B
4: j ← (bA× bB + bA
5: ×(1− bB) + (1− bA)× bB)
6: ×(j+1)+(1− bA)× (1− bB)× j

7: bC ← (bool)C
8: k ← (1−bA)× (1−bB)×bC× (k+1)

9: k ← k + (1− bA)× (1− bB)
10: ×(1− bC)× (k − 1)

(b)

Fig. 2: Examples: (a) code with conditional statements, and
(b) its constant-time version. A, B, and C are secrets.

code in order to equalize memory accesses in both branch
paths and obfuscates their addresses using ORAM [22], [23],
[38]. Instead of equalizing the execution of both branch
paths, Raccoon [42], a software approach built on top of
transactional memory hardware, executes both branch paths.
Raccoon transforms code so that both branch paths are ex-
ecuted, converts every load and store to transactions (using
transactional memory support), and relies on a conditional
move instructions (CMOV) to ensure that true-path values are
written to memory.

We introduce Secure Multi-Path Execution (SeMPE), an
approach that extends existing microarchitecture to eliminate
SDBCB. Table I compares the three prior approaches with
SeMPE across four categories important for protecting pri-
vate user data in the cloud:: (1) programming complexity to
encourage its use, (2) low performance overhead for real-
world scalability, (3) architectural simplicity to ease adoption,
and (4) backwards compatibility for binary compatibility with
non-SeMPE architectures. SeMPE provides the best tradeoffs
between security and performance, while remaining backwards
compatible and simple to program.

Like Raccoon, SeMPE works by executing both paths of
branch instructions to eliminate the secret-dependent behav-
ior, thereby preventing an adversary from inferring secret
values. Unlike Raccoon, however, our approach uses new
hardware extensions that require minimal compiler support.
SeMPE repurposes and builds on dual-path execution, orig-
inally proposed for improving the performance of hard-to-
predict branches by speculatively executing both paths of
a branch. Similarly, SeMPE fetches and executes all paths
of a secret conditional branch. But, unlike prior dual-path
execution architectures, SeMPE ensures that the execution
of both paths is indistinguishable from running either path
alone, thereby preventing a side channel leak of secret values.
Achieving this security property requires major differences
in the architectural design compared to traditional dual-path
execution: an indistinguishable memory access pattern, an
execution order independent of the branch condition, and the
commit of all instructions of both paths.

SeMPE introduces a new branching instruction, the Secure
Jump (sJMP). When executed, the sJMP instruction pushes the

Aspects CTE GhostRider Raccoon SeMPE

Approach elim. cond.
branch

equalize
path

execute
both paths

execute
both paths

Technique SW HW/SW SW HW/SW
Programming
complexity High Low Low Low

Reported
Overheads 187.3× 1, 987× 452× 10.6×

Simple
architecture Yes No Yes Yes

Backward
compatible? Yes No No Yes

TABLE I: Comparing approaches to eliminate SDBCB: con-
stant time expression (CTE), GhostRider [30], [31], Rac-
coon [42], and our SeMPE Architecture.

destination address into a hardware Last-In-First-Out (LIFO)
structure. When all the subsequent instructions have been
committed, the pushed address is popped and used to set the
Next Program Counter (nextPC), automatically executing the
other branch of a secret-dependent conditional.

Rather than introducing a new opcode to use sJMP, the
programmer or compiler prefixes a normal branch instruction
with a special byte at the beginning and end of the branch. For
optimization purposes, a programmer can omit the byte to use
a non-secure branch for code not working with secret values.
This design simplifies conversion of both hand-written and
automatically generated assembly code. In contrast, writing a
CTE algorithm has been cited as notoriously difficult [1]–[3],
[5], [6], [9], [11], [12], [15], [17], [21], [41] and carries hefty
performance overheads. While domain specific languages have
been proposed to reduce the programming effort [18], [19],
such solutions require rewriting software in a new language.

The byte chosen for sJMP is ignored on non-SeMPE
architectures, enabling backwards compatibility of SeMPE
assembly code, therefore SeMPE code can run on existing
architectures without modification, albeit without the same
security guarantees. This is in contrast with Raccoon which
requires processors that have hardware transactional memory
support. For a feasible security solution to have widespread
adoption in commercial systems, the performance overhead
should be minimal. Both MTO and Raccoon report overheads
of 195× and 22×, respectively, on average, and 1, 987× and
452× in the worst case [42]. While that direct comparisons
between these overheads with each other and with SeMPE is
not feasible due to differences in benchmarks and machine
assumptions, our evaluation of SeMPE found an overhead of
only 10.6× even in the case of conditionals nested ten deep
and on a real-world case of a side-channel vulnerability.

We evaluated the performance of our proposed architecture
with both a set of microbenchmarks and a real-world software
library for image conversion called libjpeg [7] that contains
a side channel leak that reveals an image visual details
during decompression. The use of microbenchmarks allows for
targeted stress testing of SeMPE performance by controlling
the number and nesting depth of multiple secret-dependent
branches. The libjpeg evaluation demonstrates SeMPE’s ability

2

to remove a side channel using a variety of image types
of sizes. Our evaluation shows that the execution time with
SeMPE is near ideal: execution time increases linearly with
the number of secret branch paths, independent of the size
of the workload executed. When compared against CTE code
derived using the state of the art CTE language and compiler
(FaCT), SeMPE outperforms CTE substantially, by a factor of
1.6− 18×.

The rest of the paper is organized as following. Section II
covers background and related work. Section III discusses the
threat model. Section IV discusses the proposed architecture
design, and Section V limitations and compiler support. Sec-
tion VI and Section VII discuss the evaluation methodology
and evaluation results. Finally, Section VIII concludes the
paper.

II. BACKGROUND AND RELATED WORK

Several techniques have been proposed for eliminating the
secret-dependent behavior of conditional branches, including
constant time expressions, memory trace obliviousness, and
hardware transactional memory. SeMPE, however, draws in-
spiration from multi path execution in order to provide high
performance while providing security guarantees.

A. Techniques to Remove SDBCB

a) Constant Time Expression: Manual programming ef-
fort for Constant Time Expression (CTE) is currently standard
practice technique for eliminating SDBCB. While popular, it
has two substantial drawbacks that limit its use to simple code
structures, such as in some crypto libraries. First, it involves
a large manual effort, because it prohibits programmers from
using conditional statements that use secret data. Moreover,
programmers need to inspect the resulting assembly after
each compilation to ensure that the compiler has not added
conditional branches. Compilers are known to have inserted
conditional branches even when the source code contains
know conditional constructs [18], [19]. Writing a constant-time
algorithm is notoriously difficult [11], [17], [21], [41]. Part of
the reason is that the complexity of CTE code increases super-
linearly with the nesting depth of conditional branches. In
response, a domain specific language, Flexible Constant-Time
Programming Language (FaCT) [18], [19], has been proposed
to simplify CTE programming. While simpler to program,
substantial restrictions exist at least in the latest version, e.g. no
manual memory allocation, no function pointers, no function
calls, no floating point, etc. can be used. FaCT is a new
programming language, making it difficult to use for existing
production software. Finally, performance overheads incurred
by CTE are very high. In Figure 2a, the original code contains
three additions, but the constant-time version in Figure 2b
contains 28 additions or multiplications, nearly an order of
magnitude higher. Since CTE is standard practice today, we
compare SeMPE against CTE.

b) Memory Trace Obliviousness: Memory Trace Obliv-
iousness [31] and the compiler and architecture for it
(GhostRider [30]) transform code in order to balance memory

accesses in both branch paths and obfuscate their addresses
using ORAM. For example, if in the if path there is an array
access, then a new array access is added to the else path.
ORAM is used to randomize memory addresses so that the
two array accesses are indistinguishable from the point of view
of the address stream.

c) Raccoon: Raccoon [42] is a software approach that
uses hardware transactional memory to executes both branches
of a secret-dependent conditional. Raccoon works by modify-
ing code so that both branch paths are executed, converting
every load and store to a transaction, and relying on a CMOV
instruction to ensure that the only true-path store value is
written to memory. While also executing both branch paths,
SeMPE does so directly through new hardware mechanisms
without depending on code transformation to transactions
and, moreover, does not incur the overhead of transactions
wrapping every load and store.

B. Multi Path Execution

Dual/Multi Path Execution is a class of microarchitecture
techniques previously proposed to reduce branch mispredic-
tion penalties by executing instructions from all paths of
a conditional branch instruction [13], [25], [48]. Once the
branch outcome is discovered, the false path instructions are be
squashed while the true path instructions are allowed to com-
mit. The Dual Path Instruction Processing (DPIP) [13] allows
false-path instructions to be fetched, decoded, renamed, but
not executed, while predicted-path instructions are executed.
The Selective Dual Path Execution (SDPE) [25] selectively
forks a second path when a low confidence branch prediction
is encountered. Threaded Multi-Path Execution (TME) [48]
allows the alternative path instructions to execute in a separate
thread context of an Simultaneous Multi-threading (SMT)
processor.

While the goal of previous multi-path execution architec-
tures was to reduce the branch misprediction penalty for hard
to predict branches, the goal of SeMPE is to eliminate the the
secret-dependent behavior of conditional branches (SDBCB).
Consequently, while sharing some similarities, SeMPE is
fundamentally different from traditional multipath execution
in several ways. First, the execution of instructions from
both branch paths must be indistiguishable to the observer
in SeMPE. That means that instructions from both paths must
commit, instead of having one of them squashed. Otherwise,
the multi path execution may still leak a secret value. Second,
traditional multi path execution only handles one conditional
branch, stalling at nested conditionals. In contrast, SeMPE
must be able to handle nested conditional branches because a
secure region may cover nested conditional branches that are
both secret and non-secret. Finally, the scope of traditional
multipath execution is limited to the instruction window of
the processor. In contrast, SeMPE must handle an instruction
count within secure conditional branch paths that often ex-
ceeds the processor instruction window.

3

III. THREAT MODEL

We assume a threat model that is realistic for cloud com-
puting where distinct applications share hardware. We assume
that physical security is strong hence we do not protect
against physical side channels (such as power usage) or other
physical attacks. The victim and the attacker are assumed
to run as separate processes in the same or different virtual
machines that are scheduled to run on the same server, either
in different cores sharing a cache, or in the same core through
simultaneous multi-threading or time sharing.

We assume that the hypervisor and OS are trusted, and that
they correctly enforce address space isolation, so the attacker
cannot directly read secret data of the victim. We assume
the attacker can measure timing at a coarse granularity, but
has no access to hardware counters that track the victim’s
execution characteristics. The attacker can prime the cache
and branch predictor state through its own execution and can
infer the victim’s working set, i.e., addresses of past reads
and writes to memory, through a shared cache. The attacker
knows or can guess the code that the victim is running. We
do not focus on eliminating specific side channels. Instead,
we focus on eliminating a common source of various side
channels: SDBCB. We do not consider secret leaking through
general memory access pattern. If such leakage is present,
we assume techniques such as Oblivious RAM [22] are used
for protection, which are orthogonal to our work. We only
seek to protect memory access patterns that leak a secret as
a result of different conditional branch paths. We note that
SeMPE does not address Spectre/Meltdown-style attacks [28],
[29], because they do not involve leaks due to secret-dependent
branch behavior. Techniques for preventing Spectre/Meltdown
are orthogonal to SeMPE.

We rely on the same input program assumptions used by
Raccoon [42], i.e. (1) the program does not contain bugs
that will induce application crashes, (2) the program does
not exhibit undefined behavior, and (3) if multi-threaded, the
program is data-race free. Because the proposed architecture
executes all paths of a secure branch, an instruction in a false
path may incur an exception, such as due to operating on incor-
rect value (e.g. divide-by-zero). Such situations are normally
acceptable even in a bug-free program, if the programmer
assumed always-taken or always-not taken branch behavior
for a specific secret.

IV. SEMPE DESIGN

A. Foundation of Security

The foundation for security of SeMPE is that executing
both paths of a conditional branch that depends on secret is
necessary to hide the secret. Assume a conditional branch with
the following form, if (secret) P1 else P2 . Suppose that P1
and P2 exclusive, i.e. do not share common instructions, and
minimal, i.e. removing any instruction from P1 (or P2) changes
the live out values of P1 (P2). Also suppose that P1 and P2
are bug-free and do not incur any terminating exceptions. We
claim that:

T

BB1
sJMP

BB2
jmp

BB3
sJMP

BB4
jmp

BB5
jmp

BB6
jmp

BB7

T NT

NT NT

SecBlock SecBlock

Secure
Region

SecBlock

T

Fig. 3: Illustrating key concepts used in SeMPE: secure region,
secure block, and secure branches.

Claim. For the secret to be not inferrable from the execution
of P1 or P2, the minimum execution needed is all instructions
of P1 and all instructions of P2.

To support the claim, consider the cases below. If only one
of P1 or P2 is executed, secret is inferrable due to the behavior
reflecting only one of them. If both P1 and P2 are executed
entirely, secret cannot be inferred as execution behavior no
longer depends on secret. Now suppose that we execute both
P1 and P2 minus one instruction from P1. Since P1 is minimal,
the correctness of P1 is affected. If P1 is the correct path,
the execution of the code following the paths is affected and
the change is observable by the attacker. If P1 is the wrong
path, the execution of the code following the paths is not
affected, but the observer expects change in behavior. Hence,
no instructions can be removed from P1 and P2.

The important implication of the claim is that the execution
time for execution of both paths of a secret branch represents
the ideal overheads. If there are N -deep nested conditionals,
and each path incurs T time, the ideal execution time in theory
is 2N × T . Any secure execution must be evaluated against
that ideal.

B. Terminology

In order to be practical, SeMPE design must meet the
following criteria. First, the architecture modification to the
processor core must be simple (low complexity). Second, it
must be bidirectionally backward compatible: traditional code
must run correctly on the new architecture, and modified code
must run correctly on traditional architecture albeit without
security guarantees. Third, it must incur low programming ef-
fort and preferably code transformation should be automatable.
Finally, it needs to be fast; excessive overheads are unlikely
tolerable in production systems. To clarify the last point, the
execution time must be as close as possible to the ideal case
of the sum of execution time of all paths.

Before continuing, let us first discuss several terms. Suppose
we have a control flow graph shown in Figure 3, containing
seven basic blocks. The true branch outcomes and paths
are shown circled. Two basic blocks BB1 and BB3 contain
secret-dependent conditional branches, denoted as sJMP. For
convenience, we will refer them as “secret branches”. Other
basic blocks contain either non-secret conditional branches

4

or non-conditional branches, together denoted as jmp. All
instructions in the path of a secret branch are referred to
as SecureBlock (SecBlock). The figure shows both paths of
BB1’s sJMP as SecBlocks. In contrast, BB2’s branch is not
a secure branch hence BB4 and BB5 do not form SecBlocks.
SecBlock can be nested, for example, BB6 is a SecBlock
contained within the larger (BB3, BB6) SecBlock. The signif-
icance of SecBlock is that all instructions in SecBlock must
be executed. For example, in the figure, the execution must
cover BB1, BB2, BB5, BB3, BB6, and finally BB7. The only
basic block that does not need to be executed is BB4, because
it is not SecBlock. The encapsulating (i.e. outermost) code
starting from the secure branch to the joint point of its paths
is referred to as the secure region. For a secret branch with
two SecBlocks, we refer to the true path as valid block.

C. Expressing Secure Regions

a) Instruction Set support: SeMPE needs to be able to
identify a secure branch. To ensure backward compatibility, we
add prefix to existing branch instructions instead of introduc-
ing entirely new branch instructions. For this discussion, we
will assume x86 64 Instruction Set Architecture (ISA) [20],
but a similar approach can be applied to other ISAs. The
x86 64 is chosen because it was the most challenging to add
new extensions and instructions, due to the variety and the
large number of instructions [10].

To support the SeMPE, the ISA is extended by adding a
new instruction (eosJMP), and a unique prefix for branch in-
structions, called Secure Execution Prefix (SecPrefix). Branch
instructions are coded as sJMP using the SecPrefix. We use
byte 0x2e, which is normally interpreted as hints of static
branch prediction to the compiler.

The second modification is the addition of a new instruction
that will be inserted as the first instruction in common between
the two branch paths of the secure jump. The compiler inserts
this instruction displacing the instruction that used to be
the joint point of both branch paths. We refer to the new
instruction as End-of-SecureJump (eosJMP). The instruction
works as a backward jump to return the execution to the
branch and the other branch path. We implement it using bytes
0x2e,0x90. This instruction will be interpreted as a NOP in
regular processors.

By using prefix and NOP, the binaries that are backward
compatible with regular processors, keeping the execution
overhead-free when running on a legacy architecture. The
instructions added are interpreted as secure branches only by
the microprocessor described in this paper.

D. Challenges to Multi-Path Execution

Multi-path execution introduces challenges in designing the
pipeline. Consider a code example in Figure 4 with four
basic blocks with several instructions in each basic block.
Suppose that a secure branch’s true path is not taken. Note
that we have read after write (RAW) dependence between
instructions B and F (B →RAW F), and between G and H
(G→RAW H). If BB2 is also executed, phantom dependences

T

 A : ST(X)
 B : R1 …

sJMP
 C : R1 …
 D : R2 …

 E : ST(X)

 F : … R1
 G : R2 …

jmp

eosJMP
 H : … R2
 I : LD(X)

NT

BB1

BB2 BB3

BB4

Fig. 4: Basic Blocks with Phantom Dependencies. Secure
branch’s true path is not taken (NT).

may be introduced. An execution sequence of BB1, BB2, BB3,
and BB4 will introduce the following phantom dependences:
B →WAW C, C →RAW F , and D →WAW G. Likewise,
if the execution sequence is BB1, BB3, BB2, and BB4,
phantom dependences are also introduced. The dependences
obviously affect the correctness of the execution. Phantom
memory dependences are also possible, with A →MEM I
or E →MEM I being phantom.

Unlike past multi-path architectures, SeMPE’s goal is not
lowering branch misprediction penalty. A secret branch must
execute and commit both branch paths regardless of the branch
predictor. While instructions from both paths can be executed
in parallel, it increase architecture complexity significantly, in
particular the outcome of register renaming may be unpre-
dictable due to phantom register dependences, and restoring
state becomes complicated. To keep the hardware support
simple, we choose to execute the paths sequentially: a secret
branch is evaluated twice, as true for the first SecBlock and
as false for the second SecBlock.

Phantom dependences are still introduced with sequen-
tial execution of SecBlocks. When a false-path SecBlock
is executed, the architecture state such as the rename table
and register file will be changed. Thus, when eosJMP is
encountered and the execution needs to go to the alternate
path, the architecture state prior to the SecBlock needs to be
restored. Similarly, the architecture state corresponding to the
true SecBlock must be in place (or restored) prior to exiting
the secure region. Section IV-F discusses our approach to this
problem.

A similar phenomena exists for memory dependences, ex-
cept that memory values are not part of the micro-architectural
state, so saving and restoring memory values is out of the
scope of SeMPE’s capabilities. We assume that programs
are written or compiled with memory dependences already
disambiguated.

E. SeMPE Microarchitecture

In this section, we describe the architecture to enable
secure execution of both branch paths of a secret branch. In
traditional architectures, when a conditional branch instruction
is encountered, the nextPC is set to either the following the
instruction (if the branch is not taken) or the target branch
address (if the branch is taken). The branch predictor outcome
sets the nextPC based on the predicted outcome.

5

In SeMPE, sJMP must execute both paths, hence the branch
predictor does not need to generate prediction. Hence, the
nextPC is set to the following instruction address, as if the
branch condition is not verified. The not-taken SecBlock
is executed entirely, while the target address of the sJMP
instruction is calculated. Once the target address is calculated,
it will be saved and used by the eosJMP instruction to set
up the nextPC, which corresponds to the first instruction in
the second SecBlock. Not-taken path is always executed first
hence no secret-dependent behavior can be observed by the
attacker, including order of memory accesses and behavior of
prefetcher. We also assume the attacker does not alter the code.

The target address is managed in a LIFO hardware structure,
called a Jump-Back Table (jbTable), shown in Figure 5. The
jbTable consists of multiple entries to support nested secret
branches, with each entry containing the nextPC address, the
branch outcome (T/NT), a valid bit (Valid), and a Jump-Back
(jb) bit. When a sJMP is issued (Step 1©), a new entry in
the jbTable is created, with the Valid and jb reset. When the
sJMP is committed, the calculated target address is written
to the jbTable, and the Valid bit is set (Step 2©). A sJMP
instruction can only be issued if the prior jbTable entry has
its Valid bit set, otherwise it must stall from issuing. In this
way, the jbTable will be faithful to LIFO to ensure that the
the correct Valid bit is set for the correct sJMP.

At the end of the first SecBlock, the eosJMP is executed
and committed (Step 3©). At that time, the most recent jbTable
entry is looked up. If the jb is not set (when the eosJMP is
encountered for the first time), the address field of the most
recent entry is copied to the nextPC (Step 4©), and the jb is
set (Step 5©). If, instead, the jb is already set, this indicates
that the second SecBlock of the sJMP has been executed and
the corresponding entry of the jbTable can be removed.

The existing issue queue presents a valid bit for each source
operand, called V1 and V2 [24]. In the simplified issue queue
entry in Figure 5, assuming two source operands, the V1
and V2 bits are set when the corresponding operand are
ready, or ignored when the operand is not used. In existing
microarchitectures, the V2 bit remains unset for conditional
branches and not used. SeMPE set it when the Valid bit of the
jbTable is set. A nested sJMP can be issued (Step 6©) only if
the jbTable is empty or the last sJMP in the LIFO is executed,
i.e., the Valid bit is set and copied in V2. We don’t need to
modify the existing issue queue.

The use of a LIFO structure allows the handling of nested
sJMP with low hardware complexity, without the need of a
more complex random-access structures, and without adding
address comparison logic. When running a SecBlock, we
may encounter non-secret branch instructions. In contrast to
sJMP instructions, they will consult (and update) the branch
predictor.

The sJMP does not need to use the branch predictor, because
we know in advance we will execute both path despite the
value of the secret. If the pipeline is flushed due to a branch
misprediction, the flushing works as follows. For each sJMP
squashed in the Reorder Buffer (ROB), from the newest to

……

sJMP dest address Jump-Back Valid

… …
sJMP dest address Jump-Back Valid

sJMP dest address Jump-Back Valid{Number of
nested
sJMP

supported

(not SeMPE)
next addr

NextPC

eosJMP committed

LIFO

issue queue

Select Logic

V1 ctrl info V2

sJMP executed
(destination address)

nested sJMP

sJMP committed

6

1

2

3 5
4

T/NT

T/NT

T/NT

Fig. 5: Micro-architecture support for SeMPE. The branch
outcome is saved in the T/NT bit field, where T is Taken
and NT is NotTaken

the oldest, the most recent jbTable entry is deleted. The ROB
will contain, at any time, the sJMP instructions representing
SecBlock whose Program Counter (PC) has not “jumped back”
yet, i.e. jb is still invalid. Since the address contained in the
jbTable will be used as nextPC only when the eosJMP is
committed the first time, we can guarantee the correctness
after the pipeline flush.

Since each entry of the table deals with one sJMP instruction
in a secure region, the number of jbTable entries is equal to the
maximum number of nested sJMP the architecture can handle.

The total size of jbTable is small. Each jbTable entry equals
to the size of a register (64 bits) + two bits (jb and Valid
bits). Even with 30 entries, jbTable has less than 256 bytes.
We believe a few dozen entries should be sufficient, because
outside of recursion, deeply nested secure branches are rare.
Our investigation reveals that the degree of sJMP nesting on
a cryptographic algorithm is likely much less than a dozen.
Dealing with secret user data may require a higher nesting
degree, but unlikely to be beyond 30 in most situations.

Furthermore, the compiler can reduce the nesting degree by
collapsing multiple conditionals into a single one with larger
expression. For example, if (A) {if (B) ...} can be converted
into if (A and B) {...}. Recursion may be either rejected at
compile time, or made to trigger exception at run time. It is
up to the exception handler whether to stop program execution,
or to continue execution of the branch as non-secure. We note
that such restrictions are also common in CTE.

F. Dealing with Phantom Register Dependences

Phantom register dependences are false register depen-
dences that occur between both paths of a secure branch.
To manage them, we consider several architecture solutions.
The first solution considered was the Lazy Register Spill
(LRS). LRS uses a cache-like rename table with tags, similar
to [36]. The tag identifies the SecBlock, allowing to spill only
modified registers. Unfortunately, LRS complicates the rename
table and affects instructions not belonging to SecBlock. Our
goal is to keep hardware changes low without impacting the
performance of the rest of the program. The second technique
we considered was the use of a Physical Register Snapshot

6

N
T-

Pa
th

T-
Pa

th

T-Modified Vector
NT-Modified Vector

Architectural Registers after
the NT-path execution

Architectural Registers
before entering the

SecBlock
0
1
2
…
N

N+1

SPM
 offset

ScratchPad
Memory

…

NT-Path Register save

SPM Latency SPM LatencySPM Latency

Pipeline drain 1

Calculating nextPC

Initial Register save

Pipeline drain 2 Pipeline drain 3

Register Restore

IF: Instruction Fetch
DE: Decode
RD: Rename&Dispatch
IS: Issue
Ex: Execute
Ret: Retire

1

2

3

4

Fig. 6: Example of SeMPE pipeline. Before entering the SecBlock and after the NT-Path, the pipeline is drained and the
instruction rename is stopped. The pipeline is also drained at the end of the T-Path. The address of the first T-Path instruction
is available after the sJMP execution 1©. The SPM snapshots contain the registers saved before entering the SecBlock 2© and
after the NT-Path 3©. The two bit-vector, updated during the execution, are used to restore the correct register value at the end
of both paths 4©. The address of the first instruction in the T-Path is available after the sJMP execution.

(PhyRS) mechanism to restore the contents of the register file
and the Register Alias Table (RAT) at the end of both paths,
depending on the secret.

The implementation needs two snapshots per nested
SecBlock, containing the register file and the Register Alias
Table (RAT). The first snapshot is taken prior to the execution
of a SecBlock, right after the sJMP is committed. The second
snapshot is taken at the end of the execution of the not-taken
path, when the eosJMP is committed for the first time. At
the end of the SecBlock, the register file and the RAT are
rebuilt using the correct snapshot, according to the branch
outcome. For saving snapshots, we considered the combined
of scratchpad memory and register spilling. The Scratchpad
Memory (SPM) was used as a temporary buffer to mitigate
register spilling before any nested SecBlock.

This solution solves the problem of false register depen-
dences between paths but introduced an excessive performance
overhead during the memory spilling of the content of the
SPM. In modern architecture, it is common to have hundreds
of physical registers [8]. Saving all physical registers and the
RAT [49] produce too much snapshot spilling to memory,
especially for deeply nested conditional branches.

Therefore, we choose a third design based on Architectural
Register Snapshot (ArchRS) mechanism instead. The main
difference is that only architectural registers are saved in
the Scratchpad Memory (SPM), the number of which is
much lower than the physical registers. Figure 6 shows the
composition of a SecBlock snapshot at nesting level N . The
nesting level is used as an offset to access the SPM during
saving and restore.

Along with the two architectural register states, one before
entering the SecBlock and another after the NT-Path execution,
the SPM contains two bit-vectors. Each vector contains many
bits to the number of architectural registers. The vectors track
the architectural register modified during the two paths, Taken
Path (T-Path) and NotTaken Path (NT-Path), and will be used

to restore the correct content of the architectural register at the
end of SecBlock. A pipeline drain is added at the beginning
of SecBlock. All the registers are saved when the sJMP is
committed, and only modified registers are saved when the first
eosJMP is committed. After the NT-Path the contents of the
registers are restored from SPM. After the T-Path, the content
of the architectural registers is updated with the correct value
according to the secret.

At the end of a SecBlock, the register restore phase takes
place. The registers modified in at least one of the two paths
are read from the SPM. Depending on the branch outcome
contained in the corresponding jbTable entry, the register
is overwritten with the correct value. Figure 6 shows the
sequence of executed instructions and when registers are saved
or restored. The order of execution is independent of the secret.
When the NT-Path is the true path, the value restored depends
by the bit-vectors. For register modified in the NT-Path, the
correct value comes from the NT-Path snapshot. For register
modified in the T-Path but not in the NT-Path, the correct
value is the one saved before entering the SecBlock. When
the T-Path is the true path, all the modified register values
are still read by the SPM but not used to restore the register
contents. Instead, the current value is overwritten by itself.
This behavior prevents the attacker from deducing the secret
with a timing attack [15], [17], [32], [39], [50].

The execution of secret blocks is never interleaved, so one
secret branch is always completely executed until the eosJMP,
which occurs just before the CMOV. The pipeline is drained
after each eosJMP. This pipeline drain allows that (1) the
instruction window does not contain instructions from both
paths at the same time, and (2) the instructions after the
SecBlock observe the correct state of memory and registers.

The ArchRS mechanism introduces a third pipeline drain
before entering the SecBlock, so that only the contents of valid
registers are saved without introducing an additional level of
complexity in the reconstruction of the RAT. This pipeline

7

drain is less expensive than a normal branch misprediction
because the instructions are still fetched and decoded correctly,
until their queues are full. Registers modified in at least one
of the two paths are always read by the SPM, even if not used
to restore the corresponding register value.

G. Security Analysis

SeMPE eliminates SDBCB through the execution of both
branch paths (SecBlocks) in an order not related to the secret.
The branch predictor channel, where the branch predictor state
captures the past outcomes of the branch, is eliminated since
there is no use of the predictor branch for sJMP. The compiler
needs to reject any SecBlocks that have a potential hardware
exception, e.g., a divide-by-zero error, removing any potential
leaks due to exceptions. The user can decide whether to risk
such code or not.

The combined use of Shadow Memory Locations (Shad-
owMemory) and CMOV hides the cache access to the attacker.
The attacker, therefore, is not able to leak secret through the
cache utilization analysis.

V. DISCUSSION AND LIMITATIONS

A. Phantom Memory Dependences

Executing both paths of a branch may cause the same
memory locations to be written or read, creating phantom
memory dependences, which are more difficult to address
because memory values are beyond the architecture state of
the pipeline. A store cannot be rolled back easily once it
has been committed. To obtain the effects of fully executing
and committing both paths of a secure branch, we considered
several solutions. First, we could design the cache to keep
versions of data from taken and not-taken paths and discard
one of them at the conclusion of secure branch execution.
However, keeping multiple versions of data in the cache
creates complication with addressing and cache coherence,
since one address may correspond to multiple data values.
Furthermore, the manner in which values are discarded in
the cache may cause a new side channel if not implemented
carefully.

To keep SeMPE simple, to deal with phantom memory
dependences, we duplicate any memory-allocated data modi-
fied in the SecBlocks for each secret branch, disambiguating
the memory and preventing conflicting reads and writes to
the same memory location by the false path. We refer to
the duplicated memory as ShadowMemory. At the joint point
(i.e. the postdominator block), a conditional move instruction
CMOV is used to copy one of the values to the original copy.
This completely avoids having to depend on a memory snap-
shot or use a memory state rollback. The approach has some
similarity with Raccoon [42], but with substantial differences:
(1) we apply this only to memory locations, as phantom
register dependences are handled differently (Section IV-F),
and (2) we do not use the transactional memory and transaction
buffers that Raccoon uses. As a result, SeMPE overheads
come only from the expansion of memory footprint due to

privatization, and the instruction execution overheads that
come from executing CMOVs.

B. Compiler Support for SeMPE

The benefits of SeMPE depend on correct usage of the ISA’s
two new instructions, SecureJump and End-of-SecureJump.
These instructions mark the beginning and end of secure
branches due to conditional branches on secret values. Such
usage can be automated in the compiler, however, using a com-
bination of information flow algorithms that track secrets and
existing control- and data-flow analyses available in modern
compiler frameworks, e.g., LLVM.

Using SeMPE correctly requires identifying the branches
of secret values. Automatic identification is possible by lever-
aging existing work on information flow analysis [27], [35],
[40], [43], [44], [47]. Information flow can be used to check
for leaks of secret values from a source, e.g., input from
a protected database, to a non-secret sink, e.g., an attacker-
accessible output channel. In the case of secret-dependent
branches, the sinks are all branch statements.

Once the compiler has identified which conditional branches
involve secrets, the compiler can identify which basic blocks of
the control-flow graph are the secure blocks. The secure blocks
are successors of blocks that have secret-dependent branches,
e.g., BB2, BB3, and BB6 from Figure 3. These secure blocks
can then be transformed automatically for use with SeMPE.
The compiler need only insert the secret-dependent branch
with an sJMP where it would normally insert a JMP, and insert
a eosJMP at the join point of the branch’s two paths. For
instance, in Figure 3, the end point for the sJMP in BB3 is the
beginning of BB7, the first point after finishing the execution
of any the resulting secret blocks. In a control-flow graph,
this point is the immediate postdominator of BB3, i.e., the
first block through which any path from BB3 must enter [34].

For a single secret-dependent branch, the eosJMP will end
up being the successor of all secret blocks due to a secret-
dependent branch. Conditional statements may have nested
conditionals, either secret or non-secret. BB3 in Figure 3 is
due to a secret branch nested inside of the branch resulting
in BB1. Each branch has its own set of secret blocks. For
each, the immediate postdominator indicates where the insert
the eosJMP, handling the effects of any nesting. In this case,
both BB3 and BB1’s postdominator is the same block, BB7.
While the postdominator need not be the same in all cases,
one eosJMP is needed per sJMP. In this case, when the
postdominator is the same, the compiler needs to insert both
End-of-SecureJumps (eosJMPs) at the beginning of BB7.

The ISA and its accompanying system software (assemblers,
linkers, etc), require very little change. Only two additional
instruction types are needed. The sJMP to indicate a jump
into a secure block and eosJMP to indicate the end of a secure
block. The sJMP instructions have the same semantics as JMP,
and are merely a signal to the hardware that both sides of the
branch should be executed. The eosJMP is equivalent to a NOP
and is a signal that the secure block is complete. The compiler

8

toolchain need only emit these mnemonics and assemble them
into the appropriate machine code.

A compiler can also help automate SeMPE’s requirement of
memory disambiguation in some cases. The simplest solution
for stack-allocated variables is to create additional stack frame
entries for each variable used in both branches an sJMP.
A conditional move (CMOV) can then be inserted to select
between the copies of the variable, as is done with hand-
written SeMPE code.

As with stack-allocated variables, phantom dependences can
occur between two secret blocks due to accesses to the same
heap location. Such dependences are more difficult to detect
at compile-time precisely and in general, in particular, for
complex heap structures and pointer arithmetic. There are
some solutions to handling phantom heap dependences that
could be employed to ensure correct usage of SeMPE, e.g.,
shape analysis [33], [37], but may be too imprecise for some
programs. In the worst-case, a library for intercepting memory
referencing could ensure disamguation at runtime, albeit at the
expense of substantial overhead.

VI. EVALUATION METHODOLOGY

To evaluate our scheme, we use two sets of workloads: mi-
crobenchmarks and a real-world application. The microbench-
marks are designed to stress test SeMPE across a wide range of
code characteristics. They are also useful due to the scarcity
of real world applications that have been implemented with
CTE; CTE is currently only used in crypto libraries.

if(secret)

workload 1
if(secret)

workload 2
W-1 nested SecBlocks

if(secret)
workload W workload W+1

1

for (i = 0 ; i < iters ; i++)

2

W

Fig. 7: Microbenchmark structure. The number of nested sJMP
depends by W . The total number of sJMP per iteration is W ,
and the number of of nested sJMP is W − 1

The microbenchmark has a customizable nested conditional
branches that depend on secret, with several different work-
loads, as shown in Figure 7. The workload is one of the fol-
lowing: 1) Fibonacci, which calculates Fibonacci series up to
the specified term, 2) Ones, which allocates a vector of integer,
filling it with random numbers, and deleting the vector on exit,
3) Quicksort, which utilises a divide-and-conquer strategy to
sort a large array [26], and 4) Eight Queens problem [14],
which places eight queens on an 8 × 8 chessboard such that
none of them attacks one another. As can be seen in Figure 7,
the two main parameters of the microbenchmark are (1) the
number of iterations of the entire secure region (I) and (2)
the nesting depth and width of each iteration (W). We vary
I and W to produce over 700 combinations in order to test

clock frequency 2.0 GHz
branch predictor 31KB TAGE [45], 6KB ITTAGE [46]
fetch 8 instructions / cycle
decode 8 µops / cycle
rename 8 µops / cycle
issue (micro-ops) 8 µops
load issue 2 loads / cycle
retire 12 µops / cycle
reorder buffer (ROB) 192 µops
physical registers 256 INT, 256 FP
issue buffers 60 INT / 60 FP µops
load/store queue 32+32 entries
DL1 cache 32KB, 2-way assoc.
IL1 cache 16KB, 2-way assoc.
L2 cache 256KB, 2-way assoc.
prefetcher stride pref. (L1), stream pref. (L2)
page size 4MB
SPM size 216KB (up to 30 snapshots supported)
SPM throughput 64 Bytes/cycle R/W

TABLE II: Baseline microarchitecture model.

the effect of nesting depth and eliminate measurement noise.
We report a range of configurations for nesting depth: from
W = 1 (1-deep) to W = 10 (10-deep). In all configurations,
the number of instructions executed is at least 100 million,
run to completion.

The second benchmark is a real-world library djpeg,
which is an application from the libjpeg library that converts
JPEG images into one of PPM, GIF, and BMP 1. The secret
value for this benchmark is the input array that holds the image
by representing the color and intensity of each pixel. The core
of the processing involves conditional branches that depend on
each input array element. In contrast to the crypto library for
which only tiny data (the key) is secret, input array in djpeg
is substantially larger, e.g., a high-resolution photograph.

The three output file types (PPM, GIF, and BMP) differ
in the number and type of instructions that are independent
of the secret image. Even the number of secret-dependent
instructions is not the same due to the different number of
decode steps each file type has. The overall impact on the
memory and the execution time depends on the output file
type, so we use them as three separated workloads for the
following analysis.

We compare SeMPE against de facto technique for SDBCB
elimination: CTE. Specifically, we choose CTE version of
the microbenchmarks written using FaCT [18], [19]. FaCT
offers a domain-specific language which greatly simplifies
microbenchmark conversion to CTE. However, we did not
apply FaCT to djpeg because FaCT has many limitations
that prevents this, e.g. supporting only boolean and integers,
lack of memory allocator support, lack of support for function
pointers and lack of support for global variable (macros
or multiple file inclusion). It took us approximately three
weeks to convert the microbenchmark using FaCT, which is a
substantial programming effort. In contrast, with SeMPE, the

1JPEG stands for Joint Photographic Experts Group, GIF stands for
Graphics Interchange Format, PPM stands for Portable Pixmap Format, and
BMP represents Device Independent Bitmap.

9

programmer only needs to insert directives into the code that
specify the secret.

The benchmarks were compiled with clang/llvm on Debian
GNU/Linux, separating the secret-dependent code into its own
compilation unit. The secret-dependent code was compiled
with optimizations disable to ensure that optimization does
not inadvertantly reintroduce a side channel. The rest of the
benchmark code used the default optimization level, i.e., -O2.

Each SecBlock was manually instrumented with sJMP and
eosJMP instructions. Local variables were manually privatized
(ShadowMemory) as described in Section V-A, adding addi-
tional local variables and inline assembly to use CMOV after the
secret branches. Both register allocated and memory allocated
variables are privatized, so we can consider the worst case.
The ArchRS mechanism described in Section IV-F allow to
limit privatization and CMOVs to memory allocated variables
only.

For baseline architecture, we model a processor with pa-
rameters shown in Table II. We use gem5 simulator [16]
with an out-of-order processor configured similar to the Intel
Haswell [20] microarchitecture. The baseline differs from
recent microarchitectures in terms of the cache size, to adjust
for the benchmarks’ smaller working set.

We used a Scratchpad Memory that supports up to 30
register snapshots (one for each nested sJMP). Each snapshot
contains two architectural register states and two bit-vectors
with one bit per register each (Figure 6). Each register state
contains the 48 architectural registers [4]. The total size of a
snapshot for each SecBlock is 7392 bytes.

VII. EVALUATION RESULTS

A. Real-World Application Results

To evaluate SeMPE performance, we display its execution
time overheads over the baseline architecture that has no se-
curity protection (Figure 8), for three output formats and input
file sizes. The figure shows that the overheads vary between
31% and 87% across image output formats, but are not much
affected by different image sizes. The overheads are much
smaller than 2×, because the secure region only contributes
to a fraction of the total instruction count. This factor also
explains the variation across image output formats: the secure
region in PPM contributes to much higher instruction count
than GIF and BMP. On the other hand, the size of the input
image does not affect the instruction count in the secure
region because, on djpeg, the input array is decomposed
into blocks, and each block performs several decompression
steps depending on the type of output file-type produced. The
SeMPE affects only the execution of SecBlocks, allowing a
consistent behavior that is largely independent of the input
size.

The pipeline drain described in Figure 6 produces “holes”
in the pipeline, similar to a branch misprediction. This tends
to increase Cycles Per Instruction (CPI). Factors that tend
to decrease CPI include not having branch misprediction
(the branch predictor is not used for sJMP) and parallelism

20%

40%

60%

80%

PPM GIF BMP

256k 512k 1024k 2048k

Fig. 8: Execution time overhead for libjpeg with different
image output format, varying input size.

increases between branch paths due to the use of ShadowMem-
ory. Executing both branch paths may increase or decrease
cache spatial and temporal locality. If the total working set of
both branch paths increases beyond the cache capacity, locality
may decrease and cache miss rates increase. On the other hand,
if the working set of both paths overlap substantially, executing
one path produces prefetching effect for the alternate path,
accelerating it. Apart from ShadowMemory for privatization
of local variables written in branch paths and used outside
the secure region, different branch paths of a secure branch
share all other memory locations, which improves the cache
temporal locality.

We analyze the impact of SeMPE on cache memory in
Figure 9, which shows miss rates of the Instruction Cache
(IL1), Data Cache (DL1), and the Second-Level Cache (L2),
across image output formats and image sizes for each format.
Observe that the impact on instruction cache is unrelated to the
size of the input image. djpeg divides the input into multiple
sub-blocks, and the decompression work-flow is applied to
each sub-block. The image size has an impact on the total
number of SecBlocks executed, but not on the number of
instruction executed within a given SecBlock. The IL1 miss
rate is low overall. Despite the reduced IL1 size used in our
simulations, it is enough to contain the instructions that need
to be fetched.

The situation changes when we dig into the DL1 miss rate
analysis, shown in Figure 9b. The two SecBlocks within a
single decoding step of djpeg are, in all cases, small enough
to fit the DL1. The ShadowMemory used during the SeMPE
play a fundamental role to take advantage of the principle of
locality described earlier. Despite the execution of all the path
of the sJMP, each path works on memory allocated (by the
compiler) very closed each other. This memory is just a copy
of the memory allocated before the secure region, that will be
written only after the eosJMP by the CMOV instruction. The
benefits of the DL1 miss-rate for ShadowMemory have, as
a consequence, a relevant impact on the already low global
miss rate. We perform a similar analysis on the L2 miss rates
(Figure 9c). The L2 miss rates are overall higher than for the
data cache. However, the miss rates exhibit similar behavior as
ones from the DL1, even if this time changing the output file
type, and consequently the number and type of instructions
executed outside the SecBlocks, has a much bigger impact on

10

(a) Instruction Cache (b) Data Cache (c) L2 Cache

Fig. 9: Cache miss rates. Group of 2 columns: baseline (left, dashed line) and SeMPE (right, solid line). Lower is better.

the total miss rates.

B. Microbenchmarks Results

Fig. 10: Execution time overheads affected by the nesting
depth W (X-axis): (a) SeMPE slowdown (solid line) vs. the
slowdown due to CTE using FaCT (dashed line), and (b)
Average slowdown normalized to ideal case.

SeMPE execute both paths of a secret-dependent branch,
with instructions in each branch path unmodified, except for
prefixing sJMP and inserting eosJMP instructions. Hence,
we expect that the execution time with SeMPE should be
roughly linearly proportional to the number of branch paths
executed. While other factors affect the execution time as well,
such as the overhead of the multi-path jump back mechanism
and the improvement obtained by the better usage of cache
memories, they also scale proportionally to the number of
branch paths executed. In contrast, we cannot expect that
the execution time of CTE to be linearly proportional to
the number of branch paths in the original program. CTE
requires each statement in a branch path to be modified to
include the unrolling of all the expressions that were part of
the conditional statements (Figure 2b). Hence, not only all
statements in all branch paths are executed, but each statement
takes longer to execute. Furthermore, the deeper the nesting
level, and the more complex each conditional expression, the
more expressions need to be unrolled and the more complex
each statement becomes. The execution time ratio to baseline
for the microbenchmarks shown in Figure 10a confirm these

expectations. The trends from no nesting (W = 1) to deep
nesting (W = 10) are shown in Figure 10a for SeMPE
(solid line) and FaCT (dashed line). Firstly, SeMPE shows
much lower overheads vs. CTE (note that the y-axes is in
logarithmic scale). Furthermore, since each statement becomes
more complex and translates to a higher instruction count, the
execution time overheads are higher when the original code
has more instructions. The slowdown of FaCT, with W = 1,
ranges from 3× for Fibonacci to 32× for Queens (Figure 10a).

Figure 10a also shows that as the nesting depth is increased
up to ten, execution time slowdown increase for both SeMPE
and CTE. When W = 10, SeMPE increases execution time
by roughly 8.4− 10.6×, consistent with the total number of
branch paths of 11. CTE, on the other hand, slows down
the execution between 12.9− 187.3× (Figure 10a). Such
slowdowns render CTE impractical for use in user code which,
unlike crypto library, may be executed frequently. Overall,
CTE can be up to 18× slower than SeMPE. This is on
top of CTE’s substantially higher programming effort. To re-
move side channel leakage from secret-dependent-conditional-
branches, the execution must be indistinguishable for any
secret value. Thus, unless two paths can be merged, the
ideal overhead is the sum of execution time of all paths,
which is exponential to nesting depth. SeMPE beats this ideal
overhead thanks to the prefetching effect, hence it is low vs.
ideal (Figure 10b). In contrast, CTEs overheads are super-
exponential.

VIII. CONCLUSION

We introduced a hardware/software approach, SeMPE, that
eliminates SDBCB without incurring high performance over-
heads or requiring high programming effort. SeMPE allows
programmers to annotate secret branches in their program.
The ISA support is backward compatible. The architecture
when encountering the new branch instruction executes both
paths of the branch (one after the other) without consulting
the branch predictor, thereby preventing the adversary from
inferring secret from the executed path. SeMPE requires secret
branches to be tracked using a hardware table that is small and
simple (e.g. using LIFO instead of random access structure),
and a small Scratchpad Memory to avoid the false register
dependences that occur between both paths of a secure branch.

Hardware changes allow SeMPE code to run on processor
supporting multipath securely, or running on processor not

11

supporting multipath fast. With hardware support, CMOV is
only needed for phantom memory (but not register) depen-
dences. Code complexity of crypto code is low, so we evalu-
ated SeMPE using a real world application and microbench-
marks. We shown that the execution time with SeMPE is near
ideal; it increases linearly with the number of secret branch
paths, independent from the size of workload executed in the
SecBlock. Our experiments also show a slight positive cache
locality benefit from multi-path execution. When compared
against CTE code derived using the state of the art CTE
language and compiler (FaCT), SeMPE outperforms CTE
substantially, by a factor of 1.6− 18×.

REFERENCES

[1] “868948 - a patch for nss: a constant-time implementation of the
ghash function of aes-gcm, for processors that do not have the aes-
ni/pclmulqdq,” https://bugzilla.mozilla.org/showbug.cgi?id=868948.

[2] “Added more constant-time code / removed biases in the prime number
generation routines,” https://github.com/ARMmbed/mbedtls/pull/182.

[3] “Aes timing attack countermeasures,” https://github.com/weidai11/
cryptopp/commit/c8e2f8959414846031634477b2a0614434843ca3.

[4] “AMD64 Architecture Programmer’s Manual Volume 3: General Pur-
pose and System Instructions,” http://support.amd.com/TechDocs/24594.
pdf.

[5] “Bearssl,” https://bearssl.org/gitweb/?p=BearSSL.
[6] “Coding rules,” https://cryptocoding.net/index.php/Coding rules.
[7] “Libjpeg Library,” http://libjpeg.sourceforge.net.
[8] “Software Optimization Guide for AMD Family 17h Models 30h

and Greater Processors,” https://www.amd.com/system/files/TechDocs/
56305 SOG 3.00 PUB.pdf.

[9] “Why not use ‘¡‘, ‘¿‘ or ‘==‘ in constant time comparison?” https://
crypto.stackexchange.com/a/39432.

[10] “X86 Opcode and Instruction Reference,” http://ref.x86asm.net/geek64.
html, 2019.

[11] O. Aciçmez, c. K. Koç, and J.-P. Seifert, “Predicting Secret Keys
via Branch Prediction,” in Proceedings of the 7th Cryptographers’
Track at the RSA Conference on Topics in Cryptology, ser.
CT-RSA’07. Berlin, Heidelberg: Springer-Verlag, 2006. [Online].
Available: http://dx.doi.org/10.1007/11967668 15

[12] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi,
“Verifying constant-time implementations,” in 25th USENIX Security
Symposium (USENIX Security 16). Austin, TX: USENIX Association,
Aug. 2016, pp. 53–70. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity16/technical-sessions/presentation/almeida

[13] J. L. Aragón, J. M. H. Gonzalez, A. González, and J. E. Smith, “Dual
path instruction processing,” in ICS, 2002.

[14] J. Bell and B. Stevens, “A Survey of Known Results and Research
Areas for N-queens,” Discrete Math., vol. 309, no. 1, Jan. 2009.
[Online]. Available: http://dx.doi.org/10.1016/j.disc.2007.12.043

[15] D. J. Bernstein, “Cache-timing attacks on AES,” Tech. Rep., 2005.
[16] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,

J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, 2011.

[17] D. Brumley and D. Boneh, “Remote timing attacks are practical,”
Computer Networks, vol. 48, no. 5, Aug. 2005. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1389128605000125

[18] S. Cauligi, G. Soeller, F. Brown, B. Johannesmeyer, Y. Huang, R. Jhala,
and D. Stefan, “FaCT: A Flexible, Constant-Time Programming
Language,” in 2017 IEEE Cybersecurity Development (SecDev).
Cambridge, MA, USA: IEEE, Sep. 2017, pp. 69–76. [Online].
Available: http://ieeexplore.ieee.org/document/8077809/

[19] S. Cauligi, G. Soeller, B. Johannesmeyer, F. Brown, R. S. Wahby,
J. Renner, B. Grégoire, G. Barthe, R. Jhala, and D. Stefan, “Fact:
A dsl for timing-sensitive computation,” in Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 2019. New York, NY, USA: ACM, 2019,
pp. 174–189. [Online]. Available: http://doi.acm.org/10.1145/3314221.
3314605

[20] I. Corporation, “Intel 64 and IA-32 Architectures Software Developer’s
Manual,” 2016.

[21] N. J. A. Fardan and K. G. Paterson, “Lucky Thirteen: Breaking the TLS
and DTLS Record Protocols,” in 2013 IEEE Symposium on Security and
Privacy, May 2013.

[22] O. Goldreich, “Towards a Theory of Software Protection and
Simulation by Oblivious RAMs,” in Proceedings of the Nineteenth
Annual ACM Symposium on Theory of Computing, ser. STOC
’87. New York, NY, USA: ACM, 1987. [Online]. Available:
http://doi.acm.org/10.1145/28395.28416

[23] O. Goldreich and R. Ostrovsky, “Software protection and simulation on
oblivious rams,” Journal of the ACM, vol. 43, pp. 431–473, 1996.

[24] A. Gonzlez, F. Latorre, and G. Magklis, “Processor microarchitecture:
An implementation perspective,” Synthesis Lectures on Computer
Architecture, vol. 5, no. 1, pp. 1–116, 2010. [Online]. Available:
https://doi.org/10.2200/S00309ED1V01Y201011CAC012

[25] T. H. Heil and E. F. Smith, “Selective Dual Path Execution,” 1996.
[26] T. H. Hoare, “Algorithm 63 partition; algorithm 64 quicksort; algorithm

65 find,” 1961.
[27] D. King, B. Hicks, M. Hicks, and T. Jaeger, “Implicit flows: Can’t live

with ’em, can’t live without ’em,” in Information Systems Security, 4th
International Conference, ICISS 2008, Hyderabad, India, December
16-20, 2008. Proceedings, 2008, pp. 56–70. [Online]. Available:
https://doi.org/10.1007/978-3-540-89862-7 4

[28] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” vol. abs/1801.01203. [Online].
Available: http://arxiv.org/abs/1801.01203

[29] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading Kernel Memory from User Space,” in 27th USENIX
Security Symposium (USENIX Security 18), 2018.

[30] C. Liu, A. Harris, M. Maas, M. Hicks, M. Tiwari, and E. Shi,
“GhostRider: A Hardware-Software System for Memory Trace
Oblivious Computation,” in Proceedings of the Twentieth International
Conference on Architectural Support for Programming Languages and
Operating Systems - ASPLOS ’15. Istanbul, Turkey: ACM Press,
2015, pp. 87–101. [Online]. Available: http://dl.acm.org/citation.cfm?
doid=2694344.2694385

[31] C. Liu, M. Hicks, and E. Shi, “Memory trace oblivious program
execution,” in Proceedings of the 2013 IEEE 26th Computer Security
Foundations Symposium, ser. CSF ’13. Washington, DC, USA:
IEEE Computer Society, 2013, pp. 51–65. [Online]. Available:
https://doi.org/10.1109/CSF.2013.11

[32] C. Luo, Y. Fei, and D. Kaeli, “Side-channel timing attack of rsa on a
gpu,” ACM Trans. Archit. Code Optim., vol. 16, no. 3, pp. 32:1–32:18,
Aug. 2019. [Online]. Available: http://doi.acm.org/10.1145/3341729

[33] S. Magill, M.-H. Tsai, P. Lee, and Y.-K. Tsay, “Automatic numeric
abstractions for heap-manipulating programs,” in Proceedings of the
37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, ser. POPL ’10. New York, NY, USA:
ACM, 2010, pp. 211–222. [Online]. Available: http://doi.acm.org/10.
1145/1706299.1706326

[34] S. S. Muchnick, Advanced Compiler Design and Implementation. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1997.

[35] A. C. Myers and B. Liskov, “A decentralized model for information
flow control,” in 16th ACM Symp. on Operating System Principles
(SOSP), October 1997, pp. 129–142. [Online]. Available: http:
//www.cs.cornell.edu/andru/papers/iflow-sosp97/paper.html

[36] D. Oehmke, N. Binkert, T. Mudge, and S. Reinhardt, “How to Fake
1000 Registers,” in 38th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO’05). Barcelona, Spain: IEEE, 2005.
[Online]. Available: http://ieeexplore.ieee.org/document/1540944/

[37] P. O’Hearn, “Separation logic,” Commun. ACM, vol. 62, no. 2, pp. 86–
95, Jan. 2019. [Online]. Available: http://doi.acm.org/10.1145/3211968

[38] R. Ostrovsky, “Efficient computation on oblivious rams,” in Proceedings
of the Twenty-second Annual ACM Symposium on Theory of Computing,
ser. STOC ’90. New York, NY, USA: ACM, 1990, pp. 514–523.
[Online]. Available: http://doi.acm.org/10.1145/100216.100289

[39] C. Percival, “Cache missing for fun and profit,” in Proc. of BSDCan
2005, 2005.

[40] J. Planul and J. C. Mitchell, “Oblivious program execution and
path-sensitive non-interference,” in 2013 IEEE 26th Computer Security
Foundations Symposium, New Orleans, LA, USA, June 26-28, 2013,

12

https://bugzilla.mozilla.org/show bug.cgi?id=868948
https://github.com/ARMmbed/mbedtls/pull/182
https://github.com/weidai11/cryptopp/commit/ c8e2f8959414846031634477b2a0614434843ca3
https://github.com/weidai11/cryptopp/commit/ c8e2f8959414846031634477b2a0614434843ca3
http://support.amd.com/TechDocs/24594.pdf
http://support.amd.com/TechDocs/24594.pdf
https://bearssl.org/gitweb/?p=BearSSL
https://cryptocoding.net/index.php/Coding_rules
http://libjpeg.sourceforge.net
https://www.amd.com/system/files/TechDocs/56305_SOG_3.00_PUB.pdf
https://www.amd.com/system/files/TechDocs/56305_SOG_3.00_PUB.pdf
https://crypto.stackexchange.com/a/39432
https://crypto.stackexchange.com/a/39432
http://ref.x86asm.net/geek64.html
http://ref.x86asm.net/geek64.html
http://dx.doi.org/10.1007/11967668_15
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida
http://dx.doi.org/10.1016/j.disc.2007.12.043
https://linkinghub.elsevier.com/retrieve/pii/S1389128605000125
http://ieeexplore.ieee.org/document/8077809/
http://doi.acm.org/10.1145/3314221.3314605
http://doi.acm.org/10.1145/3314221.3314605
http://doi.acm.org/10.1145/28395.28416
https://doi.org/10.2200/S00309ED1V01Y201011CAC012
https://doi.org/10.1007/978-3-540-89862-7_4
http://arxiv.org/abs/1801.01203
http://dl.acm.org/citation.cfm?doid=2694344.2694385
http://dl.acm.org/citation.cfm?doid=2694344.2694385
https://doi.org/10.1109/CSF.2013.11
http://doi.acm.org/10.1145/3341729
http://doi.acm.org/10.1145/1706299.1706326
http://doi.acm.org/10.1145/1706299.1706326
http://www.cs.cornell.edu/andru/papers/iflow-sosp97/paper.html
http://www.cs.cornell.edu/andru/papers/iflow-sosp97/paper.html
http://ieeexplore.ieee.org/document/1540944/
http://doi.acm.org/10.1145/3211968
http://doi.acm.org/10.1145/100216.100289

2013, pp. 66–80. [Online]. Available: https://doi.org/10.1109/CSF.2013.
12

[41] T. Pornin, “Why Constant-Time Crypto?” https://www.bearssl.
org/constanttime.html. [Online]. Available: https://www.bearssl.org/
constanttime.html

[42] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing Digital Side-
Channels through Obfuscated Execution,” in 24th USENIX Security
Symposium (USENIX Security 15). Washington, D.C.: USENIX As-
sociation, 2015, pp. 431–446. [Online]. Available: https://www.usenix.
org/conference/usenixsecurity15/technical-sessions/presentation/rane

[43] B. Rodrigues, F. M. Quintão Pereira, and D. F. Aranha, “Sparse
representation of implicit flows with applications to side-channel
detection,” in Proceedings of the 25th International Conference on
Compiler Construction, ser. CC 2016. New York, NY, USA: ACM,
2016, pp. 110–120. [Online]. Available: http://doi.acm.org/10.1145/
2892208.2892230

[44] A. Sabelfeld and A. C. Myers, “Language-based information-flow secu-
rity,” IEEE Journal on Selected Areas in Communications, vol. 21, p.
2003, 2003.

[45] A. Seznec, “A new case for the TAGE branch predictor,” in 2011
44th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), Dec. 2011, pp. 117–127.

[46] A. Seznec, “A 64-Kbytes ITTAGE indirect branch predictor,” 2011.
[47] G. Smith, “Principles of secure information flow analysis,” in Malware

Detection, M. Christodorescu, S. Jha, D. Maughan, D. Song, and
C. Wang, Eds. Boston, MA: Springer US, 2007, pp. 291–307.

[48] S. Wallace, B. Calder, and D. M. Tullsen, “Threaded Multiple Path
Execution,” in ISCA, 1998, 00192.

[49] J. Xiao, M. Lou, W. Li, and Y. Cui, “Implementing fast recovery for
register alias table in out-of-order processors,” 2013 2nd International
Symposium on Instrumentation and Measurement, Sensor Network and
Automation (IMSNA), pp. 821–824, 2013.

[50] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A hardware design
language for timing-sensitive information-flow security,” SIGPLAN
Not., vol. 50, no. 4, pp. 503–516, Mar. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2775054.2694372

13

https://doi.org/10.1109/CSF.2013.12
https://doi.org/10.1109/CSF.2013.12
https://www.bearssl.org/constanttime.html
https://www.bearssl.org/constanttime.html
https://www.bearssl.org/constanttime.html
https://www.bearssl.org/constanttime.html
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/rane
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/rane
http://doi.acm.org/10.1145/2892208.2892230
http://doi.acm.org/10.1145/2892208.2892230
http://doi.acm.org/10.1145/2775054.2694372

	I Introduction
	II Background and Related Work
	II-A Techniques to Remove SDBCB
	II-B Multi Path Execution

	III Threat Model
	IV SeMPE Design
	IV-A Foundation of Security
	IV-B Terminology
	IV-C Expressing Secure Regions
	IV-D Challenges to Multi-Path Execution
	IV-E SeMPE Microarchitecture
	IV-F Dealing with Phantom Register Dependences
	IV-G Security Analysis

	V Discussion and Limitations
	V-A Phantom Memory Dependences
	V-B Compiler Support for sempe

	VI Evaluation Methodology
	VII Evaluation Results
	VII-A Real-World Application Results
	VII-B Microbenchmarks Results

	VIII Conclusion
	References

