
Approximate Equivalence Checking of Noisy Quantum
Circuits

Xin Hong1, Mingsheng Ying1,2,3*, Yuan Feng1*, Xiangzhen Zhou1,4 and Sanjiang Li1*

1Centre for Quantum Software and Information, University of Technology Sydney, Australia
2State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, China

3Department of Computer Science and Technology, Tsinghua University, China
4State Key Lab of Millimeter Waves, Southeast University, China

Abstract—We study the fundamental design automation problem of
equivalence checking in the NISQ (Noisy Intermediate-Scale Quantum)
computing realm where quantum noise is present inevitably. The notion
of approximate equivalence of (possibly noisy) quantum circuits is defined
based on the Jamiolkowski fidelity which measures the average distance
between output states of two super-operators when the input is chosen
at random. By employing tensor network contraction, we present two
algorithms, aiming at different situations where the number of noises
varies, for computing the fidelity between an ideal quantum circuit
and its noisy implementation. The effectiveness of our algorithms is
demonstrated by experimenting on benchmarks of real NISQ circuits.
When compared with the state-of-the-art implementation incorporated
in Qiskit, experimental results show that the proposed algorithms
outperform in both efficiency and scalability.

Index Terms—Quantum computing, quantum circuits, noise, equiva-
lence checking

I. INTRODUCTION

Equivalence checking techniques have been widely employed in
the EDA (Electronic Design Automation) industry to check whether
two different circuit designs exhibit exactly the same behaviour. This
is very important to ensure that a design is error-free. Important
techniques such as BDD [1, 2] and SAT [2, 3] have been successful
in such a task in the classical case.

Nowadays, quantum computing has attracted great attention from
both industry and academia due to its potential speedup in solving
problems such as integer factorisation [4], database search [5], and
many machine learning tasks [6]. Experiments have been proposed to
demonstrate quantum supremacy [7] and to explore the possibilities of
simulating a chemical system [8]. International leading IT companies
such as IBM and Google have invested enormous resources to develop
quantum hardware and software. It is expected that quantum devices
with several hundreds valid qubits will appear very soon.

As quantum circuits become larger and larger, they are more and
more error-prone. Equivalence checking of quantum circuits has been
discussed in [9–14], where it is assumed that each gate in either circuit
is represented as a unitary operation and the aim is to check if the
two unitary matrices representing the two circuits are equal (up to a
global phase). Often, canonical decision diagram representations for
the two circuits are constructed and the two circuits are equivalent if
and only if they have the same representation.

On the other hand, quantum computers we have at present or in the
near future are all Noisy Intermediate-Scale Quantum (NISQ) devices
and quantum circuits executed on them are all plagued by more or
less noise. For such kinds of circuits, the proposed approaches for
equivalence checking would fail as noisy gates cannot be represented
by unitary matrices, and a qualitative answer (being equivalent or
not) does not make sense. Thus, it is necessary and very important
to develop new methods for checking the approximate equivalence,
or computing the distance, of noisy circuits.

*Corresponding authors:{mingsheng.ying,yuan.feng,sanjiang.li}@uts.edu.au.

This paper aims at proposing a proper definition as well as efficient
algorithms for the problem of approximate equivalence between one
ideal (unitary) circuit and its noisy implementation. The key notion is
the Jamiolkowski fidelity [15] which measures the average distance
between output states of two super-operators when the input is
chosen at random. In addition to the clear physical interpretation,
Jamiolkowski fidelity enjoys some nice properties such as stability
and chaining [16] which guarantee that the error scales at most
linearly when smaller noisy quantum circuits are concatenated into
a larger one. More importantly, computing this measure of distance
can be reduced to the calculation of traces of some (non-unitary)
matrices obtained from the original circuits, a task which can be
done efficiently by employing tensor network contraction. With these
observations, we present two algorithms, aiming at different situations
where the number of noises varies, and implement them by using a
recently developed software package — Tensor Decision Diagram
(TDD) [17] which represents a tensor as a decision diagram and
supports efficient contraction of tensor networks. The effectiveness of
our algorithms and implementation is demonstrated by experimenting
on real NISQ circuits. Experimental results show that our algorithms
outperform in both efficiency and scalability over the state-of-the-art
implementation incorporated in Qiskit [18].

Related works. Existing works in equivalence checking of quan-
tum circuits are based on Decision Diagrams (DDs) or SAT or
a combination of them [9–14]. In particular, QMDD [19], which
provides a more economical way to represent unitary operators when
compared with array-based representations, is used in [11] as the
underlying data structure for equivalence checking. To our best
knowledge, there are no attempts in extending these methods to deal
with approximate equivalence of noisy quantum circuits.

Distance measures of quantum processes have been considered in
[16, 20]. In particular, the Jamiolkowski fidelity is identified in [16] as
one of the best measures for comparing quantum processes. Biamonte
[21] describes a method for calculating the average gate fidelity
based on tensor networks, where quantum processes are expressed in
terms of Choi-matrices. However, these matrices are not convenient
to compute from the classical description of quantum noisy circuits.

The important notion of reversible miter is introduced in [10] for
equivalence checking of (unitary) quantum circuits. For two circuits
C,D, a miter is constructed by concatenating C with the reverse of
D, and the two circuits are equivalent if and only if the miter imple-
ments the identity operator. When combined with local optimisations
like cancelling two consecutive gates, this technique can significantly
simplify the circuits and thus the process of equivalence checking.
Such a miter is also used in [11], where a more efficient method for
equivalence checking is designed by carefully choosing the gates to
be calculated every time. Our algorithms also rely on calculating the
traces of similar miter constructions.

Classical simulation of noisy quantum circuits are considered in

978-1-6654-3274-0/21/$31.00 ©2021 IEEE

ar
X

iv
:2

10
3.

11
59

5v
2

 [
qu

an
t-

ph
]

 3
 J

un
 2

02
1

q1 H S

q2 H

Fig. 1. Circuit for 2-qubit quantum Fourier transform (QFT).

[22] and [23]. Gao and Duan [22] develop a tensor network tool
to represent the ensemble of noisy quantum circuits, while Grurl et
al. [23] represent density matrices as decision diagrams and show
that considering decoherence errors does not necessarily affect the
compactness of the decision diagram representations. Li et al. [24]
propose an optimisation technology for the Monte Carlo simulation
of noisy quantum circuits, where they exploit the structure similarity
of an ensemble of noisy circuits to be simulated and try to maximally
reuse precomputed states. Such a technology is inherently used by
decision diagrams, where a single shared Hash table, called computed
table, is used to store all nodes of the decision diagrams generated
in the whole calculation process.

II. QUANTUM CIRCUITS AND NOISE

In this section, we review some basic concepts from quantum
computing to help understand noisy quantum circuits.

A. Quantum Circuits

In classical digital computation, data are represented by a string
of bits. When sending through a classical circuit, the state of the
input will be transformed by a sequence of logical gates. In quantum
computing, the counterpart of bit is called qubit. The state of a qubit
is often represented in Dirac notation |ψ〉 = α0 |0〉+ α1 |1〉 , where
α0 and α1 are complex numbers, called the amplitudes of |ψ〉, and
|α0|2 + |α1|2 = 1. We also use the vector [α0, α1]T to represent a
single-qubit state. In general, an n-qubit quantum state is represented
as a 2n-dimensional complex vector [α0, α1, . . . , α2n−1]T .

The evolution of a quantum system is described by a unitary
transformation, which is usually called a quantum gate in quantum
computing. Generally, an n-qubit quantum gate is represented as a
2n × 2n-dimensional unitary transformation matrix. Typical 1-qubit
gates used in this paper include Pauli gates

X =

[
0 1

1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0

0 −1

]
,

Hadamard gate H = (X + Z)/
√

2, and phase gate S =
√
Z. The

quantum state after applying a gate can be obtained by multiplying
the corresponding unitary matrix and the vector that represents the
input state. For example, the output state resulted from applying a
Hadamard gate to |ψ〉 defined above is calculated as follows

1
√
2

[
1 1

1 −1

] [
α0

α1

]
=

1
√
2

[
α0 + α1

α0 − α1

]
.

A quantum circuit consists of a set of qubits and a sequence of
quantum gates. Given an input state, quantum gates in the circuit are
applied to the corresponding qubits in a sequential manner. Clearly,
an n-qubit quantum circuit also describes a functionality represented
as a 2n × 2n-dimensional unitary matrix.

Example 1. Depicted in Fig. 1 is a circuit which implements the
2-qubit quantum Fourier transform (QFT) [25], where

S

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i

 , = SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

q1 H S N ′

q2 N H

Fig. 2. A noisy circuit for 2-qubit QFT with two noises inserted.

For simplicity, we often use the same symbol, say U , to denote
both a quantum gate (or circuit) and its corresponding unitary matrix.

B. Noisy quantum circuits

The pure state-unitary transformation framework presented above
works perfectly well for ideal (noiseless) quantum computing. How-
ever, to verify noisy implementation of ideal quantum circuits, which
is the main purpose of the current paper, we have to extend this
framework to accommodate mixed states and super-operators.

Mathematically, a mixed state of an n-qubit system is described
by a 2n × 2n density matrix, i.e., a positive semi-definite matrix ρ
with tr(ρ) = 1. Obviously, for a pure state |ψ〉, the outer product
|ψ〉〈ψ|, denoted by ψ henceforth, of |ψ〉 with its complex conjugate
〈ψ| is a mixed state.

Dynamics of an n-qubit system whose states are given as mixed
states is modelled by a super-operator which is a linear map E
between 2n×2n density matrices. A convenient way of representing
an n-qubit super-operator E is the Kraus operator-sum form: there
exist a set of 2n × 2n matrices {Ei} satisfying the normalisation
condition

∑
iE
†
iEi = I2n , such that for each mixed state ρ, E(ρ) =∑

iEiρE
†
i . In this case, we write E = {Ei}. Note that unitary

operator U can also be seen as a super-operator U : ρ 7→ UρU†.
Noises in quantum computing can be naturally represented as

super-operators (in the Kraus operator-sum form).

Example 2. Given p ∈ [0, 1], several canonical noises on a single
qubit are:

1) Bit flip. This kind of noise flips the state of a qubit from |0〉 to
|1〉 and vice versa with probability 1− p. It is modelled by the
super-operator Nbf (ρ) = pρ+ (1− p)XρX .

2) Phase flip. This noise applies a phase operator Z on the target
qubit with probability 1− p. It is given as the super-operator
Npf (ρ) = pρ+ (1− p)ZρZ.

3) Bit-phase flip. This noise applies Y on the target qubit with
probability 1−p: Nbpf (ρ) = pρ+(1−p)Y ρY . Obviously, it is
a combination of a bit-flip and a phase flip because Y = iXZ.

4) Depolarisation. The depolarisation of a qubit with parameter
p is modelled by Ndep(ρ) = pρ+ 1−p

3
(XρX+Y ρY +ZρZ).

Now by allowing occurrence of noises, we can easily extend the
notions of quantum gates and circuits to the noisy ones. Specifically,
a noisy quantum circuit is composed of noisy quantum gates which
are represented as super-operators instead of only unitary operators.
Since unitary operators can be regarded as super-operators, noiseless
gates and circuits are special cases of their noisy counterparts. As a
simple example, Fig. 2 shows a noisy implementation of the 2-qubit
QFT where two 1-qubit noises N and N ′ are introduced.

Again, we abuse the notation slightly to use the same symbol to
denote both a noisy quantum gate (or circuit) and its corresponding
super-operator. However, to avoid confusion, we usually use N , N ′,
etc., for noisy gates and E , E ′, etc., for noisy circuits.

III. APPROXIMATE EQUIVALENCE OF QUANTUM CIRCUITS

This section aims at formalising the problem of approximate
equivalence checking of noisy quantum circuits. The key notion

is an appropriate definition of distance between the ideal circuit,
mathematically represented as a unitary operator U , and its noisy
implementation, mathematically represented as a super-operator E .
Our main references for this section are [25, Chapter 9] and [16].

To this end, we first recall that the fidelity between two density
operators ρ and σ on a Hilbert space H is defined by

F (ρ, σ) = (tr
√
ρ1/2σρ1/2)2.

When ρ = |ψ〉〈ψ| is a pure state, F (ψ, σ) = 〈ψ|σ|ψ〉.
The fidelity between density operators can be extended to measure

distance between super-operators with the help of Jamiolkowski
isomorphism that maps each super-operator E on H to a density
operator ρE = (I ⊗ E)(|Ψ〉〈Ψ|) on H⊗H, where I is the identity
super-operator on H, |Ψ〉 = 1√

d

∑
i |ii〉 is the maximally entangled

state, d = dimH, and {|i〉} is an orthonormal basis of H. The
Jamiolkowski fidelity between super-operators E and F is defined as

FJ(E ,F) = F (ρE , ρF).

In the special case when F = {U} is a unitary operation, which is
exactly what we are concerned with in this paper, we slightly abuse
the notation to write FJ(E , U) instead of FJ(E ,F).

Note that there are a wide range of distance measures for density
operators and super-operators presented in the literature [16], each
having applications in different quantum information tasks. Our
design decision to choose Jamiolkowski fidelity to characterise the
approximate equivalence of an ideal circuit and its noisy implemen-
tation is based on the following observations.

Physical interpretation. The Jamiolkowski fidelity FJ can serve
as the average-case error measure in computation of a function or
sampling distribution [16], which is particularly useful in quantum
simulation and quantum machine learning. To be specific, for super-
operator E and unitary operator U , we have∫

dψF (E(ψ), U |ψ〉) =
d · FJ(E , U) + 1

d+ 1
,

where the integral is over the Haar measure on H. In other words,
FJ(E , U) characterises the average fidelity of the output E(ψ) of the
noisy circuit E and that of the ideal one U |ψ〉 , when the input pure
state |ψ〉 is chosen at random.

Nice properties. It is easy to prove that the Jamiolkowski fidelity
enjoys the following properties (see [16]):

1) Stability: FJ(E ⊗ I,F ⊗ I) = FJ(E ,F), where I stands for
the identity operation on an arbitrary ancillary system;

2) Chaining: CJ(E1 ◦ E2, U1 ◦ U2) ≤ CJ(E1, U1) + CJ(E2, U2),
where CJ(E ,F) =

√
1− FJ(E ,F) is a metric between super-

operators induced by FJ .
In the scenario of approximate equivalence checking, these properties
guarantee that the error scales at most linearly when smaller noisy
quantum circuits are concatenated into a larger one.

Ease of calculation. Given an ideal circuit U and a noisy
implementation E = {Ei}, we have

FJ(E , U) =
∑
i

〈Ψ| I ⊗ U†Ei |Ψ〉 〈Ψ| I ⊗ E†iU |Ψ〉

=
∑
i

| 〈Ψ| I ⊗ U†Ei |Ψ〉 |2 =
1

d2

∑
i

|tr(U†Ei)|2.

Thus the calculation of Jamiolkowski fidelity FJ(E , U) boils down to
computing the traces of some matrices. As we are going to show in
the following sections, this can be done quite easily by employing the
recently proposed Tensor Decision Diagram (TDD) techniques [17].

tr(E) =
E

Fig. 3. The tensor network of computing the trace of the functionality matrix
E of a (noiseless or noisy) circuit.

To conclude this section, we propose the notion of approximate
equivalence between quantum circuits.

Definition 1. Let ε ∈ [0, 1], and C1, C2 be two (noisy) quantum
circuits represented by super-operators E1, E2, respectively. Then C1
and C2 are ε-equivalent, written C1 ≈ε C2, if FJ(E1, E2) > 1− ε.

The problem of approximate equivalence checking of noisy quan-
tum circuits can then be formalised as follows:

Problem 1. Let ε ∈ [0, 1] be an error threshold. Given (the classical
description of) an ideal circuit C and a noisy implementation N ,
determine if C ≈ε N .

IV. ALGORITHMS FOR APPROXIMATE EQUIVALENCE CHECKING

In the previous section, we formalise the problem of approximate
equivalence checking for quantum circuits. This section is devoted to
two algorithms solving this problem in different situations.

Before diving into the details, we first note that when regarding
a quantum circuit as a tensor network, the trace of the functionality
matrix represented by the circuit can be calculated by connecting the
input qubits with the corresponding output ones and contracting the
obtained network. Fig. 3 shows a general scheme of computing the
trace of the functionality matrix E of a (noiseless or noisy) circuit.

A. Algorithm I: Calculate Traces Individually

Recall that FJ(E , U) =
∑
i |tr(U

†Ei)|2/d2 where E = {Ei}.
Our first algorithm calculates tr(U†Ei) for each Ei and adds up the
squares of their norms. Specifically, suppose there are m noisy gates
N1, · · · ,Nm in the circuit and Nk =

{
Nk

1 , · · · , Nk
nk

}
for each k.

Then every choice of jk ∈ [1, nk], 1 ≤ k ≤ m, determines a Kraus
operator Ei of E by replacing each Nk in the noisy circuit with the
non-unitary gate Nk

jk
. Note that the total number of different choices

is
∏
k nk. Furthermore, as the ideal circuit U represents a unitary

operator, we obtain a circuit representing U† by replacing each gate
in U with its Hermitian conjugate and reversing the order of gates.
Then tr(U†Ei) can be computed by concatenating the circuits of Ei
and U† (the order is irrelevant), connecting the corresponding input
and output qubits, and then contracting the obtained tensor network.

Example 3. Consider the noisy circuit E shown in Fig. 2 which
implements the 2-qubit quantum Fourier transform QFT2. Suppose
the noisy gate N = {N1, N2} represents a bit flip, with N1 =√
pI and N2 =

√
1− pX , and N ′ = {N ′1, N ′2} represents a phase

flip, with N ′1 =
√
pI and N ′2 =

√
1− pZ. Then, we have four

tensor networks that need to be contracted, all having form shown
in Fig. 4. Contracting these tensor networks gives tr(U†E1,1) = 4p,
and tr(U†E1,2) = tr(U†E2,1) = tr(U†E2,2) = 0, where U =
QFT2, Ei,j is the functionality matrix of the circuit in Fig. 2 with N
being replaced by Ni and N ′ replaced by N ′j . Thus FJ(E , U) = p2.

Note that the number of circuits to be contracted increases expo-
nentially w.r.t. the number of noisy gates in the circuit. This method
will be efficient only when there are very few noisy gates. However,
we note that distributed computing techniques can help in contracting
these circuits in parallel, since they are completely independent.
Furthermore, for the purpose of approximate equivalence checking, it

QFT †2

H S N ′j

Ni H

q1

q2

Fig. 4. Tensor networks to be contracted in Example 3 using Alg. I.

is often sufficient to calculate only a small part of these trace terms,
as an affirmative answer is obtained once a partial sum is greater than
1− ε. Consider the above example again. Suppose p = 0.95 and our
aim is to check if E ≈0.1 U . Clearly, computing tr(U†E1,1) already
suffices as FJ(E , U) ≥ (4p)2/42 = 0.9025 > 0.9 = 1 − 0.1.
In practice, this can partially alleviate the problem caused by the
exponential number of trace calculations.

B. Algorithm II: Calculate Traces Collectively

We now introduce the second algorithm for approximate equiv-
alence checking, which calculates

∑
i |tr(U

†Ei)|2 collectively by
contracting a single (in contrast to the exponentially many in Alg. I)
tensor network, although it is twice bigger than the tensor networks
contracted in Alg. I.

To see how it works, we note that∑
i

|tr(U†Ei)|2 =
∑
i

tr(U†Ei) · tr(UTE∗i)

=
∑
i

tr(U†Ei ⊗ UTE∗i) = tr
(
(U† ⊗ UT)ME

)
,

where UT is the transpose of U and E∗i the complex conjugate of Ei,
both with respect to a fixed orthonormal basis of the state space, and
for each super-operator E = {Ei}, ME :=

∑
iEi ⊗ E

∗
i is the matrix

representation of E [26]. In other words, the quantity
∑
i |tr(U

†Ei)|2
as a whole can be computed by the following steps:

1) introduce for each qubit qj in the ideal circuit an auxiliary one
q′j , and do the same for the noisy circuit;

2) for each (unitary) gate V acting on qj1 , . . . , qj` in the ideal cir-
cuit, add the complex conjugate gate V ∗ acting on q′j1 , . . . , q

′
j`

.
Denote by UE the obtained circuit. Note also that UE consists
of two completely separated circuits: the original one U and
the newly added one U∗;

3) for each unitary gate in the noisy circuit, do the same as
for the ideal circuit; for each noisy gate N = {Nk} acting
on qj1 , . . . , qj` , replace it with the corresponding MN =∑
kNk ⊗N

∗
k , operating on qj1 , . . . , qj` , q

′
j1 , . . . , q

′
j`

. Denote
by EE the obtained circuit;

4) concatenate U†E and EE (again, the order is irrelevant), connect
the corresponding input and output qubits, and contract the
obtained tensor network, as in Alg. I.

Example 4. Back to the noisy circuit shown in Fig. 2 implementing
QFT2. Let N and N ′ be defined as in Example 3. Alg. II requires to
contract the (single) tensor network in Fig. 5. Note that two auxiliary
qubits q′1 and q′2 are added, and the noisy gate N applied on q2 is
replaced by a two-qubit gate MN = pI⊗I+(1−p)X⊗X applied on
q2 and q′2. Similarly,N ′ is replaced by MN ′ = pI⊗I+(1−p)Z⊗Z.
Contracting this tensor network then gives the quantity 16p2 directly,
and the desired Jamiolkowski fidelity p2, coinciding with Example 3.

Compared to Alg. I, the benefit of this new one is obvious: we have
only to contract one single tensor network instead of exponentially
many. When there are a large number of noisy gates, which is
always the case in actual quantum devices since every gate suffers

q′1

QFTT2

H S∗

MN ′

MN

H

QFT †2

H S

H

q1

q2

q′1

q′2

Fig. 5. The tensor network to be contracted in Example 4 using Alg. II.

some degree of noise, this approach will be definitely more efficient.
However, the cost we pay here is that the number of qubits doubles,
and the circuit to be contracted is more complicated. This will offset
the benefit brought by the single tensor network when the number of
noisy gates is quite small. This time-space trade off will be clearly
demonstrated with experimental results shown in Sec. V.

C. Data Structure and Optimisation

Our algorithms for computing FJ(E , U) presented above are both
based on tensor network contraction. To implement these algorithms,
we have to find an efficient data structure to help represent and
manipulate tensor networks. To this end, we employ the recently
proposed Tensor Decision Diagram (TDD) [17]. This software pack-
age represents a tensor as a decision diagram which optimises the
memory consumption. Note that the final TDD of the contracted
tensor network in our algorithms has only one node and the weight
of its incoming edge is exactly the trace needed. Our algorithms
leave more room for optimisation techniques in contracting tensor
networks. We briefly discuss four of them in the following.

Tree decomposition. We have employed the tree decomposition
algorithm proposed in [27] to determine the contraction order for
tensor networks. A tree decomposition is a mapping of a graph into
a tree, while in our circumstances, the graph is the corresponding line
graph of the tensor network and each tree node consists of indices
of the tensor network. An optimal contraction order can be obtained
in a standard way from a tree decomposition [27].

Computed table. In the TDD package [17], a computed table is
used to store all nodes of the decision diagrams generated in each
trace calculation process. Recall that Alg. I computes traces for many
miter-like tensor networks with the same structure. It is therefore
natural to keep only one computed table in the whole process and
maximally reuse the computed results. This idea was first introduced
in [24] in the simulation of noisy quantum circuits, but implemented
with different (more involved) techniques.

Local optimisations. Note that a simple optimisation technique
for tensor network contraction is to eliminate adjacent gates whose
product is the identity operator, for example, a pair of mutually
inverse gates [10, 11]. This is particularly useful in approximate
equivalence checking because, in many cases, the noisy circuit shares
most of the unitary gates with the ideal one except for a few noisy
gates. Furthermore, as the corresponding input and output qubits are
connected to compute the trace, this technique can be used on both
ends of the composed circuit as well.

SWAP elimination. Note that in quantum Fourier transform, a
series of SWAP gates are used to reverse the order of output qubits.
For this type of circuits, we may simply omit these SWAP gates
but instead connect the input qubits to the corresponding outputs
determined by the SWAP gates. Obviously this does not change the
computed trace value.

S† H H S N ′j

H Ni H

q1

q2

(a)

S† S N ′j

Ni

q1

q2

(b)

Fig. 6. (a) The tensor network that needs to be contracted in approximate
checking the noisy circuit in Fig. 2 against the ideal one in Fig. 1, and (b)
the simplified one using the optimisation techniques in Sec. IV-C.

Example 5. Back to the noisy circuit shown in Fig. 2, but this time
we assume that the ideal circuit is given explicitly in Fig. 1. Then
according to Alg. I, we have to contract tensor networks with the
form shown in Fig. 6 (a). Using the optimisation techniques presented
above, the two SWAP gate can be eliminated by reconnecting the
inputs and outputs and the four H gates can be cancelled locally.
Consequently, we only have to contract the much simplified tensor
network shown in Fig. 6 (b).

V. EMPIRICAL EVALUATIONS

In this section, we evaluate the effectiveness of our algorithms by
comparing with the Qiskit process fidelity method. We also illus-
trate how our algorithms perform as the number of noises increases.
Finally, the utility of the computed table in saving computations for
Alg. I is demonstrated. We implement the algorithms using Python3
and conduct experiment on a laptop with Intel i7-1065G7 CPU and
8GB RAM. The optimisation technologies of tree decomposition and
computed table (cf. Sec. IV-C) are incorporated. However, in order
to make a fair comparison with Qiskit’s corresponding method, local
optimisations and SWAP elimination are excluded.

A. Scalability With the Number of Qubits

Baseline We compare the time and memory consumption of our
algorithms with the corresponding Qiskit implementation. To this end,
we first transform the ideal circuit and the noisy one into Qiskit
classes Operator and SuperOp, respectively. Then the method
process fidelity is called to calculate the fidelity.

Benchmarks We experiment on some well-known algorithms,
such as Bernstein-Vazirani algorithm (bv) [28], Quantum Fourier
Transform (qft) [25], Grover algorithm [5], as well as benchmarks
appeared in real quantum tasks, such as Quantum Volume (qv)
[29], Modular Multiplication (7x1mod15) [18], and Randomised
Benchmarking (rb) [30]. All of our benchmarks are from [24].

For noisy implementations, we randomly insert some depolarisa-
tion noises (see Example 2) to model the realistic errors that occur
in real NISQ devices. The numbers of noises range from 1 to 14 and
the probability parameter of the noisy gate is set to be 0.001 (i.e.,
p = 0.999 in Example 2), representing the state-of-the-art design
technology [31]. It is worth noting that the selection of p does not
affect the performance of the algorithms.

Results Table I summarises the experimental results of the Qiskit
process fidelity method and our algorithms. In the experiment,
the time-out and memory bound are set as 3600 seconds and 8GB,

TABLE I
EXPERIMENT RESULTS

Circuit n |G| k
Qiskit Alg.II Alg. I

time (s) time (s) nodes time (s) nodes
rb 2 7 6 0.03 0.10 16 24.34 6
qft2 2 7 2 0.05 0.05 12 0.14 8
grover 3 96 4 0.15 3.56 283 23.58 38
qft3 3 18 7 0.16 0.53 116 230.82 13
qv n3d5 3 50 2 0.21 0.91 32 1.55 16
bv4 4 11 7 0.24 0.17 30 210.48 8
7x1mod15 5 14 3 4.29 0.18 14 1.39 10
bv5 5 14 6 5.13 0.26 22 64.01 8
qft5 5 55 3 31.90 2.44 270 4.07 62
qv n5d5 5 100 3 20.12 10.82 272 33.82 256
bv6 6 17 14 258.15 0.48 30 TO TO
qv n6d5 6 150 1 1158.10 18.54 256 8.94 256
qft7 7 112 6 MO 33.72 1092 391.74 345
qv n7d5 7 150 2 MO 72.17 928 151.04 1024
bv9 9 26 6 MO 0.52 46 117.18 8
qv n9d5 9 200 3 MO 82.98 962 361.29 1673
qft9 9 189 2 MO 131.41 2820 27.32 1216
qft10 10 235 2 MO 595.30 15753 194.08 3012
bv13 13 38 4 MO 0.81 16 11.48 8
bv14 14 41 4 MO 0.86 14 14.31 8
bv16 16 47 9 MO 1.61 22 TO TO

* n, |G|, k are, respectively, the numbers of qubits, gates, noises. The
‘nodes’ columns record the maximum numbers of the nodes of the TDDs
constructed in the calculation process.
* ‘TO’ stands for time out, ‘MO’ stands for out of memory.

respectively. Note that in Qiskit class SuperOp, a super-operator
in an n-qubit system is stored as a 22n × 22n complex matrix,
which is extremely space-consuming. For example, at least 64GB
memory space is needed to describe an 8-qubit super-operator using
the data type complex128. Consequently, the baseline algorithm can
only process circuits with at most 7 qubits on our computer with
8GB RAM. Even for the two 7-qubit circuits qft7 and qv n7d5,
process fidelity fails due to memory overflow.

From Table I we can see that, when the number of qubits is small
(≤ 5), the time consumptions of Qiskit and Alg. II are very close,
but when the number of qubits becomes 6, Alg. II runs faster than
Qiskit in several orders of magnitude. The table further shows that our
algorithms scale well when the number of qubits increases from 6
to 16. This is partially due to that we adopt the decision diagram
representation, where the minimum number of complex numbers
needed to store for a TDD with m nodes is only 2m− 1.

From the table we also observe that, when the number of noises
is small, Alg. I could be more efficient than Alg. II, but when the
number of noises becomes greater this will be changed. The following
subsection illustrates this in more details.

B. Scalability With the Number of Noises

In this subsection we examine the performance of Algs. I and II
when the number of noises increases.

Benchmarks We select Bernstein-Vazirani algorithm and Quantum
Fourier Transform as our benchmark circuits of this part. The
numbers of qubits in these circuits range from 3 to 5.

Results The results are summarised in Fig. 7, where the poly-
line ‘bv3’ represents the logarithm of the time consumption ratio
log(t1/t2) of the two algorithms on the 3-qubit Bernstein-Vazirani
algorithm, and the meaning of other polylines is similar. From the
figure, we can see that when there is only one noise, for most of the
circuits, we have log(t1/t2) < 0, which means t2 > t1, i.e., the time
consumption of Alg. II is bigger than that of Alg. I. But when the
number of noises increases, log(t1/t2) increases linearly, meaning
that the running time of Alg. I increases exponentially compared to
that of Alg. II. This suggests that Alg. II is more suitable when the
circuit contains many noisy gates.

Fig. 7. The comparison of the two algorithms as the number of noisy gates
increases. The horizontal axis is the number of noises and the vertical axis is
log(t1/t2), where t1 and t2 are the time for Alg. I and Alg. II respectively.

TABLE II
UTILITY OF THE COMPUTED TABLE

Noise
num

bv3 bv4 bv5
Opt. Ori. Rate Opt. Ori. rate Opt. Ori. Rate

1 0.05 0.10 0.50 0.11 0.13 0.82 0.10 0.17 0.56
2 0.17 0.44 0.38 0.35 0.53 0.66 0.30 0.67 0.45
3 0.63 1.84 0.34 1.06 2.20 0.48 1.00 2.63 0.38
4 2.26 7.52 0.30 3.87 8.76 0.44 3.89 10.83 0.36
5 8.55 34.03 0.25 15.91 34.09 0.47 15.13 44.07 0.34
6 37.24 133.59 0.28 57.87 142.44 0.41 62.77 182.12 0.34
7 142.92 535.77 0.27 225.86 584.75 0.39 254.34 735.31 0.35
8 593.56 2119.26 0.28 913.23 2445.28 0.37 1090.03 3051.05 0.36

SUM 785.39 2832.56 0.28 1218.27 3218.18 0.38 1427.56 4026.87 0.35

* Running time (in seconds) of Alg. I w/ and w/o computed tables.
* The rate is calculated by Opt./Ori.

C. The Utility of the Computed Table

To test the optimisation technique of introducing computed tables
(see Sec. IV-C), we check the noisy implementation of Bernstein-
Vazirani algorithm using Alg. I, with the numbers of qubits and noises
ranging from 3 to 5 and from 1 to 8, respectively. Table II shows
the experimental results where the columns ‘Ori.’ and ‘Opt.’ record,
respectively, the running time of Alg. I without and with the shared
computed table. It can be observed that an average of 72%, 62%, and
65% of time consumption can be saved for these circuits by reusing
the computed table, which is comparable to the result of [24].

VI. CONCLUSION AND FUTURE WORKS

Although the equivalence checking of quantum (noiseless) circuits
has been studied for more than ten years, little attention was paid to
noisy circuits. In this paper, we defined the approximate equivalence
of noisy quantum circuits and proposed two algorithms to check it.
Our algorithms are based on calculating the Jamiolkowski fidelity,
which is reduced to calculating the traces of miter-like tensor net-
works. We implemented our algorithms by using the newly proposed
data structure TDD. When compared with the current Qiskit method
for calculating the Jamiolkowski fidelity, experiments on various real
benchmark circuits show that our algorithms outperform in both
efficiency and scalability, especially when the circuits have five or
more qubits. When comparing our algorithms, Alg. II is more efficient
when many errors occur in the noisy circuit and Alg. I works better
when errors are rare. In addition, for the purpose of approximate
equivalence checking, as we often only need to calculate a small part
of the involved trace terms, Alg. I may be more attractive.

Future work will incorporate more optimisation techniques like
local optimisations and SWAP elimination (cf. Sec. IV-C) in the
implementation of our algorithms. We will also consider how to select
a small subset of trace terms to efficiently approximate the fidelity
computation in Alg. I.

REFERENCES

[1] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Trans. Computers, vol. 35, no. 8, pp. 677–691, 1986.

[2] P. Molitor and J. Mohnke, Equivalence Checking of Digital Circuits:
Fundamentals, Principles, Methods. Springer, 2007.

[3] A. Mishchenko et al., “Improvements to combinational equivalence
checking,” in ICCAD. ACM, 2006, pp. 836–843.

[4] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM Rev., vol. 41, no. 2,
pp. 303–332, 1999.

[5] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in STOC. ACM, 1996, pp. 212–219.

[6] J. Biamonte et al., “Quantum machine learning,” Nat., vol. 549, no.
7671, pp. 195–202, 2017.

[7] F. Arute et al., “Quantum supremacy using a programmable supercon-
ducting processor,” Nat., vol. 574, no. 7779, pp. 505–510, 2019.

[8] Y. Cao et al., “Quantum chemistry in the age of quantum computing,”
Chem. Rev., vol. 119, no. 19, pp. 10 856–10 915, 2019.

[9] G. F. Viamontes, I. L. Markov, and J. P. Hayes, “Checking equivalence
of quantum circuits and states,” in ICCAD. IEEE, 2007, pp. 69–74.

[10] S. Yamashita and I. L. Markov, “Fast equivalence-checking for quantum
circuits,” in NANOARCH. IEEE, 2010, pp. 23–28.

[11] L. Burgholzer and R. Wille, “Advanced equivalence checking for quan-
tum circuits,” arXiv preprint arXiv:2004.08420, 2020.

[12] R. Wille et al., “Equivalence checking of reversible circuits,” in ISMVL.
IEEE Computer Society, 2009, pp. 324–330.

[13] L. Burgholzer and R. Wille, “The power of simulation for equivalence
checking in quantum computing,” in DAC. IEEE, 2020, pp. 1–6.

[14] R. Wille, N. Przigoda, and R. Drechsler, “A compact and efficient sat
encoding for quantum circuits,” in 2013 Africon. IEEE, 2013, pp. 1–6.

[15] M. Raginsky, “A fidelity measure for quantum channels,” PHYS REV A,
vol. 290, no. 1-2, pp. 11–18, 2001.

[16] A. Gilchrist, N. K. Langford, and M. A. Nielsen, “Distance measures
to compare real and ideal quantum processes,” PHYS REV A, vol. 71,
no. 6, p. 062310, 2005.

[17] X. Hong et al., “A tensor network based decision diagram for represen-
tation of quantum circuits,” arXiv preprint arXiv:2009.02618, 2020.

[18] G. Aleksandrowicz et al., “Qiskit: An open-source framework for
quantum computing,” 2019.

[19] P. Niemann et al., “Qmdds: Efficient quantum function representation
and manipulation,” IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst., vol. 35, no. 1, pp. 86–99, 2015.

[20] V. P. Belavkin, G. M. D’ariano, and M. Raginsky, “Operational distance
and fidelity for quantum channels,” J Math Phys, vol. 46, no. 6, p.
062106, 2005.

[21] J. Biamonte, “Lectures on quantum tensor networks,” arXiv preprint
arXiv:1912.10049, 2019.

[22] X. Gao and L. Duan, “Efficient classical simulation of noisy quantum
computation,” arXiv preprint arXiv:1810.03176, 2018.

[23] T. Grurl, J. Fuß, and R. Wille, “Considering decoherence errors in the
simulation of quantum circuits using decision diagrams,” in ICCAD.
IEEE, 2020.

[24] G. Li, Y. Ding, and Y. Xie, “Eliminating redundant computation in noisy
quantum computing simulation,” in DAC. IEEE, 2020, pp. 1–6.

[25] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

[26] R. R. Ernst et al., Principles of Nuclear Magnetic Resonance in One
and Two Dimensions. Clarendon Press Oxford, 1987, vol. 14.

[27] I. L. Markov and Y. Shi, “Simulating quantum computation by contract-
ing tensor networks,” SIAM J. Comput., vol. 38, no. 3, pp. 963–981,
2008.

[28] E. Bernstein and U. Vazirani, “Quantum complexity theory,” SIAM J.
Comput., vol. 26, no. 5, pp. 1411–1473, 1997.

[29] N. Moll et al., “Quantum optimization using variational algorithms on
near-term quantum devices,” Quantum Sci. Technol., vol. 3, no. 3, p.
030503, 2018.

[30] E. Knill et al., “Randomized benchmarking of quantum gates,” PHYS
REV A, vol. 77, no. 1, p. 012307, 2008.

[31] S. S. Tannu and M. K. Qureshi, “Not all qubits are created equal: a
case for variability-aware policies for nisq-era quantum computers,” in
ASPLOS. ACM, 2019, pp. 987–999.

	I Introduction
	II Quantum Circuits and Noise
	II-A Quantum Circuits
	II-B Noisy quantum circuits

	III Approximate Equivalence of Quantum Circuits
	IV Algorithms for Approximate Equivalence Checking
	IV-A Algorithm I: Calculate Traces Individually
	IV-B Algorithm II: Calculate Traces Collectively
	IV-C Data Structure and Optimisation

	V Empirical Evaluations
	V-A Scalability With the Number of Qubits
	V-B Scalability With the Number of Noises
	V-C The Utility of the Computed Table

	VI Conclusion and Future works

