
DeepStrike: Remotely-Guided Fault Injection
Attacks on DNN Accelerator in Cloud-FPGA

Yukui Luo�, Cheng Gongye�, Yunsi Fei, and Xiaolin Xu
(� indicates equal contribution)

Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA

Abstract—As Field-programmable gate arrays (FPGAs) are
widely adopted in clouds to accelerate Deep Neural Networks
(DNN), such virtualization environments have posed many new
security issues. This work investigates the integrity of DNN
FPGA accelerators in clouds. It proposes DeepStrike, a remotely-
guided attack based on power glitching fault injections targeting
DNN execution. We characterize the vulnerabilities of different
DNN layers against fault injections on FPGAs and leverage
time-to-digital converter (TDC) sensors to precisely control the
timing of fault injections. Experimental results show that our
proposed attack can successfully disrupt the FPGA DSP kernel
and misclassify the target victim DNN application.

Index Terms—Neural network hardware, Field programmable
gate arrays, Physical layer security

I. INTRODUCTION

The recent advancement of deep learning has made it a
powerful tool in solving various challenging problems with
superb performance. Many real-world applications have high
throughput requirements and a stringent power consumption
budget for the deep neural network (DNN) engines. Hardware-
based DNN accelerators have been proposed and deployed on
different computing platforms, including graphic processing
units (GPUs), application-specific integrated circuits (ASICs),
and field-programmable gate arrays (FPGAs). FPGA has
shown unique advantages among different types of platforms,
offering higher design and implementation flexibility than
ASICs and higher power efficiency than GPUs [1]. Leading
cloud service providers such as Amazon [2] and Microsoft [3]
have integrated powerful FPGAs in their cloud servers, en-
abling machine learning as a service (MLaaS). The commer-
cialization of MLaaS has facilitated deep learning in various
compute-intensive applications, including medical diagnosis
assistance [4] and risk and fraud management [5].

To increase the resource utilization and reduce the cost of
cloud services, many recent works have enabled cloud-FPGA
to be shared by multiple users, i.e., independent tenants utilize
an FPGA chip in their allocated time or concurrently [6], [7].
However, such a co-tenancy usage model of cloud-FPGA also
poses new security issues and creates new attack surfaces. In
[8], Krautter et al. showed successful fault injection attacks on
AES running on an FPGA, in which the adversary utilizes a
periodically enabled power-hungry circuit to disrupt the FPGA
power distribution network (PDN). As a result, the victim AES

This work was supported in part by the National Science foundation under
grants SaTC-1929300, CNS-1916762, and SaTC-2043183.

circuit, sharing the same PDN, generates transient computation
errors which lead to faulty ciphertext outputs. Differential fault
analysis (DFA) then utilizes the faulty outputs to retrieve the
secret key.

The wide deployment of DNNs on cloud-FPGA has ren-
dered DNN engines a new vulnerable victim to potential
security attacks. There have been some prior fault injection
attacks on DNNs, targeting either a microcontroller using
laser beam [9] or DRAMs with software row-hamming [10].
Several recent attacks on DNN FPGA implementations use
hardware fault injection such as memory collisions [11], clock
glitch [12], and weight loading perturbation [13].

This paper presents DeepStrike, a novel fault attack on
DNN accelerators in cloud-FPGA with power-glitching fault
injections. Unlike the existing fault injection attacks requiring
full knowledge of the DNN model implementation, Deep-
Strike deduces the execution details of the victim DNN model
through side-channel analysis. Towards this goal, we propose
to leverage an on-chip delay-sensor built with time-to-digital
converters (TDC) [14], [15]. The delay sensor can identify
the execution of different DNN layers with high temporal
resolution. Informed by such execution details of the victim
DNN model from TDC, the adversary can remotely guide
and launch the fault injections with fine timing control. We
propose a novel power striker to induce glitches on the power
distribution network of cloud-FPGA, disrupting the victim
DNN execution with fault injection. Unlike other commonly
used power-hungry circuits, the proposed circuit scheme can
pass the design rule checking (DRC), making it a viable design
choice. We characterize the fault sensitivities of different types
of DNN layers. With such knowledge, the fault injections are
guided to target the most vulnerable DNN layers, making the
end-to-end attack more efficient and stealthy. We demonstrate
the effectiveness of the proposed attack with LeNet-5 architec-
ture implementation on Xilinx PYNQ-Z1 FPGA with MNIST
dataset.

The rest of the paper is organized as follows. Section II
presents the background and related work. Section III illus-
trates the proposed DeepStrike with important components and
attack procedures. Section IV describes our end-to-end attack
experiments and analyzes the results. Section V concludes this
paper and discusses the future work.

ar
X

iv
:2

10
5.

09
45

3v
1 

 [
cs

.C
R

] 
 2

0 
M

ay
 2

02
1



II. BACKGROUND AND RELATED WORK

A. Threat model

This work adopts a common threat model of cloud-FPGA
used by many other related works [16]–[19]. It can be summa-
rized as follows: 1) Enabled by FPGA virtualization, multiple
users co-reside on an FPGA chip and there is no physical
interaction between the circuits of different users, and these
circuits can execute simultaneously [20]. 2) All users of the
same cloud-FPGA chip share certain hardware resources like
the power distribution network (PDN). 3) The two circuit
applications running on the cloud-FPGA are from a benign
user and an adversary, respectively, i.e., a DNN accelerator
is the victim and a malicious circuit aims to breach the
integrity of the victim execution. Additionally, we consider
two more, strict but realistic, conditions in our threat model:
4) The adversary does not have implementation details of
the target DNN model, nor access to the DNN input and
output (i.e., a black-box attack). 5) The design rule checking
of modern cloud-FPGA does not allow the implementation of
combinational loop circuit, such as a ring-oscillator (RO).

B. Power Distribution Network of FPGAs

Sharing the FPGA hardware resources between different
users make it possible for the adversary to interfere with
other co-located benign users. Among the shared resources,
the PDN of a cloud-FPGA becomes a new attack surface
with all the users sharing it. Recently several attack methods
targeting PDNs have been presented. Confidentiality of the
victim application can be breached by passive side-channel
leakage. Various on-chip sensors, such as TDC and RO, have
been designed to infer the behavior of the victim FPGA
users. For example, the transient power trace of a victim RSA
encryption engine is sensed by RO-based power sensors for
off-line key retrieval [21]. In another prior work [22], TDC is
used to capture the transient voltage fluctuations of the victim
application for side-channel attacks. The TDC-based delay-
sensor is also constructively used as a sensor for defending
the FPGA against power side-channel attacks [23]. Moreover,
the integrity of the victim application on cloud-FPGA can also
be compromised by active fault injections by malicious users,
as detailed next.

C. Related Work

A few recent works have also explored the security of DNN
implementations on FPGAs. In [11], Alam et al. proposed to
attack the DNN model through memory collision. Specifically
, they inject faults to the DNN model by writing complemen-
tary data to both ports of a memory cell. Liu et al. [13] utilized
clock glitches to introduce timing violations to the DNN
accelerators on FPGA so as to cause misclassification. In [24],
Zhao et al. simulated the performance of DNN models under
fault injection attacks. Specially, they randomly choose and flip
certain parameters of the DNN model and test corresponding
model accuracy.

Although these existing attacks demonstrate effectiveness
in reducing the inference accuracy of DNN models, several

important drawbacks have limited their practical applicability:
1) Most work [11] [13] [24] adopt a white-box attack, in which
the adversary has full knowledge of the victim DNN model
as well as implementation details (e.g., the memory location
of DNN parameters), which is impractical. 2) Some attack
scheme [24] is only validated with simulation, which may not
be applicable to real FPGA DNN implementations.

III. DEEPSTRIKE ATTACK

A. Attack Overview

1) The Victim: We target DNN FPGA accelerators as
the victim, leveraging parallel high-performance processing
engines (PEs). These engines are typically implemented by
digital signal processing (DSP) slices, the dedicated hardware
units on modern FPGAs for acceleration. For example, in
DNN accelerators, DSPs are mainly utilized to speed up
multiplications and summations. Additionally, the DSP slice
is also one of the most used hardware components by state-
of-the-art Xilinx Deep Learning Processor Unit (DPU) [25].

2) The Attacker: The proposed attack mainly consists of
two salient parts, namely Attack scheduler and Power striker.
The attack scheduler is important and responsible for 1) Mon-
itoring and profiling the victim DNN model execution through
side-channel leakage (e.g., transient voltage fluctuation) and 2)
Activating the power striker at critical timing points. Directed
by the well-informed attack scheduler, the power striker will
inject faults to the execution of specific DNN layers, in a
targeted fashion. Specially, we utilize the TDC-based delay-
sensor and a novel power-wasting circuit to construct the
attack scheduler and power striker, respectively. More detailed
design schemes of these two parts are presented below.

B. Attack Scheduler

The schematic of the attack scheduler is illustrated in Fig.
1(a), which mainly consists of a TDC-based delay-sensor,
a clock management tile, and an encoder. Taking FPGA
implementation as an example, the TDC circuit is composed
of two elements: DLLUT , a look-up-table (LUT) based delay-
line, and DLCARRY , a carry-chain built with MUX and D
flip-flop. The length of DLLUT determines the resolution of
the TDC-based delay-sensor, and the DLCARRY can scale
the output range of the TDC. During the operation of TDC-
based delay-sensor, two clock signals of the same frequency
will be generated by the clock management tile. One clock
drives the DLLUT , and the other clock is for sampling the
registers connected to the carry-chain outputs. There exists a
phase difference θ between these two clocks, which is used
for calibrating the readout. The direct output of TDC is a
binary vector generated by the carry chain, which consists of
different numbers of consecutive “1s” and “0s” determined
by the voltage/delay. The encoder can convert these direct
outputs of registers into a binary code, i.e., from 128-bit to
8-bit unsigned int value (to count the number of “1”s in the
128 bits), as the sensor readout.

Since the propagation delay of the two clock signals through
the delay-lines is closely impacted by the transient voltage



Layer 𝑖
Max pool

Layer 𝑖 + 1
3×3 convolution

Layer 𝑖 + 2
1×1 convolution

(b)

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7

Samples × 104

120

100

80

60

1 1 1 1 0 0 0… …………

Encoder

128

Output registers

𝐷𝐿𝐿𝑈𝑇
𝐷𝐿𝐶𝐴𝑅𝑅𝑌

Clock 

management tile

𝑝ℎ𝑎𝑠𝑒 = 𝜃

(a)

D
N

N
 

accelerato
r

L
ay

er 𝑖

Onboard 

regulator

𝑉𝐼𝑁

VCCINT

L L
ay

er 𝑖
+
1

L
ay

er 𝑖
+

2

8

Fig. 1: (a) The proposed TDC-based delay-sensor and victim DNN accelerator sharing the power distribution network on an
FPGA. (b) Voltage fluctuation associated with three DNN layers’ execution collected by TDC-based delay-sensor.

level, the TDC sensor readout becomes an indicator of the
real-time voltage. In other words, when the FPGA is executing
applications, the voltage will fluctuate and the readings of
the sensor can depict the voltage profile. As illustrated in
Fig. 1, while the TDC-based delay-sensor shares PDN with
another circuit application (e.g., DNN model), its readout
can be used to profile the voltage fluctuation caused by the
execution of that application. In practical usage, the driving
clock frequency (Fdr) and the length of DLLUT (LLUT )and
DLCARRY (LCARRY ) should be carefully designed to avoid
counting errors.

A primary challenge for a remotely-guided fault attack on a
multi-user FPGA is that the attacker does not have knowledge
of the model execution. To mitigate this issue, we propose
to use the TDC-based delay-sensor to profile and infer the
target DNN model execution. In our preliminary study, we
sequentially execute three layers of a DNN model: a max-
pooling layer, a convolutional layer with a 3 × 3 kernel,
and a convolution layer with a 1 × 1 kernel. Meanwhile,
the TDC readout is collected in parallel. The specific con-
figuration of the TDC-based delay-sensor for this victim is
Fdr = 200MHz, LLUT = 4, LCARRY = 128, and we
calibrate θ to get approximate 90 consecutive ”1” outputs
when the FPGA works under a nominal voltage. Fig. 1(b)
gives a tracing example for the tested DNN execution, which
shows that the sensor readouts clearly present different patterns
for executions of different DNN layers. We also notice clear
“stalls” between different layer executions (the readout stays
around 90), and the fluctuation during convolutional layers’
execution is much larger than that of the max-pooling layer.
Therefore, we conclude that the side-channel leakage of the
victim DNN model execution can be used to build a library
of sensor readout patterns for different types of DNN layers
at different sizes for future attack use.

C. Power Striker

Another important component of the proposed DeepStrike
attack is the power striker. It is a malicious controllable
power-wasting circuit used for aggressively overloading the
shared PDN, incurring well-timed voltage glitches. The design
requirement for the power striker is even when the malicious
circuit is activated for a short period (e.g., a few clock cycles),

LUT5

I4

I3

I2

I1

I0

LUT5

I4

I3

I2

I1

I0

LUT6_2

O6

I5

1

0

O5
LDCE

D

Q

Start

LDCE

D

Q

GE

CLR

G

GE

CLR

G

Fig. 2: A controllable power striker design scheme.

it draws a significant amount of power, creating an immediate
voltage drop on the shared PDN. As a result, the voltage
drop increases the signal propagation time in FPGA compo-
nents that share the same PDN, inducing timing violations
and computation or data loading faults [8]. Previous works
mainly utilized LUT-based combinational loops (e.g., RO) to
construct such malicious circuits [6], [26]. Although those
circuit schemes are effective, they trigger design rule checking
(DRC) warnings and are commonly banned by security and
privacy-sensitive cloud-FPGAs [27].

We develop a circuit scheme that can pass the DRC check-
ing by inserting data latches in the combination loop, for
our power striker. Fig. 2 depicts the basic circuit cell, which
utilizes a two-output LUT (LUT6 2) with two latch registers
(LDCE). When enabled (Start=1), the LUT6 2 is config-
ured as two parallel inverters, with their outputs, O6 and O5,
connected to two LDCEs, respectively, to form two oscillating
loops. Compared with the combinational loop, this method
increases the loop’s length and utilizes one LUT for two self-
oscillating loops. As a result, the proposed circuit scheme can
provide higher attack efficiency with less hardware overhead.
Moreover, it can pass the DRC checking. An adversary of
cloud-FPGA can apply a large number of such power striker
cells, and use the Start signal to control the duration of their
activation.

D. Attack Scheduler and Power Striker Integration

As described in Sec. II-A, our threat model assumes that
a practical attacker may not have any knowledge about the
victim DNN model’s parameters. Thus, a fine-tuning attack on
the specific weight or pixel computing is impossible. Instead,



DeepStrike targets at activating the power striker multiple
times, starting at a guided moment by the attack schedule, i.e.,
during the execution of a particular DNN layer. As illustrated
in Sec. III-B, the TDC-based delay-sensor can be used to track
and characterize the execution of target DNN. Once enough
characteristics (e.g., time duration, TDC readout, etc.) for each
distinct DNN layer are gathered, we can build a profile to assist
with scheduling the activation of the power striker. Practically,
the profiling procedure can be accomplished during the normal
target DNN model, i.e., classifying different input images.

Fig. 4 shows the integrative schematic of the attack sched-
uler and power striker, including some other auxiliary cir-
cuits/components like the DNN start detector and signal RAM.
The design schemes and functionalities of these components
are as follows.

1) DNN start detector: From Fig. 1(b), we can observe that
there always exist small voltage fluctuations (i.e., the “stall”
zones) on the FPGA PDN even when the DNN models are not
being executed. These small voltage fluctuations, although can
be detected by the TDC-based delay-sensor, cannot be used
to guide the proposed attacks. Thus, to filter out the impact of
these small voltage fluctuations, we need to purify the voltage
fluctuation sensed by the TDC sensor. To realize this, we build
the DNN start detector with a finite-state machine (FSM), with
its inputs connected to outputs of the TDC-based delay-sensor.
We partition the 128-bit TDC output into five zones, and select
1-bit from each zone as the input of the DNN start detector.
Leveraging such voltage fluctuation purification, we apply the
DNN start detector to detect the DNN model (The same DNN
model we used in Fig. 1)execution, and the results are shown
in Fig. 3. Compared to the results by the TDC-based delay-
sensor shown in Fig. 1(b)), the purified voltage fluctuation can
provide more accurate and controllable guidance to start the
DeepStrike attack. For example, when the DNN start detector
gets an input Hamming weight (HW) equals to 3, indicating
the first layer - MaxPool just starts, we set up a “start point”
for our attack scheduler.

Layer 𝑖
Max pool

Layer 𝑖 + 1
3×3 convolution

Layer 𝑖 + 2
1×1 convolution

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7

Samples × 104

D
N

N
 s

ta
rt

 

d
et

ec
to

r 

in
p

u
t 

(b
in

)

Fig. 3: Input of the DNN start detector.

2) Signal RAM: To make the proposed attack configurable,
we develop another component signal RAM with the on-chip
BRAM, which is used to store the attacking scheme file. The
attacking scheme file mainly includes three parameters: attack
delay, attack period, and the number of attacks. Specifically,
these parameters are denoted as binary vectors and each
bit represents the action of DeepStrike during a separate
clock cycle. We use “1” to enable and “0” to disable the
power striker, respectively. Therefore, the parameter number of

Enable

T
D

C
-b

ased
 d

elay
-sen

so
r

DNN accelerator

PE

Power striker

Signal RAM

DNN start detector

Victim region Attacker region

PE

Computing 

Engine

D
ata b

u
ffer

PE

PE

PE

Incorrect 

result

Driving clock

Sampling clock

Attacking 

scheme 

file

… Attack delay

Attack periodStart point

2

3

1

Fig. 4: Integrative schematic of DeepStrike.

attacks can be configured by using different 1/0 composition.
Additionally, to control the time duration (i.e., clock cycles)
elapsed before enabling a power strike, we define attack delay,
which is represented by a series of “0s”. With the signal RAM
(i.e., on-chip BRAM) being read at a specific clock frequency
fsRAM , the duration of attack delay is jointly determined by
the number of “0s” in it and fsRAM . For example, a attack
delay consisting N “0s” will pause DeepStrike for N clock
cycle, with time duration of N

fsRAM
. Similarly, the duration of

attack period is configured in this way with consecutive “1”s.
In summary, the proposed DeepStrike attack can be ac-

complished in three steps: 1) Profiling the voltage fluctuation
associated with the victim DNN accelerator execution to make
a corresponding attack plan, i.e., determining these different
parameters like number of attacks, attack delay, etc., store
these parameters in the signal RAM; 2) Using DNN start
detector to sense the execution of victim DNN accelerator;
3) Launching DeepStrike following the pre-scheduled attack
strategy in signal RAM. We would like to highlight that with
the proposed attack scheme, the attacker have high flexibility
to load different attack strategies at run-time, i.e., dynamically
target at different DNN layers.

IV. EXPERIMENTAL SETUP AND VALIDATION RESULTS

In this section, we present an end-to-end attack experiment
on a PYNQ FPGA evaluation kit, which is an open-source
project that integrates the Linux system with the Xilinx FPGA.
Here we apply the Xilinx PYNQ-Z1 FPGA board to build a
prototype of the cloud-FPGA. Without loss of generality, in
our experimental validation, we choose an open-source DNN
accelerator engine [28] and train a LeNet-5 neural network
[29], [30] with the MNIST dataset [31]. In our threat model,
the hypervisor in the virtualized cloud-FPGA will compile and
combine applications of all the tenants (including the attacker’s
malicious circuits and the victim’s DNN inference), generate
an unified bitstream and deploy it on one FPGA device [7].
Note that although the tenants co-locate on the FPGA, they
do not share hardware including the I/O bus, BRAM, and
clock sources. In our experiment, the adversary connects to



Fig. 5: Case study: apply DeepStrike on MNIST application.

this prototyped cloud-FPGA from the UART serial port, with
which the adversary can gather on-chip side-channel leakage
from the TDC-based delay-sensor and dynamically configure
the the attacking scheme file.

The pre-trained LeNet-5 model on the MNIST dataset is
deployed on the prototype cloud-FPGA. The data type of
the model is fix-point 8-bit value, with 3-bits for the integer
and the rest for the mantissa representation. The MNIST
dataset includes 60, 000 training samples and 10, 000 testing
samples. Our un-tampered model achieves a testing accuracy
of 96.17% on the FPGA. The architecture of LeNet-5 is shown
in Fig. 5(a), which consists of two convolutional layers for
feature extraction (Conv1 and Conv2), one pooling layer for
downsampling (Pool1), and two fully connected layers (FC1
and FC2) for classification. The output of the FC2 is a vector
of 10 prediction scores, which go through a SoftMax layer to
pick the class with the largest score as the prediction. Note
as we use the unsigned fixed-point quantization method, the
activation function we use in this case study is the hyperbolic
tangent (tanh).

We target each layer separately and apply a series of
fault injections while the corresponding acceleration kernel
is executing, guided by the attack scheduler. The power
striker circuit consumes 15.03% logic slices, and each power
glitching strike lasts for 10ns. We observe the inference
accuracy to evaluate the end-to-end effect of fault injections
on different layers. Fig. 5 (b) shows that the testing accuracy
drops as the number of power strikes increases. Note that
due to the different execution length of different layers, the
maximum number of strikes on different layer also varies.
As observed in the results, CONV2 is the most fault-sensitive
layer, and the maximum accuracy drop reaches 14% when
4500 strikes are applied. Additionally, we provide the results
of non-TDC guiding attacks as our baseline, which is the top
curve, where the fault injections happen randomly along with
the model execution. We conclude that our proposed TDC
guiding DeepStrike fault attack is much more efficient than
the blind attack while applying the same attack intensity.

Moreover, the experimental results show that the vulnerabil-
ity to the power glitching fault injections of each layer depends
on the layer’s type, the layer’s size, and its execution time. As
CONV2 is larger than CONV1 and takes longer to execute,

more fault injection strikes can be applied onto CONV2 and
result in the largest testing accuracy reduction. FC1 takes the
longest time to execute. However, it is a fully connected layer
and only adds k × k prior multiplication results to generate
one pixel in a feature map. Convolution layers contain more
complex multiplications. We find that these most vulnerable
layers (e.g., CONV2 and FC1 ) are implemented with DSP
slices. One reason that DSP slice-based DNN layers are more
vulnerable lies in the design rules. To increase the performance
of the DNN accelerators, the designers usually adopt double-
data-rate while using DSP, enabling doubled running speed of
the DSP slices compared to other components. This design
choice, although makes the DSP slices faster, also renders it
more vulnerable to fault injection attacks due to the tighter
timing constraints.

A. Fault Characterization of DSP Slices under Power Strikes
We designed experiments to investigate the faults in DSP

slices caused by power glitching strikes. The layout of the
attack is shown in Fig. 6a. We put the victim circuit far from
the attacker circuit to minimize the influence of temperature
changes, which sharing the PDN. The DSP slices are config-
ured to add two inputs and multiply with the third input, which
is the configuration for convolution computation 1. Since the
DSP slices do not have a result-ready signal, we designed
a circuit that fetches the result of the DSPs after five clock
cycles. This circuit works correctly and the timing analysis of
the FPGA mapping tool does not complain about violations
of timing constraints.

We fed the DSP slices 10,000 randomly generated inputs
and launched the power striker circuit for one clock cycle at
the same time we enabled the DSP slices. According to our
experiment, we only need to enable the attack for one cycle to
induce fault in a single DSP computation operation. Enabling
the power striker circuit longer will work as well but it may
increase the temperature of the FPGA chip or even crash it.

We observed two types of faults from the experimental
results, namely 1) Duplication fault, where the DSP output
is the correct result of the previous input. In this case, the
DSP computation simply takes more cycles to complete and
cannot produce the correct result in time; and 2) Random
faults, where the faulty output does not have obvious patterns.
In Fig. 6b, we demonstrated both types of faults, in which
the x-axis is the number of power striker cells, and the y-
axis denotes the fault rate, number of faults divided by the
total number of experiments. The experimental result shows
that we can control the fault injection intensity by adjusting
the number of power striker cells. For example, the total fault
rate2 is nearly 100% with 24,000 power strike cells.

In conclusion, the power glitching fault injection results in
random faults or duplication faults in the DSP slices. With

1The fully connected layers are usually implemented on DSP slices with
these configurations as they could be treated as a special case of convolution

2The total fault rate is the sum of duplication fault rate and random fault
rate. When launching the proposed attack in practice, much fewer power
striker cells is needed because other victim components also consume power,
further reducing the voltage of the PDN and strengthening fault injection.



Power 

plundering 

circuit

Target DSP 

location

(a) The Xilinx FPGA
(XC7Z020) layout for
DSP fault injection test.

0.5 1 1.5 2 2.5
Number of power strikers 104

0

0.2

0.4

0.6

0.8

1

Fa
ul

t r
at

e

Duplication fault
Random fault
Total fault

(b) Duplication fault rate and ran-
dom fault rate of double data rate
DSP slices with different numbers
of power striker cells.

Fig. 6: DSP fault injection test: configurations and results.

duplication faults, the correct product appears in the next
clock cycle, and can be absorbed by more serial summations,
mitigating the adverse impact of stale results in FC layers.
Also convolutional layers involve much more multiplications,
possibly experiencing more random faults and making them
more vulnerable. These experimental results well explain that
FC1 achieves much less accuracy reduction than CONV2 under
the same number of fault injection strikes.

V. CONCLUSION AND FUTURE WORK

We demonstrate DeepStrike, a remotely-guided power
glitching fault injection attack targeting DNN accelerators
in cloud-FPGA. Different from other attacks that require
implementation details of the victim DNN model, Deep-
Strikeleverages the voltage fluctuations associated with the on-
chip DNN model execution as a side-channel information, to
launch well-scheduled fault injection attacks. We prototyped
an experimental cloud-FPGA on a PYNQ FPGA development
board, and conducted end-to-end attacks to validate the effec-
tiveness of the proposed attack scheme on a LeNet-5 neural
network trained with the MNIST dataset. The experimental
result demonstrates that the proposed attack scheme can sig-
nificantly lower the inference accuracy. We also investigate
the possible reasons why different DNN model layers show
different resilience against power glitching fault injections.

In future work, we plan to extend the proposed attack
scheme to more complicated execution environments, e.g.,
more than three tenants on the FPGA, which may be rep-
resentative multi-user scenarios for cloud-FPGA. We will
also consider more DNN architectures, and experiment with
commercial cloud-FPGAs.

REFERENCES

[1] E. Nurvitadhi, G. Venkatesh et al., “Can fpgas beat gpus in accelerating
next-generation deep neural networks?” in FPGA.

[2] “Amazon ec2 f1,” https://aws.amazon.com/ec2/instance-types/f1/.
[3] “Inside the microsoft fpga-based configurable cloud,” 2017,

https://azure.microsoft.com/en-us/resources/videos/build-2017-insid
e-the-microsoft-fpga-based-configurable-cloud/.

[4] “Ai, machine learning as a service set to overhaul healthcare,”
https://healthitanalytics.com/news/ai-machine-learning-as-a-service-set

-to-overhaul-healthcare.
[5] “Global machine learning as a service (mlaas) market is projected to

reach a value of over usd 12.7 billion by 2027,” https://forencisresear
ch.medium.com/global-machine-learning-as-a-service-mlaas-market-i
s-projected-to-reach-a-value-of-over-usd-12-7-7aca50e695b.

[6] G. Provelengios, D. Holcomb, and R. Tessier, “Power wasting circuits
for cloud fpga attacks,” in 2020 30th International Conference on Field-
Programmable Logic and Applications (FPL).

[7] Y. Zha and J. Li, “Virtualizing fpgas in the cloud,” in Proceedings of
the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems.

[8] J. Krautter, D. R. E. Gnad, and M. B. Tahoori, “Fpgahammer: Remote
voltage fault attacks on shared fpgas, suitable for dfa on aes,” IACR
TCHES, Aug. 2018.

[9] J. Breier, X. Hou, D. Jap, L. Ma, S. Bhasin, and Y. Liu, “Practical fault
attack on deep neural networks.” New York, NY, USA: Association
for Computing Machinery, 2018.

[10] F. Yao, A. S. Rakin, and D. Fan, “Deephammer: Depleting the intelli-
gence of deep neural networks through targeted chain of bit flips,” in
29th USENIX Security Symposium (USENIX Security 20).

[11] M. M. Alam, S. Tajik, F. Ganji, M. Tehranipoor, and D. Forte, “Ram-
jam: Remote temperature and voltage fault attack on fpgas using memory
collisions,” in FDTC’19.

[12] A. S. Rakin, Y. Luo, X. Xu, and D. Fan, “Deep-dup: An adversarial
weight duplication attack framework to crush deep neural network in
multi-tenant fpga,” arXiv preprint arXiv:2011.03006, 2020.

[13] W. Liu, C. H. Chang, F. Zhang, and X. Lou, “Imperceptible misclas-
sification attack on deep learning accelerator by glitch injection,” in
DAC’2020.

[14] D. R. Gnad, F. Oboril, and M. B. Tahoori, “Voltage drop-based fault
attacks on fpgas using valid bitstreams,” in FPL’17.

[15] K. M. Zick, M. Srivastav, W. Zhang, and M. French, “Sensing
nanosecond-scale voltage attacks and natural transients in fpgas,” in
FPGA’13.

[16] C. Ramesh, S. B. Patil et al., “Fpga side channel attacks without physical
access,” in FCCM’18.

[17] I. Giechaskiel et al., “Leaky wires: Information leakage and covert
communication between fpga long wires,” in AsiaCCS.

[18] S. Yazdanshenas and V. Betz, “The costs of confidentiality in virtualized
fpgas,” IEEE TVLSI, 2019.

[19] A. Khawaja, Landgraf et al., “Sharing, protection, and compatibility for
reconfigurable fabric with amorphos,” in 13th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 18).

[20] Y. Luo and X. Xu, “Hill: A hardware isolation framework against
information leakage on multi-tenant fpga long-wires,” in International
Conference on Field-Programmable Technology (ICFPT). IEEE, 2019,
pp. 331–334.

[21] M. Zhao and G. E. Suh, “Fpga-based remote power side-channel
attacks,” in 2018 IEEE Symposium on Security and Privacy (SP).

[22] F. Schellenberg et al., “An inside job: Remote power analysis attacks
on fpgas,” in 2018 DATE.

[23] D. R. Gnad, S. Rapp et al., “Checking for electrical level security threats
in bitstreams for multi-tenant fpgas,” in FPT.

[24] P. Zhao, S. Wang, C. Gongye et al., “Fault sneaking attack: A stealthy
framework for misleading deep neural networks,” 2019.

[25] Xilinx. (2020, jul) Zynq dpu v3.2 product guide. [Online].
Available: https://www.xilinx.com/support/documentation/ip documen
tation/dpu/v3 2/pg338-dpu.pdf

[26] T. M. La, K. Matas et al., “Fpgadefender: Malicious self-oscillator
scanning for xilinx ultrascale+ fpgas,” TRETS.

[27] T. Sugawara, K. Sakiyama et al., “Oscillator without a combinatorial
loop and its threat to fpga in data center,” Electronics Letters, 2019.

[28] “Yolov2 accelerator in xilinx’s zynq-7000 soc,” https://github.com/dhm
2013724/yolov2 xilinx fpga.

[29] Y. LeCun et al., “Lenet-5, convolutional neural networks.”
[30] E. Wang, J. J. Davis, and ohters, “A PYNQ-based Framework for Rapid

CNN Prototyping,” in FCCM, 2018.
[31] “The mnist database of handwritten digits,” http://yann.lecun.com/exd

b/mnist/.

https://aws.amazon.com/ec2/instance-types/f1/
https://azure.microsoft.com/en-us/resources/videos/build-2017-inside-the-microsoft-fpga-based -configurable-cloud/
https://azure.microsoft.com/en-us/resources/videos/build-2017-inside-the-microsoft-fpga-based -configurable-cloud/
https://azure.microsoft.com/en-us/resources/videos/build-2017-inside-the-microsoft-fpga-based -configurable-cloud/
https://healthitanalytics.com/news/ai-machine-learning-as-a-service-set-to-overhaul-healthcare
https://healthitanalytics.com/news/ai-machine-learning-as-a-service-set-to-overhaul-healthcare
https://forencisresearch.medium.com/global-machine-learning-as-a-service-mlaas-market-is-projected-to-reach-a-value-of-over-usd-12-7-7aca50e695b
https://forencisresearch.medium.com/global-machine-learning-as-a-service-mlaas-market-is-projected-to-reach-a-value-of-over-usd-12-7-7aca50e695b
https://forencisresearch.medium.com/global-machine-learning-as-a-service-mlaas-market-is-projected-to-reach-a-value-of-over-usd-12-7-7aca50e695b
https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_2/pg338-dpu.pdf
https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_2/pg338-dpu.pdf
https://github.com/dhm2013724/yolov2_xilinx_fpga
https://github.com/dhm2013724/yolov2_xilinx_fpga
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

	I Introduction
	II Background and Related work
	II-A Threat model
	II-B Power Distribution Network of FPGAs
	II-C Related Work

	III DeepStrike Attack
	III-A Attack Overview
	III-A1 The Victim
	III-A2 The Attacker

	III-B Attack Scheduler
	III-C Power Striker
	III-D Attack Scheduler and Power Striker Integration
	III-D1 DNN start detector
	III-D2 Signal RAM


	IV Experimental setup and validation results
	IV-A Fault Characterization of DSP Slices under Power Strikes

	V Conclusion and Future work
	References

