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Abstract—Persistent challenges in making autonomous vehicles
safe and reliable have hampered their widespread deployment.
We believe that formal methods will play an essential role in
the enterprise of ensuring AV safety by providing tools for the
modeling, verification, synthesis, and runtime assurance of AV
systems. In this paper, we outline the progress we and others
have made towards this goal, and the challenges that remain.

Index Terms—Autonomous vehicles, formal verification, design
methodology, cyber-physical systems, machine learning.

I. INTRODUCTION

A decade ago, the development of autonomous vehicles
(AVs) and automated driving systems (ADS) seemed to be
progressing very rapidly, and predictions were made of fully
self-driving cars being widely deployed by the year 2020.
That vision has now been tempered by the challenges of
developing AVs and ADS, none more important than that
of ensuring their safe operation. An important characteristic
of AVs and ADSs is the expanding use of machine learning
(ML) and other artificial intelligence (AI) based components in
them. ML components, such as deep neural networks (DNNs),
have proved to be fairly effective at perceptual tasks, such
as object detection, classification, and image segmentation,
as well as for prediction of agent behaviors. However, ML
components can be easily fooled by so-called adversarial
examples [1], and there have also been well-documented
failures of AVs in the real world for which the evidence points
to a failure (in part) of ML-based perception [2], [3]. The
current crash/disengagement rate per mile for AVs remains
much higher than for human drivers [4], [5].

It is clear that the development process for AVs and ADSs
needs to be improved, but this requires several challenges to be
overcome. First, AVs have all the complexities of traditional
automotive systems, being distributed, highly interconnected
cyber-physical systems (CPS) that integrate hundreds of het-
erogeneous components, contain hundreds of millions of lines
of software, and involve networking, both on board and
externally. Second, they operate in complex environments that
present a huge variety of possible traffic scenarios, with edge
cases that cannot be exhaustively tested and involving dy-
namic and unpredictable agents including humans and human-
operated vehicles. Third, this complex environment is sensed
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through numerous modalities, and, as observed above, there is
extensive use of AI and ML techniques to interpret sensor data
and predict the actions of agents. These ML components tend
to be large black-box models for perceptual tasks for which it
is very difficult, if not impossible, to verify whether they can
ensure safe behaviors when deployed in real life.1

It is our opinion that safety of autonomous vehicles should
be guaranteed against reasonably complete scenarios. To do
so, we need to develop tools that can formally analyze the
behavior of ML-based decision making in the context of
autonomous vehicles and design for safety. Formal analysis
cannot be performed without a mathematically-sound set of
specifications and system characterization including the envi-
ronment in which the system operates.

In this paper, we advocate the use of formal methods
and software tools to address the safety challenges described
above. We discuss four important areas:

• formalisms for modeling the environments of AVs and
capturing the specifications and contracts they must sat-
isfy (Sec. II).

• novel and scalable approaches to the verification and
testing of AVs and ADS (Sec. III).

• tools and techniques for synthesis of AV components,
control strategies, etc., including synthesis of models,
data, controllers, and implementations (Sec. IV).

• techniques for runtime assurance, including runtime mon-
itors, minimal risk maneuvers, and techniques for control
in semi-autonomous systems (Sec. V).

We propose research directions to go beyond the state of the
art in each area, as well as cross-cutting concerns (Sec. VI).

II. FORMAL MODELING AND SPECIFICATION

Any formal analysis must start with defining models of
the system, its environment, and its specifications. Modeling
of AVs presents several challenges due to the complexity of
their environments, the necessity of quantitative metrics for
evaluating their safety, and the complex interactions between
their numerous software and hardware components.

A. Environment Modeling Languages

Even a single sensor of an AV, such as a camera whose
images are fed into a DNN for object detection, can yield

1A more detailed discussion of the challenges of designing robust and
verified ML/AI-based systems can be found in [6].
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ego = EgoCar at 38.6 @ 183.9,

with behavior DriveTo(40 @ 225.2)

ped = Pedestrian at 19.782 @ 225.680,

facing 90 deg relative to roadDirection,

with behavior Hesitate,

with startDelay Range(7, 15),

with walkDistance Range(4, 7),

with hesitateTime Range(1, 3)

Fig. 1. A partial Scenic program for a hesitating pedestrian scenario. [10]

an input space with millions of dimensions. To mitigate this
complexity, we have proposed reasoning with higher-level,
semantic features such as the positions of objects [7].

However, even after moving to a semantic feature space,
environment modeling is still difficult due to the diversity
and complex structure of AV operating conditions. For ex-
ample, generating a test by placing cars randomly on a road
would yield highly unrealistic or even physically impossible
configurations. Real traffic scenarios have complex geometric
structure: e.g., people typically drive in lanes, with several
distinct types of maneuvers. Moreover, it is essential to be
able to test or analyze the system in a particular subspace of
interest: for example, an AV may only be intended to operate
under certain driving conditions; alternatively, we may want
to test the system on variants of a real-world failure case
to validate a candidate fix for the problem. In general, we
need techniques that allow designers to target test generation
(and formal analysis) towards cases of interest, similarly to
constrained-random verification in electronic design automa-
tion or generative fuzz testing in software development.

We have tackled this challenge by developing Scenic, a
domain-specific probabilistic programming language for mod-
eling the environments of AVs and other CPS [8], [9]. A Scenic
program defines a distribution over configurations of objects
and agents in space, as well as their behaviors over time.
Our tools can sample from this distribution to obtain concrete
scenarios which can be executed in a simulator to test (or
train) an AV system. Scenic provides convenient constructs for
geometry, as well as the ability to add constraints declaratively,
which make it possible to define complex scenarios in a con-
cise, readable way: for example, Fig. 1 shows part of a Scenic
program from one of our case studies, where a pedestrian
crosses the street in front of the AV, hesitating along the way.
Scenic can be used for precise environment modeling both
for simulation-based testing and also for formal verification,
playing a similar role to languages such as Verilog.

B. Properties and Contracts

Traditionally, in formal methods, specifications are Boolean,
evaluating to true or false for a given behavior. However, in AI-
based autonomy, it can be useful to develop hybrid Boolean-
quantitative specifications, which blend logical specifications
with objective functions that quantify risk [6]. Additionally,
autonomous vehicles often have multiple objectives of varying

importance, necessitating a way to organize those objectives
in a systematic fashion for use in verification and control, such
as the notion of rulebooks [11] where properties and metrics
can be organized in a hierarchy, compared, and aggregated.

Contracts are mathematical objects that offer rigorous sup-
port for modular and hierarchical system reasoning [12], [13].
A contract represents a design specification split into two parts:
assumptions expected from the environment, and responsibil-
ities assigned to the design element provided its environment
satisfies the assumptions. While the basic theory of contracts
is well established, better tools and specification languages are
needed to implement this theory, particularly for autonomous
systems. Additionally, there is a need to extend the theory to
richer classes of properties, particularly hyperproperties that
go beyond standard safety and liveness properties to capture
quantitative, aggregate specifications, including robustness of
systems and ML components (see, e.g., [14]).

III. VERIFICATION AND TESTING

To scale verification to entire AVs, while integrating au-
tomated analyses and experts’ domain knowledge, we have
focused on a paradigm of formally-guided simulation, im-
plemented in the open-source VerifAI toolkit [15]. VerifAI’s
basic functionality is to falsify closed-loop CPS, that is, to
find environments under which they violate their specifica-
tions. To start, the user defines an abstract feature space
parametrizing the environments and system configurations of
interest; defining this space using a Scenic program enables
placing a prior distribution on the space to guide initial tests.
VerifAI then generates test cases by searching this space using
a variety of sampling and optimization algorithms. For each
test case, we simulate the system and monitor to what extent
its specifications are satisfied or violated. This data is used to
guide subsequent tests, and to analyze where failures occur.

We have successfully used VerifAI to find unsafe behaviors
of an actual AV software stack, both in simulation and in
reality [10]. We modeled a pedestrian scenario in Scenic as
described above, and specified safety properties for the AV
in MTL. VerifAI then simulated over 1,000 tests sampled
from the scenario, finding several dozen safety violations.
Visualizing the data logged by VerifAI, we identified regions
of the search space which were robustly safe, robustly unsafe,
or marginal, and selected representative tests from several such
regions. We then implemented these tests on a test track with
an actual AV and a robotic pedestrian dummy. We found
good qualitative agreement between the AV’s behavior in
simulation and on the track, obtaining several unsafe runs and
one actual collision. These results demonstrate that formally-
guided simulation can be effective in finding undesirable
behaviors of AVs in the real world.

Guaranteeing safety will require a broader range of veri-
fication techniques for CPS and DNNs [16], [17]; however,
existing methods do not scale to systems with complex ML
perception components. We believe that addressing this chal-
lenge will require compositional reasoning [18], with contracts
and abstractions for ML components as mentioned above.



IV. SYNTHESIS

Tools for correct-by-construction synthesis have had a big
impact on the design of certain classes of systems, most
notably of digital circuits through the use of logic synthesis
and equivalence checking in the RTL design flow. Can we
develop a similar toolset for autonomous vehicles?

While this is an important direction for research, it is also
an extremely challenging direction due to the complexity and
heterogeneity of AVs and their components. Compositional
techniques for synthesis are essential for synthesis to scale,
and this can build upon the theory of contracts [12] discussed
in the earlier section, using, e.g., the quotient operation to
find “missing” components [19]. There are two promising
directions in particular we would like to highlight: (i) oracle-
guided inductive synthesis, discussed below, and (ii) semi-
autonomous control, which involves synthesizing controllers
for autonomous systems that work in concert with humans
inside and outside the vehicle. For lack of space, we refer the
reader to previous articles on the second topic [6].
Oracle-Guided Inductive Synthesis: As noted earlier, the use
of ML is widespread in AV components; however, this ML is
based on a standard supervised/unsupervised learning model,
where the generalizability of the learned model is tested using
a held-out test set. Such ML components do not have the
kind of rigorous correct-by-construction properties desired for
safety-critical systems. Can we design ML components and
systems that verifiably satisfy a formal specification?

To achieve this, we suggest to use the paradigm of oracle-
guided inductive synthesis (OGIS), which is also termed
oracle-guided learning [20], [21]. In OGIS, the learning
algorithm interacts with an oracle, such as a verifier, that
provides richer inputs than simply labeled/unlabeled data. A
particularly effective instance of OGIS is counterexample-
guided inductive synthesis (CEGIS). Specifically, the data
set used for training and testing ML components can be
augmented in a counterexample-guided fashion; the resulting
retrained ML components then provide stronger guarantees of
safety than the original components [22], [23].

In [23], we demonstrated using VerifAI to debug and
redesign TaxiNet, an ML-based aircraft taxiing system. Per-
forming falsification from a Scenic program as above revealed
several counterexamples to safety, such as poor performance
at certain times of day (Fig. 2, orange data). We then used
VerifAI to generate a new training set of the same size as
the original, but with better coverage of times of day: this
eliminated the failure case and improved performance overall
(Fig. 2, blue data). Using VerifAI’s cross-entropy sampler, we
could learn a distribution concentrated on counterexamples
and suitable for generating data to augment training sets.

Apart from counterexample-guided retraining, one can also
synthesize abstractions of complex perception components
(such as DNNs) that can be used for correct-by-construction
control. The idea is to synthesize a simplified, but conservative,
abstraction that can be used to synthesize a safe controller that
is robust to failures of perception [24].

Fig. 2. [23] Robustness of MTL safety specification for TaxiNet (original
and retrained) vs. time of day. Positive robustness means the spec is satisfied.

V. RUNTIME ASSURANCE

Techniques for verification and synthesis can only guarantee
safety with respect to a specified operating environment, the
so-called operational design domain (ODD) of the vehicle.
What happens if the vehicle leaves the ODD at run time?
What if there are faults at run time that were not anticipated
at design time? Can we still guarantee safety?

We believe design tools can play an important role, with
two main areas of impact.
Runtime Monitoring: A runtime monitor is a component,
implemented in hardware or software, that determines whether
or not an AV is within its ODD. There are two key questions:
(i) how do we generate accurate runtime monitors, and (ii)
how do we implement efficient, real-time runtime monitors?

The paradigm of introspective environment modeling (IEM)
offers an approach to monitor generation [25]. In IEM, a
tool automatically extracts, given the design of an AV and
models of its sensors, an environment assumption, expressed
in terms of the sensors, under which the AV is guaranteed
to be safe. IEM builds upon research on extracting envi-
ronment assumptions for guaranteed-safe controller synthesis
(see, e.g., [26], [27]). The major challenge is to develop good
sensor models and to synthesize monitors that have low false
alarm rates. Several languages have been developed, with
associated compilation toolchains, to ensure that they are time-
and space-efficient and can operate in real time; see, e.g., the
work on the RTLola system [28].
Safe Fallback and Switching: When the runtime monitor
detects that the AV is about to exit its ODD, it must trigger a
mitigating action that ensures safety, albeit in a more limited
form. We refer to this as the safe fallback action. There are
multiple approaches to safe fallback: (i) defining a minimal
risk maneuver where the AV can ensure safety of its passengers
and people in its environment but may not be able to continue
on its mission, and (ii) invoking an intervention from human
supervisors, either inside the vehicle or via teleoperation.

Design tools are needed to enable designers to program
the safe fallback and reason about its guarantees. The Sim-
plex method for fault tolerance [29] provides an architecture
for switching between a safe fallback controller and the
nominal-mode controller to achieve overall safe operation.
Programming frameworks for implementing Simplex with
real-time guarantees, such as SOTER [30], must be developed.



Additionally, there is a need for methods to automatically
synthesize safe fallback controllers, which may violate some
specifications (e.g. parking in a no-parking zone) in order to
ensure satisfaction of critical safety properties (see, e.g., [31]).

VI. OUTLOOK

We have seen that formal methods tools can help ensure
the safety of autonomous vehicles at all stages of the design
process: modeling, specification, verification, synthesis, and
runtime assurance. In addition to the opportunities we outlined
above, the following cross-cutting challenges across these
categories must also be addressed:
• Scalability of Formal Tools: The efficiency of formal tech-

niques for verification and synthesis needs to be improved
along multiple axes. For simulation-based verification, we
need greater efficiency when running long simulations
while verifying multiple properties/objectives. Advances
in compositional reasoning will be crucial for achieving
scalability, and this requires corresponding advances in
finding good abstractions and contracts for components,
including those based on AI and ML (see [6]).

• Bridging Simulation/Models and Reality: Verification based
on simulations and other models is only meaningful if the
models are faithful to the real system. In our experiments
testing an AV in simulation and on the track, we observed
significant differences in the simulated/real AV trajectories
despite overall qualitative agreement [10]. Bridging this gap
will require techniques for validating system and environ-
ment models, and for bounding the effects of simulator
imprecision and incompleteness on the system.

• Harmonizing with Standards: Several AV safety standards
and frameworks have been proposed or are being developed,
including ISO 26262, ISO/PAS 21448 (SOTIF), UL 4600,
BSI PAS 1881, IEEE P2009 and P2846, and the World
Economic Forum’s Safe Drive Initiative framework [32].
However, these standards and frameworks need strong tool
support so that implementers can check compliance with
applicable standards. We believe formally-grounded tools
and techniques can play a crucial role in this process.
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