
Efficient Error-Correcting-Code Mechanism for
High-Throughput Memristive Processing-in-Memory

Orian Leitersdorf∗, Ben Perach, Ronny Ronen, and Shahar Kvatinsky
Technion - Israel Institute of Technology, Haifa, Israel

{orianl∗, benperach}@campus.technion.ac.il, ronny.ronen@technion.ac.il, shahar@ee.technion.ac.il

Abstract—Inefficient data transfer between computation and
memory inspired emerging processing-in-memory (PIM) tech-
nologies. Many PIM solutions enable storage and processing
using memristors in a crossbar-array structure, with techniques
such as memristor-aided logic (MAGIC) used for computation.
This approach provides highly-paralleled logic computation with
minimal data movement. However, memristors are vulnerable
to soft errors and standard error-correcting-code (ECC) tech-
niques are difficult to implement without moving data outside
the memory. We propose a novel technique for efficient ECC
implementation along diagonals to support reliable computation
inside the memory without explicitly reading the data. Our
evaluation demonstrates an improvement of over eight orders
of magnitude in reliability (mean time to failure) for an increase
of about 26% in computation latency.

Index Terms—Processing-in-memory (PIM), memristor, mem-
ristor aided logic (MAGIC), soft errors, reliability, error-
correcting-code (ECC).

I. INTRODUCTION

Modern computing systems generally involve a separation
of computation from memory, as seen in the von Neumann
architecture. There have been many efforts at improving the
processing and memory units independently, yet recently it
seems that the majority of time and energy is spent on the
data transfer between them [1]. This presents a performance
bottleneck known as the von Neumann bottleneck or the
memory wall, and approaches for resolution include reducing
the distance between computation and memory [2] or employ-
ing several cache memory levels. While these solutions do
alleviate the issue, they still require the fundamental need for
data transfer between computation and memory.

Processing-in-memory (PIM) is an emerging solution which
introduces memory technologies that support both data storage
and computation in the same place, potentially eliminating
the bottleneck. An attractive implementation of PIM is a
resistive memory array, which employs the memristor [3] as
the basic unit of memory and computation. The memristor
is a device that represents data via its resistance, either Low
Resistive State (LRS) or High Resistive State (HRS), with the
unique property where applied voltage changes the resistance.
Memristors have several appealing characteristics, including
their non-volatility, low power consumption, high speed, and
high density in a crossbar array structure [4].

Computation in resistive memory arrays can be based on the
concept of stateful logic: representing data with resistance and

performing calculations using memristors. One such computa-
tion technique is Memristor-Aided loGIC (MAGIC) [5], which
performs functionally complete logic gates, such as NOR and
NOT, inside memristive crossbar arrays. MAGIC operations
can be performed in parallel on all the rows or columns of the
crossbar array, enabling PIM with massive parallelism.

Memristors are vulnerable to soft errors originating from
the diffusion of oxygen vacancies (leading to state drift) [6],
ion strikes [7], [8], and environmental factors [9]. Memristive
PIM solutions are vulnerable since soft errors may change
the operands of subsequent computations undetected (leading
to incorrect results and wasted time/energy). Memory soft
errors are traditionally addressed with error correcting code
(ECC), a technique that uses redundant information to detect
and correct errors [10], [11]. ECC can be implemented along
data transfer (computed along write and checked along read)
in traditional memories with tolerable overhead [10], [11].
However, stateful logic techniques such as MAGIC do not
move the data outside of the crossbar array during computation
and therefore present a challenge for ECC implementations.
Furthermore, performing multiple logic operations in parallel
within the memory crossbar array renders ECC difficult to
update/check in-memory without hindering efficiency (since
large amounts of data can be accessed or changed at once).

We propose a novel implementation of ECC in MAGIC-
based crossbar arrays, centered around continuous ECC cal-
culation (update and check) along diagonals within the mem-
ory. This follows from the fact that MAGIC operations are
performed in parallel across rows and columns, leading to
diagonals having interesting characteristics. Since additional
diagonal wires in the crossbar are not feasible, we mimic
their effect through barrel-shifters. We propose extensions
to the crossbar array to support this technique and show a
significant improvement in reliability (mean time to failure)
of over eight orders of magnitude for a modest increase in
computation latency of about 26%. This paper makes the
following contributions:

• Discussion of ECC techniques and their implementation
in memristive memory processing units.

• Proposal of an efficient in-memory ECC mechanism that
continuously updates/checks multi-dimensional parity.

• Evaluation of reliability for the proposed ECC solution
compared to standard crossbar array, demonstrating over
eight orders of magnitude improvement.

978-1-6654-3274-0/21/$31.00 ©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

ar
X

iv
:2

10
5.

04
21

2v
1

 [
cs

.A
R

]
 1

0
M

ay
 2

02
1

Fig. 1. Memristive crossbar array with NOR operations in (a) rows and (b)
columns. Each scenario performed simultaneously in a single clock cycle.

II. BACKGROUND

A. Memristor Aided Logic (MAGIC)

Standard memristor crossbar arrays involve horizontal word-
lines, vertical bitlines, and memristors at the crosspoints.
Stateful logic techniques for supporting in-memory processing
in these crossbars represent data with resistance and per-
form calculations using memristors. One such example is
Memristor-Aided loGIC (MAGIC) [5], where logic gates such
as NOR/NOT can be calculated between memristors in the
same row/column. The gate is performed by controlling the
voltages along the wordlines and bitlines in such a way that
exploits input/output memristor properties. This solution is es-
pecially attractive as it supports massive parallelism: the same
in-row (in-column) gate can be performed along multiple rows
(columns) at the same time with the same applied voltages, as
demonstrated in Figure 1. This parallelism can be exploited to
reduce computation latency [12] and increase throughput for
Single Instruction Multiple Data (SIMD) operations [13].

The overall memory is typically divided into numerous
crossbars, connected with CMOS. For example, the memris-
tive Memory Processing Unit (mMPU) [14] is divided into
multiple banks, each of which consists of multiple crossbars.
This paper is on a per-crossbar-array basis, i.e., the proposed
extensions are applied to every crossbar array in the memory.

B. Soft Errors in Memristors

Similar to other memory technologies [10], memristors are
vulnerable to soft errors (unintentional temporary changes in
logical state). Causes for these errors include diffusion of
oxygen vacancies (leading to state drift) [6], ion strikes [7],
[8], and environmental factors [9]. These soft errors can
accumulate over time [6], [7], [15] or occur abruptly [8], [9].

Memristor-based PIM is vulnerable to soft errors since
the erroneous data affects future in-memory computation un-
detected, leading to incorrect results. Previously, a refresh
mechanism was proposed to improve the reliability of mem-
ristive memory [6]. This solution entails periodic full-memory
refreshes, periodically resetting the accumulated drift and
avoiding such errors. Yet, there are still accumulated soft
errors that cannot be addressed with refresh (those which
occur between the periodic refreshes). Refresh also does not
address abrupt soft errors. Note that refresh can still be used
in conjunction with the mechanism proposed in this paper.

III. PROPOSED ECC TECHNIQUE

Error correcting code (ECC) employs redundant data
(check-bits) to improve reliability and is used in memories
to avoid silent data corruption [10], [11]. ECC may provide
PIM memory with the ability to detect/correct soft errors.

We assume a PIM model where a desired function is per-
formed by the memory controller translating the function to a
sequence of in-memory logic gates executed by the memristive
memory cells [14]. Implementation of such functions involves
input, intermediate, and output memristors (where the inter-
mediates store temporary data used only within the function).
We focus on soft errors that occur in the function input
memristors before the function is performed and updating the
ECC afterward to reflect the newly-stored function output data.
Soft errors in intermediate memristors and incorrect MAGIC
gate calculations are left for future work.

In non-processing memories, ECC can be implemented
along data transfer using CMOS logic (with low cost compared
to data transfer) [10], [11]. That is, the ECC can be computed
when data is written and checked when read. Yet, PIM
memories make such an implementation not possible as data
can be used and altered within the memory (without being
explicitly read). Furthermore, stateful-logic parallelism makes
many implementations impractical as large amounts of data
can be used and altered simultaneously. Instead, we seek an
ECC mechanism which efficiently supports in-memory logic
operations by using the same principles as the computation,
i.e., by using paralleled memristor-based computation rather
than external CMOS circuit. This implementation must be
capable of both continuously updating the ECC as MAGIC
operations change the data, and also detecting/correcting errors
before they are accessed as inputs for a MAGIC gate.

A possible solution to support ECC for PIM would be to
calculate check-bits horizontally. For example, dividing the
memory into horizontal bytes and declaring the eighth bit of
every byte as a parity bit. Figure 2(a) illustrates this approach
for 4 bits rather than a byte. When performing a single MAGIC
operation in a row, across n rows (similar to Figure 1(a)), we
find that the check-bits could be updated using Θ(1) operations
since for any check-bit only up to one of the representing
data-bits was changed. Yet, when performing an operation in
a column, across n columns (similar to Figure 1(b)), we find
that Θ(n) operations would be required to update the check-
bits – significantly hindering efficiency. Here a single check-bit
had all n of its data-bits altered in this single operation.

Instead, we propose a unique technique of calculating
check-bits along wrap-around diagonals. This solution guar-
antees that for any check-bit, only up to one data-bit can be
altered in any paralleled operation. This possibly remedies the
problem with the previous solution and suggests that an Θ(1)
solution is possible. In addition, we find that this solution
can be calculated independently on both leading (bottom left
to top right) and counter (bottom right to top left) diago-
nals, to provide error-correction capabilities through multi-
dimensional codes [16]. We can visualize these placements by

Fig. 2. (a) ECC for PIM when check-bits are calculated horizontally. The top-right check-bit had all n of its data-bits updated in the single-cycle logic
operation (which included n = 3 gates), requiring Θ(n) cycles to recalculate the check-bit. (b) Proposed solution where check-bits are calculated on both
leading (orange) and counter (blue) diagonals (n = 3). (c) The shift pattern that emerges in the diagonal ECC: the letters shift by column index.

adding check-bits on diagonals as illustrated in Figure 2(b),
yet in Section IV we show that the check-bits are placed in
a dedicated extension. This technique trades off reliability,
complexity, and overhead in the following considerations:

• The code used for check-bits along a diagonal of data-
bits. Increased complexity leads to increased reliability at
the cost of more complex calculations and more overhead.

• The number of data-bits in each diagonal code. We divide
the n×n crossbar in an imaginary grid of m×m blocks,
with check-bits for every diagonal (leading and counter)
of data-bits in every block. Smaller blocks increase
overall reliability at the cost of more data overhead.

We choose to implement a parity code for all leading
and counter diagonals on all blocks. This provides single-
error-correction capability [16] on a per-block basis since any
soft error leaves a signature of the affected leading/counter
diagonals – which can uniquely identify the single error1.
While this diagonal technique inherently supports updating the
check-bits after a MAGIC operation, verifying the check-bits
(to correct errors) requires a separate process. We propose
specific ECC-checking before logic function execution, to
verify that the inputs are correct, and periodic full-memory
checks to address soft errors that occur in areas that are rarely
accessed. Periodic checks alone cannot solve the problem due
to the possibility of accessing data between checks.

This Section considered the concept of continuous parity:
check-bits are updated when only some of the data changes,
using only the difference between the old/new data values
without the other data-bits. Conversely, ECC in traditional
memories is typically computed using all of the relevant data-
bits. The partial-update method can lead to a rare scenario
where a perfectly correct bit is considered incorrect (false
positive). This occurs when writing over a bit that encountered
a soft error, before the bit was checked (in either spe-
cific/periodic checks). Techniques such as locally decodable
codes2 can solve this problem and will be investigated in future
work. This paper does not deal with this rare case.

1Note m must be odd for m × m blocks to have wrap-around diagonals
uniquely index cells. Otherwise, two diagonals may intersect in two locations.

2https://en.wikipedia.org/wiki/locally decodable code

IV. ARCHITECTURE DESIGN

We present extensions to a MAGIC crossbar array to incor-
porate the proposed diagonal technique in an efficient manner
which supports MAGIC parallelism. Previously the check-bits
were visualized as continuations of diagonals, yet additional
wires along diagonals substantially complicate the crossbar
structure (since memristors have two terminals). Instead, we
decide to add an additional memory named Check Mem-
ory (CMEM), to extend the original crossbar-array memory
(MEM). Each bit in the CMEM is a check-bit for some
diagonal of a block in the MEM.

The assumed PIM model enables in-memory logical func-
tion computation using input memristors, intermediate mem-
ristors, and output memristors (see Section III). When per-
forming a MAGIC operation that writes to the output mem-
ristors (writing data that needs to be covered in the ECC), the
CMEM needs to be updated as well. For every such operation,
called a critical operation, the following steps occur:

1) Cancel the effect of the old data-bits on the check-bits.
2) Perform the critical MAGIC operation in the MEM.
3) Add the effect of the new data-bits on the check-bits.

The parity code allows for cancelling and adding effects
as desired through an exclusive or (XOR) operation. To
perform steps 1 and 3, we need to support the transfer of
old/new data from the MEM to the CMEM, where an XOR
operation between the old/new data and the previous check-bit
is performed (and stored as the new check-bit). The CMEM
requires that the data arrive according to the diagonal indices,
but the MEM’s interface (wordlines/bitlines) does not provide
this. To accomplish this, we use barrel shifters to emulate the
diagonal effect following from the pattern seen in Figure 2(c).

In order to detect/correct errors, we check the ECC on
function inputs before function execution. We assume that
function inputs are generally concentrated in the same blocks
(similar to how data is typically stored in bytes), and we
check only those blocks. Since the function can be performed
in parallel along rows (columns) for SIMD operation, then
we propose a method for checking an entire row (column)
of blocks. The row (column) of blocks is copied into the

Fig. 3. Proposed architecture consists of the MEM, CMEM, the connecting
shifters, and the controllers. Control signals are as presented in Fig. 4.

CMEM row-by-row (column-by-column) in m MAGIC NOT
operations. Then, while the MEM is free to perform other
non-critical operations, the CMEM continues by calculating
the XOR of the copied rows (columns). The vector difference
between the computed parity and the stored parity, also known
as the syndrome [17], is computed using XOR. Finally, logic in
the CMEM determines if the syndrome is non-zero (meaning
that a soft error has occurred) and then acts accordingly, with
the CMEM controller, to correct the memory soft error.

Figure 3 shows the proposed design structure. We now
describe in detail the design of each component. Without loss
of generality, we focus on leading diagonals.

A. Memory Structure

We extend the MEM, a single crossbar array, with the
CMEM which stores ECC check-bits for the MEM. While
it seems that the CMEM can be implemented via a single
crossbar array, the possibility for both in-row and in-column
MAGIC operations in the MEM forces the CMEM to be
divided into m crossbar arrays according to block diagonal
indices. Furthermore, the complexity of XOR execution via
NOR operations introduces the desire for dedicated processing
crossbars. Thus, we propose the following CMEM division, as
illustrated in Figure 4, that enables pipelining the operations.

1) Check-bit Crossbars: The check-bits are stored in m
crossbar arrays labeled 0 to m−1 (Figure 4). All crossbars are
of dimension (n/m)×(n/m) with the ith crossbar containing
the check-bits for the ith diagonal in all blocks. That is, the
memristive memory cell (a, b) in check-bit crossbar i stores
the check-bit for the ith diagonal of the block which is a
blocks from the left and b blocks from the top.

2) XOR3: XOR3 is the main operation supported in the
CMEM for both ECC update and ECC check. For ECC update,
the CMEM receives from the MEM both the old and the new
data-bits, and updates the check-bits to (current-check-bits ⊕
old-data-bits ⊕ new-data-bits). For ECC checking, the CMEM
receives m rows (columns) and computes their XOR using a
paralleled XOR3 tree. Note that XOR3 is performed with 8
MAGIC NOR operations.

3) Processing Crossbar: Although the trivial implementa-
tion is to perform the XOR3 gates in the CMEM crossbars
using MAGIC, this effectively stalls the CMEM for 8 cycles
per MEM critical operation and even more for ECC checking.
Instead, we present a pipelined model involving separated

Fig. 4. Structure of the Check Memory (CMEM): check-bit crossbar
arrays (blue), processing crossbars (yellow), checking crossbar (green), and a
connection unit (orange). Control signals connect the CMEM to the controller.

crossbar arrays named processing crossbars which calculate
the XOR3 through MAGIC NOR. The old and new data-bits
are transferred (with MAGIC NOT) directly from the MEM to
a processing crossbar, the old check-bits are transferred from
the CMEM crossbars to the same processing crossbar, and
then the processing crossbar continues with the calculation
for 8 cycles within the processing crossbar, while the MEM
and the CMEM are free to perform other operations3.

4) Checking Crossbar: The Checking Crossbar array is a
row of memristors responsible for evaluating the syndromes to
detect/correct errors. After the syndromes for a row (column)
of blocks is computed via the processing crossbars, it is
transferred to the checking crossbar. Then, through MAGIC
NOR operations [5], the syndrome of each block is compared
to zero (to see if there are any errors to detect/correct). For
cases in which the syndrome is non-zero, sensing circuitry
in the CMEM controller (connected directly to the checking
crossbar) reads the block syndrome of length 2m. Then, a
logical function is performed in the CMEM controller and the
error is detected or corrected (with the correct value being
written into the crossbar).

5) Connection Unit: The connection unit connects between
the shifters, the check-bit crossbars, the processing crossbars,
and the checking crossbar. The connection unit allows the
CMEM controller to apply the necessary voltages on check-
bit crossbars by connecting the crossbar lines vector to the
bitlines/wordlines of the crossbar arrays. This is possible due
to operation symmetry with different check-bit crossbars and
this reduces the peripheral circuitry required in the CMEM
controller. Implementation of the connection unit is similar to
shifters (see Section IV-B).

3There are several special corner cases that should be treated. For example,
when resetting an entire block then the block’s ECC can also be reset directly
rather than being calculated through XOR. With regards to subsequent updates
in the same block, these can be both avoided in function design and addressed
using processing crossbar forwarding.

Fig. 5. (a) The basic implementation unit: m-Shifter constructed from transistors, similar to those in [18], [19]. (b) The combined shifter structure. The inputs
are data received from the MEM (either along the bitlines or the wordlines) divided into vectors of size m (i.e., bitline[m− 1:0], ..., wordline[n− 1:n−m])
corresponding to the data from each block. Each one of these groups can be shifted up to m places, to account for the diagonal effect on a per-block basis.

B. Shifter Structure

The shifters receive the wordlines/bitlines from the MEM
and the row (column) index modular m. The shifters output
2m vectors dw0 , ..., d

w
m−1, d

b
0, ..., d

b
m−1, each of length n/m.

Each vector dwi (dbi) consists of the data-bits collected along
a wordline (bitline) of blocks for diagonals of the ith index.
These blocks are chosen according to the row (column) of
blocks which are affected by the critical MEM operation.

We construct the shifters using transistors and CMOS de-
coders (for the modular shift input), as shown in Figure 5.
The shifters merely reroute the paths connecting the MEM
to the CMEM, meaning that the data transfer between the
MEM and the CMEM is similar to a transfer of data within a
single crossbar array (thus parallelism and efficiency are kept).
Similar shifters have been used in other works [18], [19].
C. Controllers

Memory controllers in PIM designs extend the traditional
interface of reading/writing to include in-memory computa-
tion. Controllers for MAGIC-based crossbars, such as the
CMOS mMPU controller [14], implement this interface by
applying voltages on the crossbar array wordlines/bitlines.
The MEM controller is similar to these controllers, with the
addition of CMOS logic signals for coordinating operations
with the CMEM controller. The CMEM controller is also
similar to standard controllers since it has indirect access to the
check-bit crossbars through the connection unit. Furthermore,
the CMEM controller contains the Processing Crossbar (PC)
controllers which consist of simple finite state machines that
perform the pre-defined XOR3 steps.

V. RESULTS

A. Reliability

We seek to evaluate the reliability improvements of the
proposed architecture compared to a baseline of no ECC. In
the proposed model, ECC is implemented on a per-block basis
that is capable of single-error-correction [16]. ECC is checked
both periodically and on function inputs. For the reliability
analysis, we assume the worst case in which the time between
ECC checks for a specific bit is this ECC-checking period.

10−5 10−3 10−1 101 103

1015

1012

109

106

103

100

Memristor Soft Error Rate (FIT/bit)

M
em

or
y

M
T

T
F

(h
ou

rs
) Baseline

Proposed ECC

Fig. 6. 1GB Memory Mean-Time-To-Failure (MTTF) sensitivity analysis of
proposed and control designs for varying memristor Soft Error Rates (SERs).
For reference, Flash memory SER is approximately 10−3 · FIT/bit [10].

We define the sensitivity analysis as follows. Assume soft
errors of memristors are distributed uniformly and indepen-
dently and have a constant Soft Error Rate (SER) λ [FIT/bit]
(where 1 · FIT/bit represents one error per 109 hours in a
specific memristor). We assume that the full-memory checks
are performed every T = 24 hours (chosen to have negligible
performance impact while still providing adequate reliability),
and find that the probability that a specific memristor encoun-
ters a soft error in T hours is 1− e−λT/109 [17]. We assume
the memory is sized n× n for n = 1020, and that blocks are
sized m×m for m = 15.

On a per-block basis, we find that there will be no un-
corrected errors in a specific block (block success) if there
are either zero or one memristor soft errors. This probability
of block success is computed using the binomial distribution.
Since the blocks are independent, then we find the probability
that the n×n memory succeeds to be the probability of single
block success raised to the power of the number of blocks. For
this analysis, we consider multiple n×n crossbars connected
to form a 1GB memory. We find the 1GB memory reliability
as the n × n crossbar reliability raised to the power of the
number of crossbars. Then, we compute the memory failure

TABLE I
LATENCY (CLOCK CYCLES)

Benchmark Baseline Proposed Overhead (%) PC (#)
adder 1531 2050 34.0 3
arbiter 12798 13316 4.05 2
bar 4051 4510 11.3 4
cavlc 841 879 4.5 3
ctrl 134 201 50.0 5
dec 360 1101 205.8 8
int2float 295 324 9.83 3
max 4200 5101 21.5 4
priority 730 876 20.0 3
sin 7919 7995 0.96 3
voter 12738 13733 7.81 2
Geo. Mean 26.23 3.36

TABLE II
MEMRISTOR/TRANSISTOR COUNT

Unit # Memristor # Transistor Expression
Data (MEM) 1.04 · 106 0 n× n
Check-Bits 1.39 · 105 0 2 ×m× (n/m)2

Processing XBs 6.73 · 104 0 2 × 11 × k × n
Checking XB 2.04 · 103 0 2 × n
Shifters 0 6.12 · 104 4 × n×m
Connection Unit 0 1.43 · 104 2 × n× (k + 4)
Total 1.25 · 106 7.55 · 104

rate [FIT] as the probability of memory failure in T hours
multiplied by 109/T (finding the number of memory failures
per 109 hours). Figure 6 shows the memory Mean-Time-To-
Failure (MTTF) as determined from the memory failure rate
(109 divided by the failure rate [17]). For a memristor SER
of 10−3 ·FIT/bit (similar to Flash memory [10]), we find an
improvement in MTTF by a factor of over 3 · 108.
B. Latency

To evaluate the latency overhead of the proposed mecha-
nism, we generated different logic functions using the SIM-
PLER tool [13]. SIMPLER constructs a sequence of MAGIC
NOR operations to perform any logic function in the memory
within a single row. An extension of the SIMPLER algorithm
is developed to consider the additional operations required
in the proposed architecture (checking ECC on inputs and
updating ECC for the outputs)4. The adapted tool first runs
the SIMPLER algorithm and then schedules the operations
needed in the proposed method through a greedy algorithm
that checks MEM/CMEM availability (adding cycles if they
are not available when an operation needs to occur). Table I
lists the baseline versus the proposed technique in terms of
the number of cycles for the EPFL benchmarks [20].

Our results show that the overhead to support ECC is rela-
tively low, with the exception of the decoder benchmark (since
it involves a dense and long sequence of critical operations).
We also present the minimal number of processing crossbars
(PCs) required to perform the benchmark, noting that we
need at most eight processing crossbars (to support any logic
function without stalling due to lack of processing crossbars).
C. Area

To evaluate the additional area required for our proposed
design, we assess memristor and transistor counts for a case

4Code available at https://github.com/oleitersdorf/ecc-simpler-magic.

study of n = 1020, m = 15 with k = 3 processing cross-
bars. Table II details the distribution of the memristors and
transistors counts in the proposed architecture, focusing on the
MEM, shifters, and the CMEM. These device counts constitute
a preliminary analysis into the additional area requirements,
with specific layout and area analysis left for future work.

VI. CONCLUSION

We present a novel in-memory ECC mechanism that im-
proves reliability substantially. The architecture is based on
a unique technique of determining ECC along diagonals,
continuously updating and checking, to support stateful-logic
parallelism. We demonstrate a significant improvement in
mean time to failure by eight orders of magnitude for a modest
increase of approximately 26% in latency. Full layout and
circuit design are left for future work.

ACKNOWLEDGMENT

This work was supported in part by the European Research
Council through the European Union’s Horizon 2020 Research
and Innovation Programe under Grant 757259, and in part by
the Israel Science Foundation under Grant 1514/17.

REFERENCES

[1] A. Pedram et al., “Dark memory and accelerator-rich system optimiza-
tion in the dark silicon era,” IEEE Design & Test, vol. 34, no. 2, 2017.

[2] D. Patterson et al., “A case for intelligent RAM,” Micro, IEEE, vol. 17,
pp. 34 – 44, 04 1997.

[3] L. Chua, “Memristor-the missing circuit element,” IEEE Transactions
on Circuit Theory, vol. 18, no. 5, pp. 507–519, 1971.

[4] S. Kvatinsky, E. G. Friedman et al., “The desired memristor for circuit
designers,” IEEE CAS, vol. 13, no. 2, pp. 17–22, 2013.

[5] S. Kvatinsky et al., “MAGIC—memristor-aided logic,” IEEE Trans.
Circuits Syst., II, Exp. Briefs, vol. 61, no. 11, pp. 895–899, 2014.

[6] A. M. S. Tosson et al., “RRAM refresh circuit: A proposed solution to
resolve the soft-error failures for HfO2/Hf 1T1R RRAM memory cell,”
in GLSVLSI, 2016, pp. 227–232.

[7] R. Liu et al., “Investigation of single-bit and multiple-bit upsets in oxide
RRAM-based 1T1R and crossbar memory arrays,” IEEE Transactions
on Nuclear Science, vol. 62, no. 5, pp. 2294–2301, 2015.

[8] D. Mahalanabis et al., “Investigation of single event induced soft errors
in programmable metallization cell memory,” IEEE Transactions on
Nuclear Science, vol. 61, no. 6, pp. 3557–3563, 2014.

[9] N. Wald and S. Kvatinsky, “Understanding the influence of device,
circuit and environmental variations on real processing in memristive
memory using memristor aided logic,” MEJ, vol. 86, 02 2019.

[10] C. Slayman, “Soft error trends and mitigation techniques in memory
devices,” in RAMS, 2011, pp. 1–5.

[11] D. Niu et al., “Low power memristor-based ReRAM design with error
correcting code,” in ASP-DAC, 2012, pp. 79–84.

[12] R. Ben Hur et al., “SIMPLE MAGIC: Synthesis and in-memory mapping
of logic execution for memristor-aided logic,” in ICCAD, 2017.

[13] R. Ben-Hur et al., “SIMPLER MAGIC: Synthesis and mapping of in-
memory logic executed in a single row to improve throughput,” IEEE
TCAD, vol. 39, no. 10, pp. 2434–2447, 2020.

[14] N. Talati et al., mMPU—A Real Processing-in-Memory Architecture to
Combat the von Neumann Bottleneck. Springer, 2020, pp. 191–213.

[15] H. Chang et al., “Physical mechanism of HfO2-based bipolar resistive
random access memory,” in VTSA, 2011, pp. 1–2.

[16] J. M. Shea and T. F. Wong, Multidimensional Codes. John Wiley &
Sons, Inc., 2003.

[17] M. L. Shooman, Reliability of Computer Systems and Networks: Fault
Tolerance, Analysis, and Design. USA: John Wiley & Sons, Inc., 2002.

[18] S. Gupta et al., “NNPIM: A processing in-memory architecture for
neural network acceleration,” IEEE TC, vol. 68, no. 9, 2019.

[19] M. Imani et al., “Ultra-efficient processing in-memory for data intensive
applications,” in DAC, 2017, pp. 1–6.

[20] L. Amarù et al., “The EPFL combinational benchmark suite,” IWLS,
2015.

	I Introduction
	II Background
	II-A Memristor Aided Logic (MAGIC)
	II-B Soft Errors in Memristors

	III Proposed ECC Technique
	IV Architecture Design
	IV-A Memory Structure
	IV-A1 Check-bit Crossbars
	IV-A2 XOR3
	IV-A3 Processing Crossbar
	IV-A4 Checking Crossbar
	IV-A5 Connection Unit

	IV-B Shifter Structure
	IV-C Controllers

	V Results
	V-A Reliability
	V-B Latency
	V-C Area

	VI Conclusion
	References

