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Abstract—Two-party computation (2PC) is promising to en-
able privacy-preserving deep learning (DL). However, the 2PC-
based privacy-preserving DL implementation comes with high
comparison protocol overhead from the non-linear operators.
This work presents PASNet, a novel systematic framework
that enables low latency, high energy efficiency & accuracy,
and security-guaranteed 2PC-DL by integrating the hardware
latency of the cryptographic building block into the neural
architecture search loss function. We develop a cryptographic
hardware scheduler and the corresponding performance model
for Field Programmable Gate Arrays (FPGA) as a case study. The
experimental results demonstrate that our light-weighted model
PASNet-A and heavily-weighted model PASNet-B achieve 63 ms
and 228 ms latency on private inference on ImageNet, which are
147 and 40 times faster than the SOTA CryptGPU system, and
achieve 70.54% & 78.79% accuracy and more than 1000 times
higher energy efficiency. The pretrained PASNet models and test
code can be found on Github1.

Index Terms—Privacy-Preserving in Machine Learning, Multi
Party Computation, Neural Architecture Search, Polynomial
Activation Function, Software/Hardware Co-design, FPGA

I. INTRODUCTION

Machine-Learning-As-A-Service (MLaaS) has been an
emerging solution nowadays, to provide accelerated inference
for diverse applications. However, most MLaaS require clients
to reveal the raw input to the service provider [1] for evalua-
tion, which may leak the privacy of users. Privacy-preserving
deep learning (PPDL) and private inference (PI) have emerged
to protect sensitive data in deep learning (DL). The current
popular techniques include multi-party computation (MPC) [2]
and homomorphic encryption (HE) [3]. HE is mainly used to
protect small to medium-scale DNN models without involving
costly bootstrapping and large communication overhead. MPC
protocols such as secret-sharing [2] and Yao’s Garbled Circuits
(GC) [4] can support large-scale networks by evaluating op-
erator blocks. This work mainly focuses on secure two-party
computation (2PC), which represents the minimized system
for multi-party computing (MPC) and is easy to extend [5].

1https://github.com/HarveyP123/PASNet-DAC2023
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Fig. 1: Lantecy of operators under 2PC PI setup. Network
banwidth: 1 GB/s. Device: ZCU104. Dataset: ImageNet.

The primary challenge in 2PC-based PI is the comparison
protocol overhead [6] for non-linear operators. As shown in
Fig. 1, ReLU contributes over 99% of latency in a ciphertext
setting for deep neural network (DNN), despite negligible
overhead in plaintext. Replacing ReLU with second-order
polynomial activation could yield 50× speedup.

To achieve high performance, good scalability, and high
energy efficiency for secure deep learning systems, two or-
thogonal research directions have attracted enormous interest.
The first one is the nonlinear operations overhead reduction
algorithms. Existing works focus on ReLU cost optimization,
e.g., minimizing ReLU counts (DeepReduce [7], CryptoNAS
[8]) or replacing ReLUs with polynomials (CryptoNets [9],
Delphi [10], SAFENet [11]), and extremely low-bit weights
and activations (e.g., Binary Neural Network (BNN) [12]).
However, these works neglect the accuracy impact. They
often sacrifice the model comprehension capability, resulting
in several accuracy losses on large networks and datasets such
as ImageNet, hence are not scalable. The second trend is
hardware acceleration for PI to speed up the MPC-based DNN
through GPUs [2], [13]. Since no hardware characteristic is
captured during DNN design, this top-down (”algorithm →
hardware”) approach can not effectively perform design space
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exploration, resulting in sub-optimal solutions.
We focus on three observations: 1) preserving prediction

accuracy for substantial benefits; 2) scalable cryptographic
overhead reduction for various network sizes; 3) cohesive
algorithm/hardware optimizations using closed loop ”algo-
rithm ↔ hardware” with design space exploration capturing
hardware characteristics.

We introduce the Polynomial Architecture Search (PAS-
Net) framework, which jointly optimizes DNN model structure
and hardware architecture for high-performance MPC-based
PI. Considering cryptographic DNN operators, data exchange,
and factors like encoding format, network speed, hardware
architecture, and DNN structure, PASNet effectively enhances
the performance of MPC-based PI.

Our key design principle is to enforce exactly what is
assumed in the DNN design—training a DNN that is both
hardware efficient and secure while maintaining high accuracy.

To evaluate the effectiveness of our framework, we use
FPGA accelerator design as a demonstration due to its pre-
dictable performance, low latency, and high energy efficiency
for MLaaS applications (e.g., Microsoft Azure [14]). We
summarize our contributions as follows:

1) We propose a trainable straight through polynomial acti-
vation initialization method for cryptographic hardware-
friendly trainable polynomial activation function to re-
place the expensive ReLU operators.

2) Cryptographic hardware scheduler and the correspond-
ing performance model are developed for the FPGA
platform. The latency loop-up table is constructed.

3) We propose a differentiable cryptographic hardware-
aware NAS framework to selectively choose the proper
polynomial or non-polynomial activation based on given
constraint and latency of cryptographic operators.

II. BASIC OF CRYPTOGRAPHIC OPERATORS

A. Secret Sharing

2PC setup. We consider a similar scheme involving two semi-
honest in a MLaaS applications [5], where two servers receive
the confidential inputs from each other and invoke a two party
computing protocol for secure evaluation.
Additive Secret Sharing. In this work, we evaluate 2PC secret
sharing. As a symbolic representation, for a secret value x ∈
Zm, JxK← (xS0

, xS1
) denotes the two shares, where xSi

, i ∈
{0, 1} belong to server Si. Other notations are as below:

• Share Generation shr(x): A random value r in Zm is
sampled, and shares are generated as JxK← (r, x− r).

• Share Recovering rec(JxK): Given shares JxK ←
(xS0

, xS1
), it computes x← xS0

+ xS1
to recover x.

An example of plaintext vs. secret shared based ciphertext
evaluation is given in Fig. 2, where ring size is 4 and Zm =
{−8,−7, ...7}. The integer overflow mechanism naturally
ensures the correctness of ciphertext evaluation. Evaluation
in the example involves secure multiplication, addition and
comparison, and details are given in following sections.

-3 -5
-5 1

-4 -4
-4 -4

-8
-2 1

0 1
2 -1Sum

-1

0 (False)

-8 -4u0

u1

w0

w1

A0

A1

B0

B1

Z0

Z1

E

F

r

m

r0

m0

2PC-Matmul

2PC
-O

T
0 

(False)

Plaintext Evaluation Ciphertext Evaluation

2 -3

Model:w

User Query:u

3 6
7 -2

2 5

2 4
-5 0

3 4

-6 -1
-4 -2

4 -2

-6 5

4 -2
-5 1

7 -1

6 1

7

r1

m1
>0?

Result:
0 (False)

Not safe! Safe!Model vendor

Client

Fig. 2: A example of 4 bit plaintext vs. ciphertext evaluation.

B. Polynomial Operators Over Secret-Shared Data

Scaling and Addition. We denote secret shared matrices as
JXK and JY K. The encrypted evaluation is given in Eq. 1.

JaX + Y K← (aXS0 + YS0 , aXS1 + YS1) (1)

Multiplication. We consider the matrix multiplicative opera-
tions JRK← JXK⊗JY K in the secret-sharing pattern. where ⊗
is a general multiplication, such as Hadamard product, matrix
multiplication, and convolution. We use oblivious transfer
(OT) [15] based approach. To make the multiplicative compu-
tation secure, an extra Beaver triples [16] should be generated
as JZK = JAK ⊗ JBK, where A and B are randomly initial-
ized. Specifically, their secret shares are denoted as JZK =
(ZS0

, ZS1
), JAK = (AS0

, AS1
), and JBK = (BS0

, BS1
). Later,

two matrices are derived from given shares: ESi = XSi−ASi

and FSi = YSi − BSi , in each party end separately. The
intermediate shares are jointly recovered as E ← rec(JEK)
and F ← rec(JF K). Finally, each party, i.e, server Si, will
calculate the secret-shared RSi

locally:

RSi = −i · E ⊗ F +XSi ⊗ F + E ⊗ YSi + ZSi (2)

Square. For the element-wise square operator shown JRK ←
JXK ⊗ JXK, we need to generate a Beaver pair JZK and JAK
where JZK = JAK ⊗ JAK, and JAK is randomly initialized.
Then parties evaluate JEK = JXK − JAK and jointly recover
E ← rec(JEK). The result R can be obtained through Eq. 3.

RSi = ZSi + 2E ⊗ASi + E ⊗ E (3)

C. Non-Polynomial Operator Modules

Non-polynomial operators such as ReLU and MaxPool are
evaluated using secure comparison protocol.
Secure 2PC Comparison. The 2PC comparison, a.k.a. mil-
lionaires protocol, is committed to determine whose value held
by two parties is larger, without disclosing the exact value to
each other. We adopt work [6] for 2PC comparison. Detailed
modeling is given in Section III-C.
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Fig. 3: Overview of PASNet framework for 2PC DNN based private inference setup.

III. THE PASNET FRAMEWORK

The framework (Fig. 3) takes inputs like optimization target,
hardware pool, network information, and 2PC operator candi-
dates for cryptographic operator modeling, benchmarking, and
automated design space optimization in PI using hardware-
aware NAS. This section presents a new cryptographic-
friendly activation function, its initialization method, DNN
operator modeling under 2PC, and a hardware-aware NAS
framework for optimizing DNN accuracy and latency. While
evaluated on FPGA accelerators, the method can be easily
adapted to other platforms like mobile and cloud.

A. Trainable X2act Non-linear Function.
We use a hardware friendly trainable second order polyno-

mial activation function as an non-linear function candidate,
shown in Eq. 4, where w1, w2 and b are all trainable pa-
rameters. We propose straight through polynomial activation
initialization (STPAI) method to set the w1 and b to be small
enough and w2 to be near to 1 in Eq. 4 for initialization.

δ(x) =
c√
Nx

w1x
2 + w2x+ b (4)

Convergence. Layer-wise second-order polynomial activation
functions preserve the convexity of single-layer neural net-
work [17]. Higher order polynomial activation function or
channel-wise fine-grained polynomial replacement proposed
in SAFENet [11] may destroy the neural network’s convexity
and lead to a deteriorated performance.
Learning rate. The gradient of w1 must be balanced to match
the update speed of other model weights. As such, we add a
new scaling c√

Nx
prior to w1 parameter. In the function, c is

a constant, Nx is the number of elements in feature map.

B. Search Space of Hardware-aware NAS.
We focus on convolutional neural networks (CNNs) in our

study. CNNs are mostly composed of Conv-Act-Pool and
Conv-Act blocks. In work, we use the regular backbone model
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Fig. 4: Processing Steps of 2PC-OT flow.

as a search baseline, such as the VGG family, mobilenetV3,
and ResNet family. Each layer of supernet is composed of
the layer structure obtained from baseline and its possible
combination with X2act and Poola replacement. A toy ex-
ample is shown in Fig. 3, where a two-layer supernet is
constructed, and the first layer is Conv-Act-Pool, and the
second layer is Conv-Act. The first layer has four combina-
tions which are Conv-ReLU-Poolm, Conv-ReLU-Poola, Conv-
X2act-Poolm, and Conv-X2act-Poola. The second layer has
two combinations: Conv-ReLU and Conv-X2act. The Conv
block’s parameters can be either shared among candidates or
separately trained during the search.

C. Operator Modeling and Latency Analysis

This section will analyze five different operators: 2PC-
ReLU, 2PC-X2act, 2PC-MaxPool, 2PC-AvgPool, and 2PC-
Conv. Therefore, they require (1, n)-OT (noted as OT flow
block to implement 2PC comparison flows. Batch normaliza-
tion can be fused into the convolution layer and it’s not listed.

1) 2PC-OT Processing Flow: While OT-based comparison
protocol has been discussed in [15], we hereby provide other
communication detail as shown in Fig. 4. Assume both servers
have a shared prime number m, one generator (g) selected
from the finite space Zm, and an index list with L length. As
we adopt 2-bit part, the length of index list is L = 4.
1⃝ Server 0 (S0) generates a random integer rds0 , and

compute mask number S with S = grdS0 mod m, then shares



S with the Server 1 (S1). We only need to consider communi-
cation (COMM1) latency as COMM1 = Tbc +

32
Rtbw

, since
computation (CMP1) latency is trivial.
2⃝ Server 1 (S1) received S, and generates R list based

on S1’s 32-bit dataset M1, and then send them to S0. Each
element of M1 is split into U = 16 parts, thus each part is
with 2 bits. Assuming the input feature is square with size
FI and IC denotes the input channel, and we denote the
computational parallelism as PP . The CMP2 is modeled as
Eq. 5, and COMM2 is modeled as Eq. 6.

CMP2 =
32× 17× FI2 × IC

PP × freq
(5)

COMM2 = Tbc +
32× 16× FI2 × IC

Rtbw
(6)

3⃝ Server 0 (S0) received R, it will first
generate the encryption key0(y, u) = R(y, u) ⊕
(Sb2d(M1(y,u))+1 mod m)rdS0 mod m. The S0 also generates
is comparison matrix for it’s M0 with 32-bit datatype and
U = 16 parts, thus the matrix size for each value (x) is 4×16.
The encrypted Enc(M0(x, u)) = M0(x, u) ⊕ key0(y, u)
will be sent to S1. The COMM3 of this step is shown in
Eq. 8, and CMP3 can be estimated as Eq. 7.

CMP3 =
32× (17 + (4× 16))× FI2 × IC

PP × freq
(7)

COMM3 = Tbc +
32× 4× 16× FI2 × IC

Rtbw
(8)

4⃝ Server 1 (S1) decodes the interested encrypted massage
by key1 = SrdS0 mod m in the final step. The CMP4 and
COMM4 are calculated as following:

CMP4 =
((32× 4× 16) + 1)× FI2 × IC

PP × freq
(9)

COMM4 = Tbc +
FI2 × IC

Rtbw
(10)

2) 2PC-ReLU Operator: 2PC-ReLU requires 2PC-OT flow.
2PC-ReLU latency (Lat2PC−ReLu) model is given in Eq. 11.

Lat2PC−ReLu =

4∑
i=2

CMPi +

4∑
j=1

COMMj (11)

3) 2PC-MaxPool Operator: Original MaxPool function is
shown in Eq. 12. The 2PC-MaxPool uses OT flow comparison,
and the latency model is shown in Eq. 13.

out = max
kh∈[0,Kh−1]
kw∈[0,Kw−1]

in(n, c, hSh + kh, wSw + kw) (12)

Lat2PC−MaxPool =

4∑
i=2

CMPi+

4∑
j=1

COMMj+3Tbc (13)

4) 2PC-X2act Operator: The original X2act has been
shown in Eq. 4. The X2act needs a ciphertext square operation
and 2 ciphertext-plaintext multiplication operations. The basic
protocol is demonstrated in Sec. II-B. The latency of com-
putation and communication can be modeled as: CMPx2 =
2×FI2×IC
PP×freq and COMMx2 = Tbc +

32×FI2×IC
Rtbw

. The latency
model of 2PC-X2act (Lat2PC−X2act) is shown in Eq. 14.

Lat2PC−X2act = CMPx2 + 2× COMMx2 (14)

5) 2PC-AvgPool Operator: The 2PC-AvgPool operator
only involves addition and scaling, the latency is

Lat2PC−AvgPool =
2× FI2 × IC

PP × freq
(15)

6) 2PC-Conv Operator: The 2PC-Conv operator involves
multiplication between ciphertext, and the basic computation
and communication pattern are given Sec. II-B. The com-
putation part follows tiled architecture implementation [18].
Assuming we can meet the computation roof by adjusting
tiling parameters, the latency of the 2PC-Conv computation
part can be estimated as CMPConv = 3×K×K×FO2×IC×OC

PP×freq ,
where K is the convolution kernel size. The communication
latency is modeled as COMMConv = Tbc + 32×FI2×IC

Rtbw
.

Thus, the latency of 2PC-Conv is given in Eq. 16.

Lat2PC−Conv = CMPConv + 2× COMMConv (16)

D. Differentiable Harware Aware NAS Algorithm

Algorithm 1 Differentiable Polynomial Architecture Search.
Input: Mb: backbone model; D: a specific dataset

Lat(OP ): latency loop up table; H: hardware resource
Output: Searched polynomial model Mp

1: while not converged do
2: Sample minibatch xtrn and xval from trn. and val. dataset
3: // Update architecture parameter α:
4: Forward path to compute ζtrn(ω, α) based on xtrn

5: Backward path to compute δω = ∂ζtrn(ω,α)
∂ω

6: Virtual step to compute ω′ = ω − ξδω
7: Forward path to compute ζval(ω

′, α) based on xval

8: Backward path to compute δα′ = ∂ζval(ω
′,α)

∂α

9: Backward path to compute δω′ = ∂ζval(ω
′,α)

∂ω′

10: Virtual steps to compute ω± = ω ± εδω′

11: Two forward path to compute ζtrn(ω
±, α)

12: Two backward path to compute δα± = ∂ζtrn(ω±,α)
∂α

13: Compute hessian δα′′ = δα+−δα−

2ε
14: Compute final architecture parameter gradient δα = δα′ −

ξδα′′

15: Update architecture parameter using δα with Adam optimizer

16: // Update weight parameter ω:
17: Forward path to compute ζtrn(ω, α) based on xtrn

18: Backward path to compute δω = ∂ζtrn(ω,α)
∂ω

19: Update architecture parameter using δω with SGD optimizer
20: end while

Obtain architecture by OPl(x) = OPl,k∗(x), s.t. k∗ =
argmaxk θl,k
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Fig. 5: PASNet framework evaluation on CIFAR-10 dataset under 2PC PI setup. Network banwidth: 1 GB/s. Device: ZCU104.

Early work [19] focus on using RL for NAS. The RL based
method effectively explores the search space but still requires
a significant amount of search overhead such as GPU hours
and energy. Hardware-aware NAS have also been investigated
[20]. In this work, we incorporate latency constraint into
the target loss function of the DARTS framework [21], and
develop a differentiable cryptographic hardware-aware micro-
architecture search framework. We firstly determine a supernet
model for NAS, and introduces gated operators OPl(x) which
parametrizes the candidate operators OPl,j(x) selection with
a trainable weight αl,k (Eq. 17). For example, a gated pooling
operator consists of MaxPool and AvgPool operators and
2 trainable parameters for pooling selection. The latency
of the operators could be determined based on Sec. III-C.
A parameterized latency constraint is given as Lat(α) =∑n

l=1

∑m
j=1 θl,jLat(OPl,j), where the latency of gated opera-

tors are weighted by θl,j . We incorporate the latency constraint
into the loss function as ζ(ω, α) = ζCE(ω, α)+λLat(α), and
penalize the latency Lat(α) by λ.

θl,j =
exp(αl,j)∑m
k=1 exp(αl,k)

, OPl(x) =

m∑
k=1

θl,kOPl,k(x) (17)

The optimization objective of our design is shown in Eq. 18,
we aim to minimize the validation loss ζval(ω

∗, α) with
regard to architecture parameter α. The optimal weight ω∗ is
obtained through minimize the training loss. The second order
approximation of the optimal weight is given as ω∗ ≈ ω′ =
ω − ξ δζtrn(ω, α)/δω, the approximation is based on current
weight parameter and its’ gradient. The virtual learning rate ξ
can be set equal to that of weight optimizer.

argminα ζval(ω
∗, α), s.t. ω∗ = argminω ζtrn(ω, α) (18)

Eq. 19 gives the approximate α gradient using chain rule,
the second term of α gradient can be further approximated
using small turbulence ε, where weights are ω± = ω ±
ε δζval(ω

′, α)/δω′ and Eq. 20 is used for final α gradient.

δζval(ω
′, α)/δα−ξδζval(ω′, α)/δω′δδζtrn(ω, α)/δωδα (19)

δδζtrn(ω, α)

δωδα
= δ(ζtrn(ω

+, α)− ζtrn(ω
−, α))/(2εδα) (20)

With the help of analytical modeling of optimization ob-
jective, we are able to derive the differentiable polynomial
architecture search framework in Algo. 1. The input of search
framework includes backbone model Mb, dataset D, latency
loop up table Lat(OP ), and hardware resource H . The algo-
rithm returns a searched polynomial model Mp. The algorithm
iteratively trains the architecture parameter α and weight ω
parameter till the convergence. Each α update requires 4
forward paths and 5 backward paths according to Eq. 18
to Eq. 20, and each ω update needs 1 forward paths and
1 backward paths. After the convergence of training loop,
the algorithm returns a deterministic model architecture by
applying OPl(x) = OPl,k∗(x), s.t. k∗ = argmaxk αl,k. The
returned architecture is then used for 2PC based PI evaluation.

IV. EVALUATION

Hardware setup. Our platform uses two ZCU104 MPSoCs
connected via a 1 GB/s LAN router. With a 128-bit load/store
bus and 32-bit data, we process four data simultaneously at
200MHz. The fixed point ring size is set to 32 bits for PI.
Datasets and Backbone Models. PASNet is evaluated
on CIFAR-10 and ImageNet for image classification tasks.
CIFAR-10 [22] has colored 32× 32 images, with 10 classes,
50, 000 training, and 10, 000 validation images. ImageNet [22]
has RGB 224×224 images, with 1000 categories, 1.2 million
training, and 50, 000 validation images.
Systems Setup. Polynomial architecture search experiments
are conducted using Ubuntu 18.04, Nvidia Quadro RTX 6000
GPU, PyTorch v1.8.1, and Python 3.9.7. Pretrained weights for
CIFAR-10 and ImageNet are from [23] and Pytorch Hub [24],
respectively. Cryptographic DNN inference is performed on
FPGA-based accelerators using two ZCU104 boards, con-
nected via Ethernet LAN. The FPGA accelerators are opti-
mized with coarse-grained and fine-grained pipeline structures,
as discussed in Sec. III-C.

A. Hardware-aware NAS Evaluation

Our hardware-aware PASNet evaluation experiment (algo-
rithm descripted in Sec. III-D) was conducted on CIFAR-
10 training dataset. A new training & validation dataset is
randomly sampled from the CIFAR-10 training dataset with
50%-50% split ratio. The new training dataset is used to
update the weight parameter of PASNet models, and the new
validation dataset is used to update the architecture parameter.



TABLE I: PASNet evaluation & cross-work comparison with CryptGPU [13] and CryptFLOW [1]. Batch size = 1

CIFAR-10 dataset ImageNet dataset
Model Top 1 (%) Lat. (ms) Comm. (MB) Effi. (1/(ms*kW)) Top 1 (%) Top 5 (%) Lat. (s) Comm. (GB) Effi. (1/(s*kW))

PASNet-A 93.37 12.2 2.86 5.12 70.54 89.59 0.063 0.035 999
PASNet-B 95.31 36.74 13.18 1.70 78.79 93.99 0.228 0.162 274
PASNet-C 95.33 62.91 30.03 0.99 79.25 94.38 0.539 0.368 115
PASNet-D 92.82 104.09 25.01 0.60 71.36 90.15 0.184 0.103 339
CryptGPU
ResNet50 \ \ \ \ 78 92 9.31 3.08 0.15

CryptFLOW
ResNet50 \ \ \ \ 76.45 93.23 25.9 6.9 0.096

The hardware latency is modeled through section. III-C, and
the λ for latency constraint in loss function is tuned to gen-
erate architectures with different latency-accuracy trade-off.
Prior search starts, the major model parameters are randomly
initialized and the polynomial activation function is initialized
through STPAI method. We use VGG-16 [25], ResNet-18,
ResNet-34, ResNet-50 [26], and MobileNetV2 [27] as back-
bone model structure to evaluate our PASNet framework.

With the increase of latency penalty, the searched structure’s
accuracy decreases since the DNN structure has more poly-
nomial operators. After the proper model structure is found
during architecture search process, the transfer learning with
STPAI is conducted to evaluate the finetuned model accuracy.

The finetuned model accuracy under 2PC setting with regard
to λ setting can be found in Fig. 5(a). The baseline model with
all ReLU setting and all-polynomial operation based model are
also included in the figure for comparison. Generally, a higher
polynomial replacement ratio leads to a lower accuracy. The
VGG-16 model is the most vulnerable model in the study,
while the complete polynomial replacement leads to a 3.2%
accuracy degradation (baseline 93.5%). On the other side,
ResNet family are very robust to full polynomial replace-
ment and there are only 0.26% to 0.34% accuracy drop for
ResNet-18 (baseline 93.7%), ResNet-34 (baseline 93.8%) and
ResNet-50 (baseline 95.6%). MobileNetV2’s is in between the
performance of VGG and ResNet, in which a full polynomial
replacement leads to 1.27% degradation (baseline 94.09%).

On the other hand, Fig. 5(b) presents the latency pro-
filing result of searched models performance on CIFAR-
10 dataset under 2PC setting. All polynomial replacement
leads to 20 times speedup on VGG-16 (baseline 382 ms),
15 times speedup on MobileNetV2 (baseline 1543 ms), 26
times speedup, ResNet-18 (baseline 324 ms), 19 times speedup
on ResNet-34 (baseline 435 ms), and 25 times on speedup
ResNet-50 (baseline 922 ms). With most strict constraint λ,
the searched model latency is lower.

B. Cross-work ReLU Reduction Performance Comparison
A futher accuracy-ReLU count analysis is conducted and

compared with SOTA works with ReLU reduction: DeepRe-
Duce [7], DELPHI [10], CryptoNAS [8], and SNI [28]. As
shown in Fig. 6, we generate the pareto frontier with best
accuracy-ReLU count trade-off from our architecture search
result. We name the selected models as PASNet, and compare
it with other works. The accuracy-ReLU count comparison is
show in Fig. 7. Our work achieves a much better accuracy

vs. ReLU comparison than existing works, especially at the
situation with extremely few ReLU counts.
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C. Cross-work PI System Performance Comparison
We pick up 4 searched PASNet model variants for CIFAR-

10 & ImageNet dataset accuracy & latency evaluation and
name them as PASNet-A, PASNet-B, PASNet-C, PASNet-
D. PASNet-A is a light-weighted model and shares the same
backbone model as ResNet-18 but has only polynomial oper-
ators. PASNet-B and PASNet-C are heavily-weighted models
that share the same backbone model as ResNet-50. PASNet-
B has only polynomial operators and PASNet-C has 4 2PC-
ReLU operators. PASNet-D is a medium-weighted model
derived from MobileNetV2 with all polynomial layers. Note
that the baseline top-1 accuracy of ResNet-18 on CIFAR-10
and ImageNet are 93.7% and 69.76%, baseline top-1 accuracy
of ResNet-50 on CIFAR-10 and ImageNet are 95.65% and
78.8%, and the baseline top-1 accuracy of MobileNetV2 on
CIFAR-10 and ImageNet are 94.09% and 71.88%.

The PASNet variants evaluation results and ImageNet cross-
work comparison with SOTA CryptGPU [13] and Crypt-
FLOW [1] implementation can be found in Tab. I. We ob-
serve a 0.78% top-1 accuracy increase for our light-weighted



PASNet-A compared to baseline ResNet-18 performance on
ImageNet. Heavily-weighted models PASNet-B and PASNet-
C achieve comparable (-0.01%) or even higher accuracy
(+0.45%) than the ResNet-50 baseline. we achieve only a
0.13% accuracy drop for our medium-weighted PASNet-D
compared to baseline MobileNetV2 performance on ImageNet.
Even with the ZCU 104 edge devices setting, we can achieve
a much faster secure inference latency than the SOTA works
implemented on the large-scale server system. Our light-
weighted PASNet-A achieves 147 times latency reduction
and 88 times communication volume reduction compared
to CryptGPU [13]. Our heavily-weighted model PASNet-B
achieved 40 times latency reduction and 19 times communica-
tion volume reduction than CryptGPU [13] while maintaining
an even higher accuracy. Our highest accuracy model PASNet-
C achieved 79.25% top-1 accuracy on the ImageNet dataset
with 17 times latency reduction and 8.3 times communication
volume reduction than CryptGPU [13]. Note that our system
is built upon the ZCU104 edge platform, so our energy
efficiency is much higher (more than 1000 times) than SOTA
CryptGPU [13] and CryptFLOW [1] systems.

V. DISCUSSION

Existing MLaaS accelerations focused on plaintext inference
acceleration [29]–[52]. Others target on plaintext training
acceleration [53]–[63], federated learning [64]–[66] to protect
the privacy of training data, and privacy protection of model
vendor [67], [68].

In this work, we propose PASNet to reduce high comparison
protocol overhead in 2PC-based privacy-preserving DL, en-
abling low latency, high energy efficiency, and accurate 2PC-
DL. We employ hardware-aware NAS with latency modeling.
Experiments demonstrate PASNet-A and PASNet-B achieve
147x and 40x speedup over SOTA CryptGPU on ImageNet PI
test, with 70.54% and 78.79% accuracy.
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