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Abstract—As a representative next-generation device/circuit technology
beyond CMOS, diffractive optical neural networks (DONNs) have shown
promising advantages over conventional deep neural networks due to
extreme fast computation speed (light speed) and low energy consump-
tion. However, there is a mismatch, i.e., significant prediction accuracy
loss, between the DONN numerical modelling and physical optical device
deployment, because of the interpixel interaction within the diffractive
layers. In this work, we propose a physics-aware diffractive optical
neural network training framework to reduce the performance difference
between numerical modeling and practical deployment. Specifically, we
propose the roughness modeling regularization in the training process and
integrate the physics-aware sparsification method to introduce sparsity
to the phase masks to reduce sharp phase changes between adjacent
pixels in diffractive layers. We further develop 2π periodic optimization
to reduce the roughness of the phase masks to preserve the performance
of DONN. Experiment results demonstrate that, compared to state-of-the-
arts, our physics-aware optimization can provide 35.7%, 34.2%, 28.1%,
and 27.3% reduction in roughness with only accuracy loss on MNIST,
FMNIST, KMNIST, and EMNIST, respectively.

Index Terms—Diffractive optical neural network, weight sparsification,
roughness modeling

I. INTRODUCTION

The high computation and memory storage of deep neural networks
(DNNs) pose intensive challenges to the conventional Von-Neumann
architecture [1]–[3], introducing substantial data movements in mem-
ory hierarchy. The yearning for the ultra-efficient DNN accelerators
has driven the studies on many different Von-Neumann architectures.
We are in urgent need of (i) a next-generation device/circuit technol-
ogy beyond CMOS and (ii) the corresponding customized algorithm-
technology co-design to achieve ultra-low power, real-time DNN
processing in various applications.

As a representative, diffractive optical neural networks (DONNs)
has drawn much attention. DONNs realizes the all-optical processing
based on the physical phenomena, i.e., light diffraction and light
signal phase modulation, which happen by nature at the light speed.
Weights are encoded as complex-valued transmission coefficients
in diffractive layers, and the free-space propagation function [4]
is adopted to multiply with the light wave function to realize
computation. Multiple layers of diffractive surfaces features millions
of neurons and physically formed the neural network, which mimic
the morphology of artificial neural network, while consuming sig-
nificantly less energy compared to running conventional DNNs on
digital platforms. Therefore, we could achieve high system through-
put and computation speed, with no extra energy cost required for
maintaining the function of the computation units (pixels in the phase
mask) in DONN systems once the phase masks are fabricated or
assembled [5]–[9].

Current DONN systems for all-optical inference is trained on
digital platforms with the numerical modelling of the DONN system.
However, there is a mismatch, i.e., significant prediction accuracy
degradation, between numerical modelling and physical deployment.
Potential reasons of such mismatch are: discrete control levels in

TABLE I: Comparison of different methodologies.

Methods Roughness-aware Sparsity 2π Periodic
Optimization

[5], [16] 5 5 5

[6], [8] 5 5 X

Ours X X X

optical devices [6], fabrication errors of devices [9]–[11], inaccurate
emulation kernels [9], etc. Among them, we identify the interpixel
crosstalk [12] within the phase mask as most critical [13]–[15]
since it breaks down the emulated computed optical responses from
numerical modelling, as the sharp changes between adjacent pixels
will introduce a fast-varying incident field. Thus, the impacts of
interpixel crosstalk can be quantified using adjacency pixel thickness
differences, namely roughness.

To narrow the accuracy gap between digital emulation and hard-
ware deployment, in this paper, we propose a physics-aware rough-
ness optimization process for the DONN system. Specifically, our
proposed physics-aware optimization process includes three steps
(Table I): (1) integrating roughness regularization into DONN loss
function during training. Details are illustrated in Section III-B,
where a regularization factor is introduced in the training loss for the
roughness-aware DONN training; (2) compressing models with block
sparsification, which migrates interpixel interaction by leaving more
space between active pixels (Section III-C); (3) further smoothing
masks with 2π periodic phase modulation. Our work outperforms
existing approaches [5], [6], [8] for two reasons. First, [5] did not
model the interpixel crosstalk in DONN, therefore is roughness
oblivious. Our work, however, integrates the interpixel crosstalk
impact into the DONN loss function to be accuracy awareness [13].
Second, previous studies [6], [8] leverage the periodic characteristic
of phase modulation for deploying negative phase parameters on
existing hardware, i.e., phase modulation is physically equivalent by
adding 2π or its multiple. However, this periodic characteristic has
not yet being explored in reducing interpixel crosstalk impacts.

Our contributions are summarized as follows:

• We propose a physics-aware roughness optimization framework,
which integrates roughness modeling and weight sparsifica-
tion into DONN training process, to effectively narrow the
performance mismatch between digitally emulated DONN and
physical hardware deployment.

• We propose a roughness modeling method, which smooths the
phase masks in DONNs training and also provides a method to
quantify the performance gap.

• We leverage the physics-aware block sparsification method into
the optimization process to introduce sparsity of the DONN
system and reduce the interpixel interactions.

• We apply 2π periodic phase modulation to further smooth the
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phase masks and reduce the performance mismatch.
Evaluation results demonstrate that our proposed physic-aware

optimization framework provides up to 35.7% reduction in roughness.
To the best of our knowledge, this is the first work to address
the performance mismatch between digital emulation and hardware
deployment of DONNs.

II. BACKGROUND AND RELATED WORKS

A. Diffractive Optical Neural Networks (DONNs)

There are two aspects contributing to the low-carbon footprint by
DONN systems: (1) The propagation of information-encoded light
signal happens by nature in physics, i.e., the data movements happen
at no additional cost; (2) DONN systems are usually implemented
with passive devices, such as 3D printed phase mask (shown in
Fig. 1(d)), non-violated liquid crystal array, phase-change-materials,
which means once the devices are fabricated and assembled, they
will provide phase modulation to the light signal at no extra energy
cost, i.e., the computation also happens at no cost.

There are two sets of parameters in the DONNs. The first set
(trainable) is for phase modulation provided at each diffraction pixel
in diffractive layers. The different phases of the input light waves can
result in different light intensity distributions at the end of the system.
The second set (non-trainable) is for diffraction approximation. This
describes the propagation of the light wave with diffraction at each
diffractive layer, which connects the neurons between the layers. This
set of parameters is computed by the mathematical approximation for
real-world physical phenomena [8]. The final output of the DONN
system, e.g., the predicted label under classification task, can be
expressed as the maximum energy value of the last layer’s output light
intensity that observed by detectors. Hence, similar to the training
process of conventional DNNs, optimal weights for phase modulation
in diffractive layers in DONN can be obtained by minimizing the
commonly used machine learning loss function [5].

B. DONN Hardware Deployment Challenges

The deployment of the digitally trained DONN model on practical
optical devices can introduce significant performance degradation [6],
especially with the subwavelength structure [17], [18]. The interpixel
interaction within phase masks (diffractive layers) can result in fast-
varying incident field, which breaks down the computed optical
responses, resulting the significant miscorrelation gap between nu-
merical modelling and hardware deployment of the DONN system.
For example, Zhou et al. [6] claims ≥ 30% accuracy degradation
while deploying the model to the physical optical system directly
without considering the mask roughness.

C. Weight Sparsification

Weight sparsification has been studied to reduce the model size
and accelerate the computation [19]–[21]. However, in this paper,
we aim to use the sparsification technique to optimize the weight
distribution [22] and force the smoothness of the phase masks in the
DONN.

Non-structured magnitude weight sparsification [23] has been
proven to not only enable the high sparsity of the model but also
maintain accuracy. However, the non-zero elements in the sparse
weight matrix are randomly distributed after the non-structured
sparsification [24], [25]. This leads to extra effort for the design of the
voltage control pattern because of the irregular distribution of weights
(phase modulations) on diffractive layers when deploying the DONN
system to the physical optical devices. Structured sparsification,
such as bank-balanced sparsification [26], [27] and block-circulant

matrix sparsification [28] has been developed with more effort on
the sparsification patterns and provides higher regularity on non-zero
elements in the weight matrix. However, these methods still focus
on element-wise patterns and do not optimize the distribution and
roughness of the weight, which do not provide good smoothness of
the weight matrix of the neural networks.

III. PHYSICS-AWARE ROUGHNESS OPTIMIZATION

We migrate the mismatch between the numerical modelling of
DONN and practical deployment w.r.t interpixel interaction from two
aspects: (1) Smooth the phase mask, i.e., reduce the sharp phase
changes between neighboring pixels. By reducing the roughness
of the mask, the incident field varies smoothly, which maintains
its consistency with the optical response computed in training. (2)
Reduce functioning diffraction pixels. We reduce less important
pixels to exact zeros in diffractive layers makes the phase mask more
sparse and leaves more space between remaining pixels, thus reducing
the interpixel interactions. See Fig. 1 (b-c) for the overall picture.

A. Differentiable Modeling of DONNs

There are three components (Fig. 1(a)) in a DONN system: (1) laser
source for input images encoding, (2) diffractive layers for providing
trainable phase modulation, and (3) detectors for capturing the
diffraction pattern of the forward propagation. Specifically, the input
image is first encoded with the coherent laser light. The information-
encoded light signal is diffracted in the free space between diffractive
layers, and modulated via phase modulation at each layer. Finally,
the diffraction pattern after light propagation w.r.t light intensity
distribution is captured at the detector plane for predictions.

The input (e.g., an image) is encoded on the coherent light
signal from the laser source, its wavefunction can be expressed as
f0(x0, y0). The wavefunction after light diffraction over diffraction
distance z to the first diffractive layer is the summation of the outputs
at the input plane, i.e.,

f1(x, y) =

∫∫
f0(x0, y0)h(x− x0, y − y0, z)dx0dy0 (1)

where (x, y) is the coordinate on the receive plane. h is the impulse
optical response function of free space, which is the mathematical
approximation for light diffraction, e.g., Rayleigh-Sommerfeld ap-
proximation, Frensel approximation, Frauhofer approximation [29].

Equation 1 can be calculated with spectral algorithm, where we
employ Fast Fourier Transform (FFT) for fast and differentiable com-
putation, i.e., U1(α, β) = U0(α, β)H(α, β, z), where U and H are
the Fourier transformation of f and h respectively. The wavefunction
U1(α, β) is transformed to time domain with inverse FFT (iFFT)
for phase modulation: f2(x, y) = iFFT(U1(α, β)) × W1(x, y),
where W1(x, y) is the phase modulation in the first diffractive layer.
f2(x, y) is the wavefunction for the light diffraction for the second
diffractive layer.

We wrap one computation round of light diffraction and phase
modulation at one diffractive layer as a computation module named
DiffMod, i.e., DiffMod(f(x, y),W) = L(f(x, y), z) ×W(x, y),
where f(x, y) is the input wavefunction. W(x, y) is the phase
modulation. L(f(x, y), z) is the wavefunction after light diffraction
over a constant distance z in time domain. For a 3-layer DONN
system, the forward function can be expressed as,

I(f0(x, y),W) = DiffMod(DiffMod(DiffMod(f0(x, y),

W1(x, y)),W2(x, y)),W3(x, y))
(2)

The final diffraction pattern w.r.t the light intensity I in Equation
2 is captured at the detector plane. There are pre-defined detector
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Fig. 1: Overview of the proposed physics-aware roughness optimization process. (a) Illustration of the DONN system including the input
plane, multiple diffractive layers, and a detector (output) plane. (b) Illustration of the training process of baseline model. (c) Illustration of
the roughness-aware sparsification process. The black blocks in the three diffractive layers are sparsified with all values in them are zero.
(d) Images of 3D printed dense and smoothed layer, and DONN.

regions to mimic the output of conventional neural networks for class
prediction. The class with the highest sum of light intensity within
its corresponding detector region produced by argmax is picked as
the prediction result [5], [30]. Suppose the ground truth class t, the
loss function ` using MSELoss is ` =‖ Softmax(I)−t ‖2. Thus, the
whole system is designed to be differentiable and compatible with
conventional automatic differential engines.

B. Roughness Modeling

We develop the the roughness modelling applicable independently
for each diffractive layer and differentiable with the training process,
targeting the roughness-aware training of the DONN model. As
shown in Fig. 2, the roughness of the pixel is computed with the
values of its neighboring pixels. The one-dimension zeros padding
is applied to the original phase mask for roughness computation of
pixels at the boundary. We average the L2-norm differences of value
at the pixel and values of its neighbors as the roughness at the pixel.
For example, the roughness of the pixel p11 in Fig. 2, the k-neighbor
roughness is computed as

R(p11) =
1

k
× Σij ‖ pij − p11 ‖2, pij ∈ neighbor(p11) (3)

where k can be 4 or 8. For 4-neighbors (Fig. 2a), neighbor(p11) =
{p01, p10, p12, p21}; and for 8-neighbor roughness (Fig. 2b),
neighbor(p11) = {p00, p01, p02, p10, p12, p20, p21, p22}. The rough-
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(b) 8-neighbors.

Fig. 2: Illustration of roughness modelling for a phase mask with size
of 3× 3 – (a) with 4 neighbors, (b) with 8 neighbors.
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Fig. 3: Comparison of block sparsification with two other sparsifica-
tion methods. All three are with sparsification ratio being 0.33.
ness of the whole phase mask can be computed with the summation
of the roughness of each pixel, i.e.,

R(W) = ΣijR(pij), i ∈ [0, N − 1], j ∈ [0, N − 1] (4)

where the phase mask W has the size of N × N . We sum up the
roughness of all pixels as the roughness score of the diffractive layer.
We further integrate the roughness matrix into training, i.e.,

L =‖ Softmax(I)− t ‖2 +p×R(W) (5)

where p is the regularization factor and R(W) is the roughness
results for each diffractive layer.

C. Physic-aware sparsification: Block sparsification
1) Roughness-Aware Sparsification: To consider the case of dif-

ferent sparsification methods (i.e., bank balanced sparsity, irregular
sparsity, and block sparsity), Fig. 3 shows the roughness impact using
same sparsity ratio (i.e., 0.33). Roughness is computed based on
Equation 4 with 8-neighbors. For the block sparsification (Fig. 3(a)),
we partition the weight matrix into equal-sized blocks. Based on the
pre-defined threshold or percentile, all the weights within the blocks
with the L2-norm smaller than the threshold or the percentile are
set to zero. For the non-structured sparsification (Fig. 3 (b)), weights
with absolute value that is smaller than the pre-defined threshold or
percentile are sparsified [23]. For the bank-balanced sparsification



(Fig. 3(c)), rows of weight matrix are split into equal-sized banks,
and identical sparsity among banks is kept while sparsification [27].
Among all, block sparsification focuses more on the whole blocks of
the weight rather than the element-wise pattern, which leads to the
lowest roughness.

2) SLR-Regularized Optimizations: We integrate the block weight
sparsification method [31] with the Surrogate Lagrangian Relaxation
(SLR)-based model compression optimization technique [32] to re-
duce functioning diffraction pixels and further achieve smoothness
of the phase masks in DONN (Fig. 1(c)). For a DONN with N
layers, as i ∈ 1, 2, ..., N , denote the weights of each diffractive layer
as Wi. The objective of our block sparsification is to minimize the
DONN loss function (Equation 5) while reducing the number of non-
zero blocks of weights in each Wi, i.e., minWi{`(Wi)+ `r(Wi)}
subject to ¬ # non-zero block rows in Wi is less than ri and  #
non-zero block columns in Wi is less than ci, where ri and ci are
the desired non-zero block of rows and columns respectively, and
i = 1, ..., N . The unconstrained form can be written as Equation 6.

min
Wi

`(Wi) + `r(Wi) +

N∑
i=1

gi (Wi)

where gi (Wi) =

{
0 if ¬ and  are satisfied
+∞ otherwise

(6)

`(.) + `r(.) represents the DONN system loss with roughness
regularization. gi(.) is the indicator function that represents the non-
differentiable penalty term for each diffractive layer. To solve this, the
duplicate variables Zi is introduced [32], [33]. The loss function is
equivalent as: minWi{`(Wi)+`r(Wi)+

∑N
i=1 gi(Zi)}, s.t.Wi =

Zi, i = 1, ..., N . The resulting Augmented Lagrangian function is

L (Wi,Zi,Λi) = `(Wi) + `r(Wi) +

N∑
i=1

gi (Zi)

+

N∑
i=1

tr
[
ΛT

i (Wi − Zi)
]

+

N∑
i=1

ρ

2
‖Wi − Zi‖2F

(7)

Here, Λi are Lagrangian multipliers for relaxing the constraints. Their
violations are penalized by quadratic penalties with coefficient ρ.
‖ · ‖F is the Frobenius norm. tr(.) is the trace. We could decompose
the above problem into two subproblems and solve them iteratively
until convergence. At iteration k, the first subproblem is: given
Λk

i and Zi from the previous iteration, solving the loss function
minWi L

(
Wi,Z

k−1
i ,Λk

i

)
. At this time, we check the surrogate

optimality condition L
(
Wk

i ,Z
k−1
i ,Λk

i

)
< L

(
Wk−1

i ,Zk−1
i ,Λk

i

)
.

If satisfied, Λk
i would be updated as Λ′

k
i = Λk

i +s
′k (Wk

i − Zk−1
i

)
.

The second subproblem is: fixing Wk
i from the first subproblem,

solving the loss function minZi L
(
Wk

i ,Zi,Λ
′k
i

)
. Similar, we need

to check the surrogate optimality condition L
(
Wk

i ,Z
k
i ,Λ

′k
i

)
<

L
(
Wk

i ,Z
k−1
i ,Λ′

k
i

)
to update Λk+1

i = Λ′
k
i +s

k
(
Wk

i − Zk
i

)
. Both

s′k and sk are stepsize [32].

D. Smoothness

1) Intra-block Smoothness: Roughness modeling pushes the
smoothness of the entire weight matrix in diffractive layers during
training, while block sparsification partitions the weight matrix into
blocks with all the weights in the sparsified blocks being set to
zero and the weights in the unsparsified blocks being distributed
irregularly. To reduce the sharp phase changes in the unsparsified
blocks, we perform intra-block smoothness, again with the premise
that it is differentiable with the training process. As the example
shown in Fig. 4, the weight matrix of a diffractive layer is split into
nine 2× 2 blocks. Variance of each block is computed and summed
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0.1 5.7 9.0 3.2 2.1 0.7

4.7 9.7 7.8 2.5 0.8 3.9

1.1 0.7 0.6 0.1 4.4 1.8

5.6 0.4 1.8 0.4 9.8 2.3

4.4 2.3 6.9

0 10.6 0

6.0 0 13.4

AvgVar
4.835
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Fig. 4: Illustration of intra-smoothness for a sparsified phase mask
with sparsification ratio being 0.33, block size being 2.

together. The obtained summation is added to the DONN system loss
function as the roughness as Equation 8.

L =‖ Softmax(I)− t ‖2 +p×R(W) + q ×Rintra(W) (8)

where q is the regularization factor and Rintra(W) is the summation
of variance of each block in each diffractive layer. In this case,
`r(W) = p×R(W) + q ×Rintra(W).

2) Smoothing with 2π: As block sparsified pixels are all zeros
while other pixels around the sparsified blocks can have high positive
values, which results in larger roughness at the block sparsified pixels
and its surrounding pixels as shown in Table II – V and Fig. 5. Thus,
we need post-processing for recovering the roughness. We observe
that the phase modulation of light signal features with 2π period, i.e.,
for a trained phase modulation c ∈ [0, 2π], we have f(c + 2π) =
f(c), where f is the forward function of the DONN system, which
provides us the opportunity to smoothen the phase mask by adjusting
the pixels in diffractive layers with 2π in DONN models. Thanks
to this characteristic, we can optimize the roughness of the phase
mask by selectively adding 2π to each pixel without retraining as no
performance change happens in the model inference.

Specifically, we formulate the selection of adding 2π to each pixel
in diffractive layers as a combinatorial optimization (CO) problem,
and solve it with Gumbel-Softmax (GS) [34] with gradient descent
algorithm. In forward, for a phase mask with size of 200× 200, we
have a selection mask of 200×200×2 for selecting the add-on phase
of 0 or 2π for each pixel in the phase mask, where the selection at
each pixel is one-hot represented. Thus, with a matrix of [[0], [2π]],
by matrix multiplication between 200× 200× 2 selection mask and
the vector [[0], [2π]] with size of 2 × 1, the resulting add-on phase
mask is 200×200×1 containing either 0 or 2π as the add-on phase.
The loss function is the roughness computed with the add-on phase
and the original phase mask as discussed in Section III-B.

In backward, we minimize the roughness loss function. The GS
algorithm makes the discrete one-hot represented selection differ-
entiable with continuous approximation of discrete samples [34].
Specifically, starting from the loss function, it approximates the one-
hot selection with continuous probability selection and update prob-
ability for the selection options with the backpropagated gradients.
Thus, in the next iteration, the loss function is updated with the newly
optimized selection probability.

IV. EXPERIMENT

A. System Parameters and Training Setup

1) DONN System Parameters: We design the system with three
diffractive layers with the size of layers and the size of total ten
detector regions 200 × 200. The pixel size is 36 µm such that the
dimension of each fabricated diffractive layer is 720 µm× 720 µm.
To fit the optical system, we interpolate the original input images
from the MNIST, FMNIST, EMNIST, and KMNIST datasets with
size of 28× 28 200× 200, and encode with the laser source whose
wavelength is 532 nm. The physical distances between layers, first
layer to source, and final layer to detector, are set to be 27.94 cm.
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Fig. 5: Comparison of the phase mask of the second diffractive layer under EMNIST dataset. The black blocks mean weights inside are
sparsified and set to zero. The fifth is 2π optimization of phase mask that trained with sparsification, roughness and intra-block smoothness.
The last is 3D printed smoothed diffractive layer.

TABLE II: MNIST Result. Baseline is trained under 50 epochs. The
sparsification are trained with block size equal to 25.

Model Accuracy
(%)

Roverall before
2π optimization

Roverall after
2π optimization

[5], [6], [8] 96.67 466.39 460.85

Ours-A 96.18 416.07 –
Ours-B 96.38 538.78 400.38
Ours-C 96.47 409.41 299.87
Ours-D 95.90 375.35 280.32

TABLE III: FMNIST Result. Baseline is trained under 150 epochs.
The sparsification are trained with block size equal to 20.

Model Accuracy
(%)

Roverall before
2π optimization

Roverall after
2π optimization

[5], [6], [8] 87.98 464.78 461.98

Ours-A 86.99 421.49 –
Ours-B 87.88 488.11 438.53
Ours-C 86.79 350.67 305.86
Ours-D 85.76 450.73 229.70

Separate detector regions for different classes are placed evenly on
the detector plane with the size of 20 × 20, where the sums of the
intensity of these regions are equivalent to a vector in float32
type. The final prediction results will be generated using argmax.

2) Training Setup: We train the baseline models for all the four
datasets with learning rate being 0.2 under Adam [35], batch-size
being 200. For sparsification, SLR parameters are set to ρ =
0.1,M = 300, r = 0.1, s0 = 0.01. The learning rate is set to 0.001
with Adam and batch-size 200. sparsification ratio is set to 0.1. All
implementations are constructed using PyTorch v1.8.1, and results
are conducted on Nvidia 2080 Ti GPU.

B. Accuracy and Roughness Evaluation

We present the results of applying our proposed physics-aware
roughness optimization to the four datasets. In all the experiments,
Ours-A refers to the roughness-aware trained model; Ours-B refers
to the model trained with sparsity; Ours-C refers to the model trained
with sparsity and roughness; Ours-D refers to the model trained
with sparsity, plus roughness and intra-block smoothness. The system
roughness score is calculated as the average of the roughness of all
phase masks: Roverall = R(W), where R(W) is from Equation 4.
Roverall quantifies the overall interpixel interaction within all the
phase masks in a DONN system. A lower score means weaker
interpixel interaction and less mismatch between numerical modeling
and practical deployment.

Table II, III, IV and V compare the accuracy and roughness score
of each component of our proposed optimization method on the

TABLE IV: KMNIST Result. Baseline is trained under 100 epochs.
The sparsification are trained with block size equal to 20.

Model Accuracy
(%)

Roverall before
2π optimization

Roverall after
2π optimization

[5], [6], [8] 86.92 460.61 445.57

Ours-A 85.26 462.7 –
Ours-B 86.83 473.08 432.26
Ours-C 85.01 396.84 331.22
Ours-D 83.19 327.48 288.42

TABLE V: EMNIST Result. Baseline is trained under 100 epochs.
The sparsification are trained with block size equal to 20.

Model Accuracy
(%)

Roverall before
2π optimization

Roverall after
2π optimization

[5], [6], [8] 92.30 463.42 458.48

Ours-A 91.61 435.58 –
Ours-B 92.36 465.85 443.91
Ours-C 91.16 349.61 336.75
Ours-D 90.74 312.17 298.09

four datasets. For all the experiments, [5] has the highest roughness
score. With the 2π optimization, the roughness score dropped less
than 2%, which means the phase change between pixels in the
phase masks is very drastic within 2π range. The roughness-aware
training (Ours-A) results to around 10% roughness drop but still
with relatively high roughness score. The sparsification (Ours-B)
results to higher accuracy compared with roughness-aware training
but also higher roughness score because of the sharp phase changes
between sparsified pixels and their surroundings as explained in
Section III-D2. With the help of 2π optimization, the phase gap
is smoothed with the 2π periodic feature and the roughness score
dropped to the same level as of roughness-aware training. Hence, the
combination of the sparsification and the roughness modeling (Ours-
C) shows great improvement. It results to the drop of the roughness
score in 12.2%, 24.6%, 13.8% and 24.6% respectively for the four
datasets before the 2π optimization, 35.7%, 34.2%, 28.1% and
27.3% after the 2π optimization, with little impact on accuracy. The
introduction of intra-block smoothness (Ours-D) further reduces the
roughness score. Given a bit more accuracy flexibility (in average 2%
acorss all datasets), we reduce the roughness after 2π optimization
by 40%, 50.6%, 37.4% and 35.7% for the four datasets, respectively.

Fig. 5 compares the second phase mask (diffractive layer) of
DONN in different models under the EMNIST dataset. The first four
are phase masks without the 2π optimization. The black blocks are
the sparsified areas, which form sharp contrast with the surrounding
colors. The last is the phase mask from the model trained with
sparsity, roughness and intra-block smoothness and with 2π post-



(a) Pareto Frontiers (b) Selection on pruning ratio

(c) Selection on regularization 
of roughness

(d) Selection on regularization 
of intra-block smoothness

Fig. 6: Hyperparameter Exploration. (a) Pareto frontiers of accuracy
vs. roughness score of explorations on MNIST. (b) - (d) Exploration
of sparsification ratio, regularization of roughness and intra-block
smoothness vs. accuracy and roughness score.

smooth optimization applied. With the selectively addition of 2π to
each pixel in the entire phase mask, the previous black areas blend
in with the surrounding color and the entire masks become smoother.
Moreover, with the awareness of the mask roughness during training,
the valid phase modulations in diffractive layers are more clustered
at the center part of the mask while the edge part is more likely
to provide marginal modulations. This correlates with the optical
characteristics where the light signal strength decays from the center.
Thus, the most valid information and phase modulation are expected
to happen at the center of the mask. The smoothed phase mask will
result in easy fabrication of the mask and better correlation for DONN
numerical modelling and its physical deployment.

C. Design Exploration

We further perform hyperparameter exploration in Fig. 6. Fig. 6
(a) shows the Pareto frontier for roughness score vs. accuracy. It is
clear that as the accuracy increases, the roughness score increases
accordingly, which means the performance mismatch between digital
emulation and hardware deployment of DONN system would be
larger. In this case, hyperparameters need to be adjusted to address
this trade-off. For Fig. 6(b)-(d), we further explore the relation of ac-
curacy and roughness score vs. sparsification ratio and regularizations
of roughness and intra-block smoothness. We observe that accuracy
and roughness score both decrease but under different magnitudes
as the sparsification ratio and regularization increase. For roughness
regularization in Fig. 6(c), both accuracy and roughness score show
an inflection point at 0.1, with accuracy subsequently showing a rapid
decrease, and roughness becomes smoother. Similarly for intra-block
regularization in Fig. 6(d), the inflection point is shown when the log
of regularization is 1. We also observe that these trends hold for the
other three datasets.

V. CONCLUSION

In this paper, we propose a physics-aware roughness optimization
framework for diffractive optical neural networks, aiming to narrow
the performance mismatch when deploying the digitally emulated
DONN to practical optical devices. We introduce sparsity into phase
masks through block sparsification and integrates roughness regular-
ization into DONN loss function to reduce the interpixel interaction
within diffractive layers. 2π periodic phase modulation and intra-
block smoothness are applied for further smoothness. Results show

that our physics-aware roughness optimization can provide 35.7%,
34.2%, 28.1%, and 27.3% reduction in roughness with only minor
accuracy loss on MNIST, FMNIST, KMNIST, and EMNIST, respec-
tively. Given a bit more accuracy flexibility using the proposed intra-
block smoothness, we could further reduce the roughness by 40%,
50.6%, 37.4%, and 35.7%.
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