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Abstract—Over-parameterization of deep neural networks
(DNNs) has shown high prediction accuracy for many applica-
tions. Although effective, the large number of parameters hinders
its popularity on resource-limited devices and has an outsize
environmental impact. Sparse training (using a fixed number of
nonzero weights in each iteration) could significantly mitigate
the training costs by reducing the model size. However, existing
sparse training methods mainly use either random-based or
greedy-based drop-and-grow strategies, resulting in local minimal
and low accuracy. In this work, to assist explainable sparse
training, we propose important weights Exploitation and cover-
age Exploration to characterize Dynamic Sparse Training (DST-
EE), and provide quantitative analysis of these two metrics. We
further design an acquisition function and provide the theoretical
guarantees for the proposed method and clarify its convergence
property. Experimental results show that sparse models (up to
98% sparsity) obtained by our proposed method outperform the
SOTA sparse training methods on a wide variety of deep learning
tasks. On VGG-19 / CIFAR-100, ResNet-50 / CIFAR-10, ResNet-
50 / CIFAR-100, our method has even higher accuracy than dense
models. On ResNet-50 / ImageNet, the proposed method has up to
8.2% accuracy improvement compared to SOTA sparse training
methods.

Index Terms—Over-parameterization, neural network pruning,
sparse training

I. INTRODUCTION

Increasing deep neural networks (DNNs) model size has
shown superior prediction accuracy in a variety of real-world
scenarios [1]. However, as model sizes continue to scale, a
large amount of computation and heavy memory requirements
prohibit the DNN training on resource-limited devices, as well
as being environmentally unfriendly [2, 3, 4, 5, 6, 7]. A Google
study showed that GPT-3 [8] (175 billion parameters) consumed
1,287 MWh of electricity during training and produced 552 tons
of carbon emissions, equivalent to the emissions of a car for
120 years [9]. Fortunately, sparse training could significantly
mitigate the training costs by using a fixed and small number
of nonzero weights in each iteration, while preserving the
prediction accuracy for downstream tasks.

Two research trends on sparse training have attracted enor-
mous popularity. One is static mask-based method [5, 10, 11],
where sparsification starts at initialization before training.
Afterward, the sparse mask (a binary tensor corresponding
to the weight tensor) is fixed. Such limited flexibility of
subnetwork or mask selection leads to sub-optimal subnetworks
with poor accuracy. To improve the flexibility, dynamic mask
training has been proposed [12, 13, 14], where the sparse mask
is periodically updated by drop-and-grow to search for better
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Fig. 1: Gradient-based weight growth methods vs. proposed method.
(a) The red line shows the weight with a small gradient is ignored
(not grown), while the blue line denotes that the weight with a large
gradient is grown at iteration=1000. (b) Weight with a small gradient
at iteration=1000 can be grown applying our method, and at training
iteration = 2000 it is more important.

subnetworks with high accuracy, where in the drop process we
deactivate a portion of weights from active states (nonzero) to
non-active states (zero), vice versa for the growing process.

However, these methods mainly use either random-based or
greedy-based growth strategies. The former one usually leads
to lower accuracy while the latter one greedily searches for
sparse masks with a local minimal in a short distance [15],
resulting in limited weights coverage and thus a sub-optimal
sparse model. As an illustration in Figure 1a using VGG-
19/CIFAR-100, at one drop-and-grow stage (1,000th iteration),
the gradient-based approach grows non-active weights with
relatively large gradients but ignores small gradients. However,
as training continues (e.g., at the 2,000th iteration), these non-
active weights with small gradients will have large magnitude
and hence are important to model accuracy [16, 17]. Therefore,
they should be considered for the growth at the 1,000th iteration
as shown in Figure 1b. In addition, more than 90% of non-
active weights but important weights are ignored in 12 out of
16 convolutional layers.

To better preserve these non-active weights but important
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weights, we propose a novel weights Exploitation and coverage
Exploration characterized Dynamic Sparse Training (DST-EE)
to update the sparse mask and search for the “best possible”
subnetwork. Different from existing greedy-based methods,
which only exploit the current knowledge, we further explore
and grow the weights that have never been covered in past
training iterations, thus increasing the coverage of weights
and avoiding the subnetwork searching process being trapped
in a local optimum [18]. The contributions of the paper are
summarized as follows:
• To assist explainable sparse training, we propose impor-

tant weights exploitation and weights coverage explo-
ration to characterize sparse training. We further provide
the quantitative analysis of the strategy and show the
advantage of the proposed method.

• We design an acquisition function for the growth process.
We provide theoretical analysis for the proposed exploita-
tion and exploration method and clarify the convergence
property of the proposed sparse training method.

• Our proposed method does not need to train dense models
throughout the training process, achieving up to 95%
sparsity ratio and even higher accuracy than dense training,
with same amount of iterations. Sparse models obtained
by the proposed method outperform the SOTA sparse
training methods.

On VGG-19 / CIFAR-100, ResNet-50 / CIFAR-10, ResNet-
50 / CIFAR-100, our method has even higher accuracy than
dense models. On ResNet-50 / ImageNet, the proposed method
has up to 8.2% accuracy improvement. On graph neural
network (GNN), our method outperforms prune-from-dense
using ADMM algorithm [19, 20, 21], achieving up to 23.3%
higher link prediction accuracy.

II. RELATED WORK

Sparse Evolutionary Training (SET) [12] removed least
magnitude valued weights and randomly grow the correspond-
ing number of weights back at the end of each training
epoch. SNFS [22] utilized exponentially smoothed momentum
to find the important weights and layers, and redistributed
pruned weights based on the mean momentum magnitude
per layer. RigL [14] updated the sparsity topology of the
sparse network during training using the same magnitude-
based weights dropping method while growing back the weights
using top-k absolute largest gradients, achieving better accuracy
than static mask training under same sparsity. However, the
greedy-based growth policy leading to limited weights coverage,
therefore a sub-optimal sparse model. ITOP [1] discovered that
the benefits of dynamic mask training come from its ability
to consider across time all possible parameters. In addition,
MEST [23] employed a gradually decreasing drop and grow
rate with a more relaxed range of parameters for growing.
However, both ITOP and MEST keep the same drop-and-
growth strategy as the existing works and have limited weights
coverage. GaP [24] divides the DNN into several partitions,
growing one partition at a time to dense and pruning the
previous dense partition to sparse, with the aim of covering all
weights. However, it requires more training time than traditional
pruning methods, which limits its application on resources
limited scenarios.

III. IMPORTANT WEIGHTS EXPLOITATION AND COVERAGE
EXPLORATION

A. Overview

We formalize the sparse training process of the proposed
DST-EE as follows. We define a L-layer deep neural network
with dense weight W = [W1,W2, ...,WL]. During the
training process, the weight of i-th layer at t-th iteration is
denoted by Wt

i. We randomly initialize sparse weight tensor as
W′ = [W′

1,W
′
2, ...,W

′
L] with sparsity distribution of P using

ERK [12] initialization. Each sparse weight tensor within a
layer has a corresponding mask tensor (zero elements masked
by 0 and other elements masked by 1) with the same size. We
define zero elements in weight tensor as non-active weights
and others as active weights. For each iteration, we only
update the active weights. In addition, every ∆T iteration,
we update the mask tensor, i.e., for i-th layer, we drop the ki
weights that are closest to zero (i.e., smallest positive weights
and the largest negative weights), the dropped weights are
denoted by ArgTopK(W′i, ki). We denote Nti as the counter
tensor that collects the occurrence frequency for each 1 mask.
We initialize Nti as a zero tensor with the same size as the
corresponding weight tensor. Every ∆T iteration, the counter
tensor is updated by adding the counter tensor with the existing
mask tensor. We use Sti to denote the importance score tensor in
q-th mask update. We design the following acquisition function
to compute the importance score tensor

Sti = |∂l(Wt
i,X )

∂Wt
i

|+ c
ln t

Nti + ε
, t = q∆T, i = 1, 2, ..., L

(1)
where the first term |∂l(Wt

i,X )
∂Wt

i
| is the absolute gradient tensor

of i-th layer at t-th iteration. ∂l(Wt
i,X ) is the loss of i-th

layer. X is the input training data. In the second term c ln t
Nt

i+ε
, c

is the coefficient to balance between the two terms and ε is a
positive constant to make the remainder as nonzero. For each
importance score tensor, we identify the k highest absolute
values and select the indices. These corresponding mask values
with the same indices will be set to 1s. In the next iteration,
we update the weights using the new mask tensor. In the whole
process, we maintain that the newly activated weights are the
same amount as the previously deactivated weights. We repeat
the aforementioned iterations till the end of training. The details
of our method are illustrated in Algorithm 1, where · means
tensor matrix multiplication.

Figure 2 shows the training data flow of one layer using the
proposed method. We use Wt and Gt to denote the weight
and gradient tensor, respectively. n is the total number of
rounds of mask updates. lt is the loss to compute the gradient
tensor. In the first iteration of each ∆T , the weight tensor
has a corresponding binary mask tensor, where zero elements
are masked by 0 in the mask tensor and other elements are
masked by 1. Nt is the counting tensor, indicating the number
of non-zero occurrences in previous mask updates.

B. Important Weights Exploitation in Sparse Training

In proposed sparse training, we exploit current knowledge
(weights and gradients) and define the exploitation score to help
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Fig. 2: Sparse training data flow of proposed method.

Algorithm 1: DST-EE
Input: a L-layer network f with dense weight W = W1,W2, ...,WL;
sparsity distribution: P = P1, P2, ..., PL; total number of training iterations
Tend.
Set X as the training dataset; ∆T as the update frequency; α as the learning
rate; k1, k2, ..., kL are variables denoting the number of weights dropped
every ∆T iterations; M1,M2, ...,ML are the sparse masks. S1, S2, ..., SL
are the importance score tensors.
Output: a L-layer sparse network with sparsity distribution P .
W′ = W′

1,W
′
2, ...,W

′
L ← sparsify W1,W2, ...,WL with P

Nti ← Mi
for each training iteration t do

Loss δt ← f(xt,W′), xt ∈ X
if t (mod ∆T ) == 0 and t < Tend then

for 0 < i < L+ 1 do
W′
i ← ArgDrop(W′

i,ArgTopK(W′
i, ki))

Si = ∇(W′
i)δt + c ∗ ln t

Nt
i+ε

W′
i ←ArgGrow(W′

i,ArgTopK(Si · (Mi == 0), ki))
end for
Nti ← Nti + Mi

else
W′
i ←W′

i − α∇(W′
i)δt

end if
end for

decide the mask with the highest accuracy. More specifically,
we define the exploitation score Sexploi in q-th mask update
as the first item of Eq. (1), i.e., Sexploi = |∂l(Wt

i,X )
∂Wt

i
|, t =

q∆T, i = 1, 2, ..., L.
We further propose an evaluation metric to quantify the

degree of exploitation for weight growth. With high degree of
exploitation, the policy will find a model with local minimal
with large loss reduction in a short time. Therefore, a growth
policy is designed to have a high exploitation degree if it leads
to a fast reduction in losses in the next iteration.

To formulate the evaluation metric, we denote W =
[w

(1,1)
1 , w

(1,2)
1 , ..., w

(m1,n1)
1 , ..., w

(p,q)
j , ..., w

(mL,nL)
L ] as weight

of a model, where w(p,q)
j denotes the weight element in the

p-th row and q-th column of j-th layer in the model. j-
th layer has mj rows and nj columns. We further define
Wjpq,−jpq = [0, ..., 0, w

(p,q)
j , 0, ..., 0] with same size of W .

The degree of exploitation is denoted as ∆Ljpqg when the
weight element in the p-th row and q-th column of j-th layer
is grown in sparse mask update iteration, then

∆Ljpqg = L(W )− L(W + Wjpq,−jpq). (2)

To generalize, we use ∆Lg to denote the degree of exploita-
tion of the model if k weights with indices of I1, I2, ..., Ik are
grown, then

∆Lg = L(W )− L(W +
k∑

n=1

WIn,−In). (3)

C. Weights Coverage Exploration in Sparse Training
Besides exploitation, we simultaneously choose masks that

have never been explored so the model will not be stuck in a bad
local optimum. We define our exploration score Sexplor as the
second item in Eq. (1), i.e., Sexplor = ln t

Nt
i+ε

, t = q∆T, i =

1, 2, ..., L, where Nti is a counter tensor that collects the active
(nonzero) occurrence frequency of each element. If an element
with an active (nonzero) occurrence frequency of zero, it will
have a corresponding higher exploration score than explored
elements, thus being grown.

Inspired by RigL-ITOP [1], we use an evaluation metric
to quantify the degree of exploration for weight growth.
Assume B = [b

(1,1)
1 , b

(1,2)
1 , ..., b

(m1,n1)
1 , ..., b

(p,q)
j , ..., b

(mL,nL)
L ]

is a binary vector to denote if the corresponding parameter in
W is explored (1) or not (0) throughout the process of sparse
training. For exploration rate [1], we use the same formulation

as RigL-ITOP [1], i.e., R =
∑L

j=1

∑mj
p=1

∑nj
q=1 b

(p,q)
j∑L

j=1mj×nj
.

D. Balancing the Exploitation-Exploration Trade-off
The mask tensor search task is challenging in sparse training.

Firstly, the mask search task is a high-dimensional problem
due to a large number of weights in DNNs. Secondly, the
search space has many local minima and saddle points [25, 26]
because of the non-convex loss function of DNNs [25, 26].
Therefore, the mask tensor search process is easily trapped
in a bad local optimal because of its low global exploration
efficiency [18] or needs a longer time to fully explore the loss
landscape.

A better balance between exploration and exploitation can
encourage search algorithms to better understand the loss
landscape and help the sparse model escape from the bad
local optima. The importance and challenges of balancing the
exploration and exploitation tradeoff have been emphasized in
many studies [27, 28]. However, they have not gained enough
attention in sparse training. Therefore, there is a strong need to



better control the balance and we propose to consider both the
exploration and exploitation scores when choosing the mask.
And our importance score in Eq. (1) combines the two scores
and overcome the limitations of previous work.

IV. THEORETICAL JUSTIFICATION

We provide the convergence guarantee for our algorithm. We
use F (W ) = Ex∼X f(x;W ) to denote the loss function for our
sparse training where X is the data generation distribution. We
use ∇f(x;W ) and ∇F (W ) to denote the complete stochastic
and accurate gradients in terms of W , respectively. For each
round (∆T iterations), we update the mask and use M [q] to
denote the mask selected for the q-th round, W [q] to denote
the model weights after q − 1 round training. Aligned with
[24], we make the following assumptions:

Assumption 1. (Smoothness). We assume the objective function
F (W ) is partition-wise L-smooth, i.e.,

||∇F (W + h)−∇F (W )|| ≤ L||h||,

where h is in the same size with W .

Assumption 2. (Gradient noise) We assume for any t and q
that

E[∇f(x
(q)
t ;W )] = ∇F (W ),

E[||∇f(x
(q)
t ;W )−∇F (W )||2] ≤ σ2

where σ > 0 and x(q)t is independent of each other.

Assumption 3. (Mask-incurred error) We assume that

||W (q)
t �M (q) −W (q)

t ||2 ≤ τ2||W
(q)
t ||2

where τ ∈ [0, 1).

Under Assumptions 1-3, we establish Proposition 1 to show
that our sparse training algorithm converges to the stationary
model at rate O(1/

√
Q) under the proper learning rate.

Proposition 1. If the learning rate α = 1/(16L∆T
√
Q), the

sparse models generated by our algorithm after Q mask updates
will converge as follows:

1

Q

Q∑
q=1

E||∇F (W [q] �M [q])||2 (4)

=O

(
G√
Q

+
τ2

Q

Q∑
q=1

E||W [q]||2
)

where G is a constant depending on the stochastic gradient
noise and the model initialization.

In regard to Proposition 1, we make the following remarks:

Remark 1. During dense training, we do not have error
introduced by the mask and have τ2 = 0. As shown in Eq. (4),
we will have E(∇||F (W [Q] �M [Q]))|| → 0, indicating that
DST-EE will converge to a stationary point as Q→∞.

Remark 2. During sparse training, the performance of the
model is affected by the error G associated with stochastic gra-
dient and τ2 introduced by the mask. Our algorithm improves

the mask search by a better balance between exploitation and
exploration, resulting in a more accurate model.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We evaluate VGG-19 and ResNet-50 on CIFAR-10/CIFAR-
100 and evaluate ResNet-50 on ImageNet. The model training
and evaluation are performed with CUDA 11.1 on 8 Quadro
RTX6000 GPUs and Intel(R) Xeon(R) Gold 6244 @ 3.60GHz
CPU. We use a cosine annealing learning rate scheduler with
an SGD optimizer. For CIFAR-10/100, we use a batch size of
128 and set the initial learning rate to 0.1. For ImageNet,
we use a batch size of 128. We use the same sparsity
initialization method ERK in the state-of-the-art sparse training
method such as RigL [14] and ITOP [1]. To further validate
the generalizability of the proposed method, we conduct
experiments on graph neural network for link prediction tasks
on ia-email [33] and wiki-talk [34] datasets.

B. Experimental Results

CIFAR-10/CIFAR-100. The results of CIFAR-10/100 are
shown in Table I. We compare our method with SOTA on
VGG-19 and ResNet-50 models at sparsity of 90%, 95%,
and 98%. To demonstrate the effectiveness of the proposed
method, we compare it with three types of methods (i.e.,
pruning-at-initialization (SNIP, GraSP, SynFlow), dense-to-
sparse training (STR, SIS), and dynamic sparse training (DeepR,
SET, RigL)) from top to bottom. The results of baselines are
obtained from the GraNet [35] paper. Overall, both pruning-at-
initialization and dense to sparse methods have higher accuracy
than dynamic sparse training (except for RigL (using ITOP [1]
setting)). Among the various sparsity ratios, the proposed
method achieves the highest accuracy for both VGG-19 and
ResNet-50. Using typical training time (total training epochs is
160), there is almost no accuracy loss compared to the dense
model at sparsity of 90% on both CIFAR-10 and CIFAR-100.
On both VGG-19 and ResNet-50, the proposed method has the
highest accuracy compared with SOTA sparse training methods
at different sparsity on both CIFAR-10 and CIFAR-10 datasets.
For VGG-19, our method has up to 3.3%, 4.6% and 6.7%
increase in accuracy on CIFAR-10 and up to 11.1%, 15.3%
and 18.8% higher performance in accuracy on CIFAR-100, at
sparsity ratios 90%, 95% and 98%, respectively. For ResNet-50,
our proposed method has accuracy improvement than RigL
with the same training epochs. More specifically, on CIFAR-
10, our method has 0.51, 0.86, 0.94 higher accuracy score at
sparsity ratio 90%, 95%, 98%, respectively. On CIFAR-100,
the accuracy improvements of the proposed method compared
to the SOTA sparse training method are 2.2%, 2.0%, 0.83% at
sparsity ratios of 90%, 95%, and 98%, respectively.
ImageNet. Table II shows the top-1 accuracy results, training
and inference FLOPS on ResNet50 / ImageNet. We use the
dense training model as our baseline. For other baselines,
we select SNIP [10] and GraSP [11] as the static mask
training baselines while adopting DeepR [32], SNFS [22],
DSR [13], SET [12], RigL [14], MEST [23], RigL-ITOP [1]
as the dynamic mask training baselines as shown in Table II.
Compared to static mask training baselines, our proposed



Dataset #Epochs CIFAR-10 CIFAR-100

Sparsity ratio 90% 95% 98% 90% 95% 98%

VGG-19(Dense) 160 93.85 ± 0.05 73.43 ± 0.08

SNIP [10] 160 93.63 93.43 92.05 72.84 71.83 58.46
GraSP [11] 160 93.30 93.04 92.19 71.95 71.23 68.90
SynFlow [29] 160 93.35 93.45 92.24 71.77 71.72 70.94

STR [30] 160 93.73 93.27 92.21 71.93 71.14 69.89
SIS [31] 160 93.99 93.31 93.16 72.06 71.85 71.17

DeepR [32] 160 90.81 89.59 86.77 66.83 63.46 59.58
SET [12] 160 92.46 91.73 89.18 72.36 69.81 65.94
RigL [14] 160 93.38 ± 0.11 93.06 ± 0.09 91.98 ± 0.09 73.13 ± 0.28 72.14 ± 0.15 69.82 ± 0.09
DST-EE (Ours) 160 93.84± 0.09 93.53± 0.08 92.55± 0.08 74.27± 0.18 73.15± 0.12 70.80± 0.15
DST-EE (Ours) 250 94.13 ± 0.09 93.67 ± 0.09 92.95 ± 0.03 74.76 ± 0.07 73.91 ± 0.13 71.51 ± 0.10

ResNet-50(Dense) 160 94.75 ± 0.01 78.23 ± 0.18

SNIP [10] 160 92.65 90.86 87.21 73.14 69.25 58.43
GraSP [11] 160 92.47 91.32 88.77 73.28 70.29 62.12
SynFlow [29] 160 92.49 91.22 88.82 73.37 70.37 62.17

STR [30] 160 92.59 91.35 88.75 73.45 70.45 62.34
SIS [31] 160 92.81 91.69 90.11 73.81 70.62 62.75

RigL [14] 160 94.45 ± 0.43 93.86 ± 0.25 93.26 ± 0.22 76.50 ± 0.33 76.03 ± 0.34 75.06 ± 0.27
DST-EE (Ours) 160 94.96 ± 0.23 94.72 ± 0.18 94.20 ± 0.08 78.15 ± 0.17 77.54 ± 0.25 75.68 ± 0.11
DST-EE (Ours) 250 95.01 ± 0.16 94.92 ± 0.22 94.53 ± 0.03 79.16 ± 0.06 78.66 ± 0.31 76.38 ± 0.10

TABLE I: Test accuracy of sparse VGG-19 and ResNet-50 on CIFAR-10/CIFAR-100 datasets. The results reported with (mean ± std) are
run with three different random seeds. The highest test accuracy scores are marked in bold. DST-EE denotes our proposed method.

Methods Epochs Training FLOPS Inference FLOPS Top-1 Acc Training FLOPS Inference FLOPS Top-1 Acc
(× e18) (× e9) (%) (× e18) (× e9) (%)

Dense 100 3.2 8.2 76.8 ± 0.09 3.2 8.2 76.8 ± 0.09

Sparsity ratio - 80% 90%

SNIP [10] - 0.23× 0.23× - 0.10× 0.10× -
GraSP [11] 150 0.23× 0.23× 72.1 0.10× 0.10× 68.1
DeepR [32] - n/a n/a 71.7 n/a n/a 70.2
SNFS [22] - n/a n/a 73.8 n/a n/a 72.3
DSR [13] - 0.40× 0.40× 73.3 0.30× 0.30× 71.6
SET [12] - 0.23× 0.23× 72.9 ± 0.39 0.10× 0.10× 69.6 ± 0.23
RigL [14] 100 0.23× 0.23× 74.6 ± 0.06 0.10× 0.10× 72.0 ± 0.05
MEST [23] 100 0.23× 0.23× 75.39 0.10× 0.10× 72.58
RigL-ITOP [1] 100 0.42× 0.42× 75.84 ± 0.05 0.25× 0.24× 73.82 ± 0.08
DST-EE(Ours) 100 0.23× 0.42× 76.25 ± 0.09 0.10× 0.24× 75.3 ± 0.06

TABLE II: Performance of ResNet-50 on ImageNet dataset. The results reported with (mean ± std) are run with three different seeds.

method has up to 5.8% and 10.6% increase in accuracy. For the
dynamic mask training baselines, RigL is the recently popular
baseline, compared with which the proposed method has 2.2%
and 3.7% higher Top-1 accuracy at sparsity ratios of 80%
and 90%, respectively. For the other two better baselines of
sparse training, MEST and RigL-ITOP, our method has 1.1%
and 0.5% higher accuracy at a sparsity ratio of 0.8, and 3.7%
and 1.48% accuracy improvement at a sparsity ratio of 0.9,
respectively.

Methods Epochs Sparsity ratio Sparsity ratio Sparsity ratio
80% 90% 98%

Dense - 79.72

Prune-from-dense 60 79.05 78.34 78.08
DST-EE (ours) 50 79.28 79.13 78.58

TABLE III: GNN link prediction Results tasks on wiki-talk [34].

Graph Neural Network. Experimental results of sparse
training of graph neural network on wiki-talk [34] and ia-

Methods Epochs Sparsity ratio Sparsity ratio Sparsity ratio
80% 90% 98%

Dense - 83.47

Prune-from-dense 60 83.19 82.95 67.18
DST-EE (ours) 50 83.77 83.29 82.82

TABLE IV: GNN link prediction results on ia-email [33].

email [33] for link prediction task are shown in Table III
and Table IV, respectively. We apply the proposed method to
the two fully connected layers with uniform sparsity ratios at
different sparsity levels, which are 80%, 90%, and 98%. We
report the prediction accuracy of the best model searched in 50
training epochs. We compare our method with both the dense
model and the best sparse model pruned from the dense model
using ADMM algorithm. The prune-from-dense models are
trained for 60 epochs in total, which of 20 pretraining epochs,
20 reweighted training epochs, and 20 retraining epochs after
pruning. Experimental results show that at a sparsity of 0.8,
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Fig. 3: The figure shows the relation of exploration degrees and test
accuracy on CIFAR-10 and CIFAR-100 with a sparsity 0.95.

our sparse training method has even better accuracy than the
dense model. The proposed method has accuracy improvement
compared with prune-from-dense on both datasets using even
fewer training epochs. On wiki-talk [34], our method has 0.29%,
1.0% and 0.64% higher accuracy than prune-from-dense using
ADMM algorithm at sparsity ratios of 80%, 90% and 98%,
respectively. On ia-email [33], the proposed method has up
to 23.3% accuracy improvement than prune-from-dense at a
sparsity ratio of 98%.

C. Design Exploration on Different Exploration Degrees.

We investigate the effect of coefficients on exploration degree
and test accuracy on VGG-19, CIFAR-10 / CIFAR-100 datasets
as shown in Figure 3. The left subfigure in Figure 3a shows the
different exploration degree curves generated using different
tradeoff coefficients on CIFAR-100 with a sparsity of 0.95.
We could see the larger c, the higher degree of exploration of
the sparse model. The right subfigure in Figure 3a illustrates
the test accuracy curves for different coefficients. Within the
coefficient range, the larger c, the higher test accuracy. The
combination of these two subfigures unveils the observation that
the higher the exploration degree or higher weights coverage,
the higher the test accuracy score. Similar observations are
shown in Figure 3b, which validate our methods.

VI. CONCLUSION

In this paper, we propose important weights exploitation and
coverage exploration-driven growth strategy to characterize
and assist explainable sparse training, update the sparse
masks and search for the “best possible” subnetwork. We
provide theoretical analysis for the proposed exploitation and
exploration method and clarify its convergence property. We
further provide the quantitative analysis of the strategy and
show the advantage of the proposed method. We design
the acquisition function to evaluate the importance of non-
active weights for growth and grow the weights with top-k
highest importance scores, considering the balance between

exploitation and exploration. Extensive experiments on various
deep learning tasks on both convolutional neural networks and
graph neural networks show the advantage of DST-EE over
existing sparse training methods. We conduct experiments to
quantitatively analyze the effects of exploration degree. The
observations validate the proposed method, i.e., our method
could achieve a higher exploration degree and thus a higher
test accuracy compared to greedy-based methods.
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[27] Matej Črepinšek and et.al. Exploration and exploitation in evolutionary algorithms:
A survey. CSUR, 2013.

[28] Robert C Wilson and et.al. Balancing exploration and exploitation with information
and randomization. Current opinion in behavioral sciences, 2021.

[29] Hidenori Tanaka and et.al. Pruning neural networks without any data by iteratively
conserving synaptic flow. NeurIPS, 2020.

[30] Aditya Kusupati and et.al. Soft threshold weight reparameterization for learnable
sparsity. In ICML, 2020.

[31] Sagar Verma and et.al. Sparsifying networks via subdifferential inclusion. In ICML,
2021.

[32] Guillaume Bellec and et.al. Deep rewiring: Training very sparse deep networks.
ICLR, 2018.



[33] Ryan A. Rossi and Nesreen Ahmed. The network data repository with interactive
graph analytics and visualization. In AAAI, 2015.

[34] Stuart Cunningham and David Craig. Creator governance in social media enter-
tainment. Social Media + Society, 5, 2019.

[35] Shiwei Liu and et.al. Sparse training via boosting pruning plasticity with
neuroregeneration. NeurIPS, 34:9908–9922, 2021.


	I Introduction
	II Related Work
	III Important weights exploitation and coverage exploration
	III-A Overview
	III-B Important Weights Exploitation in Sparse Training
	III-C Weights Coverage Exploration in Sparse Training
	III-D Balancing the Exploitation-Exploration Trade-off

	IV Theoretical Justification
	V Experimental Results
	V-A Experimental Setup
	V-B Experimental Results
	V-C Design Exploration on Different Exploration Degrees.

	VI Conclusion

