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Abstract—Modern x86 processors support an AVX instruction set to
boost performance. However, this extension may cause security issues. We
discovered that there are vulnerable properties in implementing masked
load/store instructions. Based on this, we present a novel AVX timing
side-channel attack that can defeat address space layout randomization.
We demonstrate the significance of our attack by showing User and
Kernel ASLR breaks on the recent Intel and AMD processors in various
environments, including cloud computing systems, an SGX enclave (a
fine-grained ASLR break), and major operating systems. We further
demonstrate that our attack can be used to infer user behavior, such
as Bluetooth events and mouse movements. We highlight that stronger
isolation or more fine-grained randomization should be adopted to
successfully mitigate our presented attacks.

Index Terms—Side-Channel Attack, Advanced Vector Extensions, User
and Kernel ASLR

I. Introduction

Modern x86 processors support a Single Instruction Multiple Data
(SIMD) instruction set that compilers or programmers can use to boost
performance [14], [2]. However, this instruction set may also cause
security issues. In particular, we discovered that in the Advanced
Vector Extensions (AVX), there are vulnerable properties in the
implementation of the masked load/store instructions. First, these
instructions can suppress exceptions caused by invalid or inaccessible
memory access. Second, the execution time of these instructions leaks
the current state of the page mappings and permissions, as well as
TLB states.

In this paper, based on these vulnerable properties, we introduce a
novel AVX timing side-channel attack that can defeat address space
layout randomization (ASLR). We demonstrate the significance of
our attack by showing User and Kernel ASLR breaks on both recent
Intel and AMD CPUs. Specifically, we show that our attack reliably
retrieves the base address of the Linux kernel text in 0.28 ms with
a near-zero error rate. For kernel modules, based on a unique size,
our attack can identify the currently loaded modules in 2.62 ms with
99.84% accuracy. The attack works even on a kernel page table
isolation (KPTI)-enabled kernel. This also shows that our attack can
be used to infer user behavior by monitoring kernel activities such as
Bluetooth events and mouse movements. Furthermore, we demonstrate
the applicability of our attack by showing KASLR breaks in various
environments, including cloud computing systems, a Software Guard
Extensions (SGX) enclave, and other major operating systems (OSes).
In particular, we show how our attack can be used to mount a fine-
grained ASLR break inside an SGX enclave.

Since our attack only requires AVX instructions, it makes it much
more practical compared to known microarchitectural attacks that
depend on noise filtering [12], hardware transactional memory (Intel
TSX) [17], cache eviction [11], [20], knowledge of the branch target
buffer (BTB) hash function [8], the TLB addressing [18], cache
status monitoring [4], [5], [28], or the energy reporting interface (e.g.,
RAPL) [21], [20].

In summary, our main contributions are as follows:

• We conduct an in-depth analysis of the AVX masked operations
and discover vulnerable properties in the implementation of masked
load and store instructions.

• We present a novel AVX timing side-channel that can defeat address
space layout randomization. We demonstrate User and Kernel ASLR
breaks on the recent Intel and AMD CPUs.

• We show that our attack can detect user behavior and is feasible
in cloud computing systems (Amazon EC2, Google GCE, and
Microsoft Azure), an SGX enclave (a fine-grained ASLR break),
and major OSes (Linux and Windows).

• We responsibly disclosed our findings to Intel on April 20, 2022,
and AMD on July 3, 2022. Intel acknowledged them on May 10,
2022, and AMD on July 5, 2022.1

II. Background

A. Address translation and translation caches

Address translation. Virtual addresses are translated into physical
addresses through multi-level page tables. On Intel x86-64 processors,
page tables are comprised of four levels of paging structures: page map
level 4 (PML4), page directory pointer table (PDPT), page directory
(PD), and page table (PT). Each page table defines the mappings
from a virtual address to a physical address, and address translation is
performed by indexing certain parts of the virtual address. The virtual
address space is divided into user space and kernel space, which
serves to provide memory protection. To this end, the page tables
contain permission-related information, such as a readable/writable
page and a user/kernel accessible page.
Translation Lookaside Buffer. TLB is a special cache that contains
the most recently used page table entries (PTEs). Given a virtual
address, the processor examines the TLB. If a PTE is present (called
a TLB hit), the corresponding page frame number (PFN) is retrieved
and the physical address is formed. If the PFN is not found (a TLB
miss), the processor starts to walk the page table hierarchy (called a
page table walk) to look for the corresponding PFN. On page table
walks, a memory management unit (MMU) accesses each page table
to find the translation for the virtual address. Once the translation
is found, meaning that the page is mapped and no page fault (#PF)
occurs, the TLB is updated to include the new page entry. Otherwise,
#PF is issued, and the OS handles the #PF.
Page-translation caches. The page table can still be cached just like
any other read from normal memory. However, frequently accessing
the PTEs on every page walk will incur a penalty of several tens
of cycles per TLB miss, even if all entries are present in the data

1The proof-of-concept code of our attack is available at https://github.com/
zemisolsol/kaslrAVX.
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Fig. 1. A fault suppression of the AVX masked load/store. On unmapped
pages, no faults are issued if the mask bits are all set to “zero” (C and D).

cache (e.g., L2). For this reason, modern processors may have page-
translation caches (Intel refers to these as paging-structure caches [13])
to further improve the performance of the TLB miss [3].

B. KASLR and Kernel Page-Table Isolation

Kernel Address Space Layout Randomization. KASLR is a tech-
nique used to randomize the base address of a kernel image and
the position of kernel modules at a boot or driver load time. Once
KASLR is enabled, it defeats code reuse attacks such as return-
oriented programming (ROP) [27], which rely on knowledge of the
absolute address of instructions. In an x86-64 Linux kernel, the
kernel image is aligned to a 2 MiB boundary and mapped between
0xffffffff80000000-0xffffffffc0000000 with a maximum size
of 1 GiB (i.e., 512 possible offsets). Although the randomization’s
entropy is only 9 bits, brute force attacks against the kernel are
virtually not feasible due to the high rate of a kernel panic.
Kernel Page-Table Isolation. KPTI was first introduced to defend
against attacks on KASLR [10]. With KPTI, kernel space is isolated
from user space; thus, it undermines attacks that are based on the status
of page mappings. Major OSes have adopted this isolation technique
as mitigation for a Meltdown attack (Linux PTI [6], Microsoft Kernel
Virtual Address Shadow (KVAS) [22], and Apple Double Map [16]).

C. Advanced Vector Extensions

AVX is a SIMD instruction set supported by Intel and AMD
processors. With AVX, arithmetic and data transfer operations can be
processed simultaneously. Although modern compilers such as GNU
GCC and Intel C++ provide automatic vectorization options (e.g.,
/Qvec in Intel C++ compiler [7]), an advanced user can obtain better
performance with AVX programming. As one of the optimizations in
AVX, the masked load/store operations (VMASKMOV and VPMASKMOV)
are used to conditionally move packed data elements to/from memory,
depending on the mask bits associated with each data element. In this
paper, we exploit vulnerable properties of the masked operations to
mount timing side-channel attacks.

III. In-depth analysis of the AVX timing side-channel

This section first analyzes the vulnerable properties of the AVX
masked load/store instruction and then presents three attack primitives.

A. Fault-resistance

Intel optimization manual [14] describes a fault-resistance property
of the AVX masked operations. To verify that a masked load/store
instruction does indeed suppress the exception, we examined memory
access on an Intel i7-1065G7 (Ice Lake) CPU (Figure 1). We prepared
two adjacent pages using the mmap/munmap syscalls; the upper page
is mapped (a valid page), while the lower page is unmapped (an
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Fig. 2. Execution times of the masked load instructions for different types of
pages on an Intel i7-1065G7 (Ice Lake) (on the left side). It also shows the
number of corresponding performance counters (on the right side).

invalid page). We first executed the masked load/store across the page
boundary, where only one element on the low page is masked (A and
B). We then examined the case where all the elements on the lower
page are masked out (C and D). The experiment revealed that when
accessing an unmapped page, no faults occur if the corresponding
mask bits are all set to “zero”. We further tested the masked load/store
on kernel memory to determine whether it applies to inaccessible
pages. As a result, no faults were observed. Thus, we prove that when
executing the masked load/store instruction, masking out does indeed
suppress the exceptions even if the page being accessed is invalid or
inaccessible.

�1: The AVX masked operations can suppress the exceptions
caused by invalid or inaccessible memory accesses.

B. Timing differences

Page-Table Level. The masked load/store instructions trigger a
microcode assist when the address being accessed is invalid or
inaccessible [14]. The microcode assist may take additional cycles
because it may need to determine whether the elements have the
corresponding mask bits set. To verify this, we measured the execution
time of the masked load for different types of pages: USER-M (a
page in the user space with Present-bit:1 and User/Supervisor-bit:1),
USER-U (P:0), KERNEL-M (a page in the kernel space with P:1 and
U/S:0), and KERNEL-U (P:0). We also measured their corresponding
microcode assist events (ASSISTS.ANY) using a performance counter
monitor. Figure 2 depicts the measurement results. On the USER-M
page, without issuing a microcode assist, the mean value of an access
time is 13 cycles. In contrast, on other pages, the access time is
significantly increased due to the microcode assist.

In particular, we observed that the KERNEL-M has a shorter
access time (< 14 cycles) than the KERNEL-U. Since the address
translation of the unmapped page (P:0) may not be stored in the TLB,
we can speculate that the timing difference between the two pages
is due to the page table walks. To prove this, when accessing the
kernel address, we measured the number of completed page table
walks (DTLB LOAD MISSES.WALK COMPLETED). As we expected,
the page table walks were triggered twice in the KERNEL-U but
not in KERNEL-M (right in Figure 2). Therefore, we prove that the
execution time of the masked load/store on kernel-mapped pages is
faster than on unmapped pages.

�2: The masked operations can distinguish between mapped and
unmapped pages by measuring execution time.

The execution time of a page table walk varies depending on the
level of the page table where the walk terminates [11], [20]. To verify
that the masked load/store can also leak information about a page
table’s level, we measured its execution time on different levels of
page tables on the Intel i-9900 (Coffee Lake). In Ubuntu 20.04.4
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Fig. 3. A comparison of execution times according to page permissions. A
masked load can distinguish two types of pages (r--/r-x and ---), whereas
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(kernel 5.13.0-30), we executed the masked load instruction with
four different kernel addresses that are mapped to PT, PDT, PDPT,
and PML4T, respectively. Since the translation of a valid address is
cached in the TLB, we flushed the TLB (using an INVLPG instruction
in LKM) before the measurement to trigger page table walks. As a
result, we observed that the execution time increases linearly from
the lowest level (PDT) to the highest level (PML4T) except for PT.
Note, as Intel’s paging-structure caches do not contain PT, walking
page tables takes longer when translating a virtual address mapped
on a 4 KiB page (PT) compared to huge pages.

�3: The masked operations can leak information about the level
of the page table where the walk terminates.

TLB state. The execution time of the masked load/store instruction
differs depending on the TLB state. If a page table entry is present in
the TLB during the address translation (i.e., a TLB hit), it takes less
time than a TLB miss (see §II). To verify this, we tested memory
access on the kernel-mapped page to determine whether the masked
operations can distinguish between a TLB hit and miss. On the Intel
processor with the KERNEL-M page, we executed the masked load
instruction twice in a row (first for a TLB miss and then for a TLB hit)
and measured each execution time. Before the first access, we evicted
the TLB entries [9] to ensure that the first execution issues a TLB
miss. We repeated this test 1000 times on an Intel i9-9900 (Ubuntu
20.04.1 with kernel 5.11.0-27). The experimental results show that
the first execution takes an average of 381 cycles, while the second
execution takes 147 cycles, on average. As a result, we confirm that
the masked operations can be used to identify the current TLB state.

�4: The masked operations can identify TLB states.

Page permission. The execution time of the masked load/store
instruction is affected by page permissions being accessed. To evaluate
this, we mapped four pages with different permissions (read-only,
read-exec, read-write, and none) in the user space and measured
each execution time of the masked load/store instructions. As a result,
we observed that the execution time of the masked load differs only
in the none page permission (Figure 3). However, in the case of the
masked store, we observed that write permission (read-write) affects
the execution time. If a page does not have the write permission, the
masked store triggers a microcode assist, which takes additional cycles.
Thus, in the execution of the masked store, the timing differences
between read (read-only and read-exec) and write (read-write)
permissions are clearly visible.

�5: The masked operations can identify page permissions.

Load and store. The masked load and store have most of the same

properties discussed above, except for the execution time. On an Intel
i7-1065G7, we executed the masked load and store instructions on the
KERNEL-M page and measured each execution time. The masked
load takes an average of 92 cycles, while the execution time of the
masked store is 76 cycles. The results reveal that the masked store
takes roughly 16-18 cycles less time to execute than the masked load.

�6: The masked store executes faster than the masked load.

C. Attack primitives

Page-table attack. The page-table attack can distinguish between
the present (valid or mapped) and non-present (invalid or unmapped)
pages (P2) or directly leak the page-table level of the present pages
at which the page-table walk terminates (P3). In this paper, we show
how to reliably break KASLR on both Intel and AMD CPUs based
on the page-table attack.

TLB attack. The TLB attack can identify current TLB states, i.e.,
a TLB hit or miss (P4). We use this attack primitive to detect user
behavior by measuring the execution time of the masked operation on
the kernel modules. Note, we use this attack primitive in combination
with a TLB eviction to reduce noise. We further use the TLB attack to
bypass FLARE [5], a state-of-the-art defense against currently known
KASLR breaks.

Permission attack. The permission attack can identify the current
page permissions (P5). With this attack primitive, we can identify
whether the page is readable or writable. Since the Linux kernel
adopts strict kernel memory permissions where any area of the kernel
with executable memory must not be writable [19], in this paper, we
use this attack primitive to implement a fine-grained ASLR break in
the user address space (even inside an SGX enclave).

Note that all of our attack primitives suppress page faults caused
by invalid or inaccessible memory addresses (P1).

IV. AVX timing side-channel attacks

This section shows how the AVX timing side-channel can be used
to defeat User and Kernel ASLR on recent Intel and AMD CPUs.

A. Threat model

We assume an unprivileged attacker that executes arbitrary instruc-
tions on the User/Kernel ASLR-enabled local machine. The attacker’s
goal is to know the addresses of the codes to attempt code reuse attacks
with the knowledge of the CPU model and kernel functions’ constant
offsets. We assume that there are no software-based memory leak
vulnerabilities. For hardware, we assume that the processor supports
AVX or AVX2 and is protected by mitigations against the existing
side-channel attacks [15]. Since AVX was introduced in 2011 on
Intel/AMD CPUs, it is reasonable to assume that the vast majority of
systems support AVX by default.

B. Derandomizing the kernel base address

We demonstrate KASLR break on Ubuntu 20.04.3 (kernel 5.11.0-
27) with a Meltdown-resistant Intel i5-12400F (Alder Lake). With
KASLR, the base address of the Linux kernel is located in 512
possible offsets (see §II). In our attack, we measure the execution
time of the masked load instruction on each possible offset. First,
we determine a threshold value to distinguish between mapped and
unmapped pages. We found that the execution time of the masked store
on the user-mapped page with no dirty bit set (D:1) is the same as the
execution time on the kernel-mapped page. Thus, we use the average
execution time of the masked store on the USER-M page as our
threshold value. Next, we execute the masked load instruction twice



0 50 100 150 200 250 300 350 400 450 500
Kernel Offsets (2 MiB)

90

100

110

120
Ac

ce
ss

 T
im

e 
(c

yc
le

s)

Kernel Base: 0xFFFFFFFFA1E00000
            Slide: 0x21E00000 Kernel mapped pages

Unmapped pages

Fig. 4. Measurement results of the probing kernel address range on Linux
with an Intel i5-12400F (Alder Lake). The lower plots show the execution
times (average: 93 cycles) of kernel-mapped pages.

Table I. An average runtime and accuracy for derandomizing kernel base and
module addresses. The Probing runtime is the time it takes to execute the
masked operations only.

CPUs (setting, launch date) Targets
Runtime (n = 10000)

Accuracy
Probing Total

Intel Core i5-12400F (Desktop, Q1’22)
Base 67 µs 0.28 ms 99.60 %

Modules 2.43 ms 2.62 ms 99.84 %

Intel Core i7-1065G7 (Mobile, Q3’19)
Base 0.26 ms 0.57 ms 99.29 %

Modules 8.42 ms 8.64 ms 99.72 %

AMD Ryzen 5 5600X (Desktop, Q2’20) Base 1.91 ms 2.90 ms 99.48 %

for each of the 512 candidate addresses and measure the execution
time of the second execution (�2). As a result, we clearly identified
kernel-mapped addresses in the user space (Figure 4). Note, our attack
suppresses page faults caused by accessing inaccessible or invalid
kernel addresses (�1).

The measurement results are shown in Figure 4. From 512 plots, we
can clearly distinguish between the execution times for kernel-mapped
and unmapped pages. The kernel-mapped pages have a mean execution
time of 93 cycles, while the unmapped pages have 107 cycles. Since
the lower plots start at offset 271, we can identify the base address of
the kernel (0xffffffffa1e00000). To verify the result, we rebooted
Linux 10 times and checked whether the identified base address is
correct by confirming a /proc/kallsyms file. In each attempt, we
always found the correct base address of the kernel without any false
positives. The average runtime of probing the kernel address range
is 0.67 µs, while the total average runtime is 0.28 ms (Table I). The
accuracy of the attack is 99.6%, on average (n = 10000).

We further performed the attack on an AMD Ryzen 5 5600X (Zen
3). On AMD, we observed that accessing kernel addresses always
triggers page table walks regardless of page mappings. Thus, to break
KASLR on AMD, we used a page-table attack (�3) and exploited the
fact that Linux’s kernel-mapped area contains 4-KiB pages [20]. In
our experiment, our attack reliably identified five 4-KiB pages within
the kernel address range. We achieved an average runtime of 2.9
ms with 99.48% accuracy (n = 10000). We leave further evaluation,
such as kernel base and module detection on various AMD CPUs,
for future work.

C. Detecting and identifying kernel modules

In the x86-64 Linux, kernel modules (or drivers) are loaded
between 0xffffffffc0000000-0xffffffffc4000000, with a 4
KiB alignment. Thus, by probing the address range with 4-KiB offsets
(16384 possible addresses), our attack can identify the addresses of the
currently loaded modules. For the attack, we first extract all mapped
pages in the address range of the kernel modules by measuring timing
differences (�2). Then, as in prior work [4], we distinguish where
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a module begins and ends by taking advantage of the fact that the
loaded kernel modules are separated by unmapped pages. As a result,
we can identify all loaded modules and their size. Since Linux’s
/proc/modules file provides module information such as name, and
size, we can classify modules by correlating the detected module size
with the actual size.

We evaluated our attack on Ubuntu 18.04.3 (kernel 5.4.0-81) with
an Intel i7-1065G7 (Ice Lake), where the total number of loaded
kernel modules is 125, of which 19 have a unique size. Figure 5
depicts an example of the identified five kernel modules along with
their names and sizes. As our classification is based on the detected
size, we cannot differentiate between autofs4 and x tables that map
with the same amount of pages. However, we can identify video,
mac hid, and pinctrl icelake, which have unique sizes. Our attack
achieved 8.42-8.64 ms of runtime and 99.72% accuracy, on average
(Table I). Note, the performance results are greatly improved in a
desktop setting (Intel i5-12400F).

D. Breaking KASLR with KPTI enabled

In a KPTI-enabled kernel, the kernel pages are not mapped in
the user space. However, to provide an entry point into the kernel
space, the KPTI leaves a minimal set of kernel pages called KPTI
trampoline in the user space, which is used to switch between the
user and the kernel space (e.g., entry SYSCALL 64 for a syscall
entry point). We can determine the base address of the kernel image
using the addresses of the mapped KPTI trampoline pages since the
randomization is performed by shifting the entire kernel image within
a given range.

We evaluated our attack on a KPTI-enabled kernel (Ubuntu 20.04.3
with kernel 5.11.0-27). We first fixed the kernel’s base address
at 0xffffffff81000000 via a boot parameter (nokaslr), then we
performed the page-table attack (P2). In repeated experiments, we ob-
served that the fast execution time appears at 0xffffffff81c00000,
which is the same result as the confirmed constant offset of the KPTI
trampoline (0xc00000) beforehand. As such, with the knowledge of
the KPTI trampoline offset, our attack can still break KASLR even
on the KPTI-enabled kernel.

E. Inferring user behaviors

We demonstrate that our TLB attack can also be used to infer user
behaviors, as has been shown in prior works [4], [20]. Specifically,
we monitor two types of user activities: Bluetooth audio streaming
and mouse movements. To this end, we target two different kernel
modules (bluetooth and psmouse) and keep track of their events
by measuring TLB states (P4). When the module is accessed, the
address translations will be cached in the TLB. Thus, the execution
time varies depending on whether the module is in use.
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We performed the attack on Ubuntu 18.04.3 (kernel 5.4.0-81) with
an Intel i7-1056G7. In the experiment, a spy process repeats the TLB
attack at 1 sec. intervals and lasts for up to 100 sec. Figure 6 shows
the results obtained by the spy process measuring the masked load
execution time on the first 10 pages of the kernel modules. From
the graphs, we can observe that the execution times are obviously
shorter (blue area) when the kernel modules are accessed. As such,
attackers can utilize our attack to infer user behaviors to proceed with
further attacks. We believe that our attack will likely be extended not
only to monitor other events (e.g., keystroke) but also to fingerprint
applications or websites.

F. Fine-grained ALSR break inside an SGX enclave

In x86-64 Linux, ASLR entropy for the process’s address
space is 28 bits. For example, the process’s code text is lo-
cated within 0x55XXXXXXX000, and the libraries are loaded within
0x7fXXXXXXX000. To explore such address spaces, we linearly probe
the entire virtual address range with a 4-KiB alignment by measuring
the execution time of the masked load/store instruction (�2). On
Ubuntu 18.04.3 (kernel 5.4.0-81) with an Intel i7-1065G7, our
attack successfully identifies the base address of the process’s code
section inside an SGX enclave. In our unoptimized proof-of-concept
implementation, with SGX2 that supports a high-precision timer
(RDTSC and RDTSCP), our attack takes on average 51 sec. (masked
load) and 44 sec. (masked store).

To identify loaded libraries, we use a fine-grained methodology
based on �5. On Ubuntu 18.04.3, we observed that the loaded
libraries (e.g., libc.so) consist of consecutive sections and the
sections’ permissions are in the order of r-x, ---, r--, and rw-.
With this, we used sections’ sizes as signatures for detecting libraries.
To reduce noise, we probed the address space twice by combining
the masked load and store. We first probed the address space using
the masked load and filtered out the none pages. We then probed
again using the masked store to identify the read-write pages.
Figure 7 shows the results. Our attack was unable to differentiate
between the read-only and read-exec, but it did detect additional
pages (0x55892ba96000 and 0x7f3eef13b000) that had never been
identified with a /proc/PID/maps file. We investigated page tables
using a custom kernel module and confirmed that all the detected
permissions are correct. The average runtime is 95 sec. (51 sec. for the
masked load and 44 sec. for the store). The runtime can significantly
be improved in the desktop processor.

G. Attacks on Windows 10

In Windows 10, the kernel and drivers are located between
0xfffff80000000000-0xfffff88000000000 with a 2 MiB bound-
ary, which leads to 262144 possible offsets (i.e., 18 bits of entropy).
The entry point of the kernel is randomized within this address range
and can begin at any 4-KiB boundary. With this, we probed the

/proc/PID(app)/maps Masked Load + Masked Store

0x55892b893000-0x55892b895000 r-x 
0x55892ba94000-0x55892ba95000 r--

0x55892b893000-0x55892b895000 (r--|r-x)
0x55892b895000-0x55892ba94000 (---|unmap)
0x55892ba94000-0x55892ba95000 (r--|r-x)

0x55892ba95000-0x55892ba96000 rw-
0x55892ba95000-0x55892ba97000 rw-

0x7f3eeed4d000-0x7f3eeef34000 r-x
0x7f3eeef34000-0x7f3eef134000 ---
0x7f3eef134000-0x7f3eef138000 r--

0x7f3eeed4d000-0x7f3eef138000 (r--|r-x)

0x7f3eef138000-0x7f3eef13a000 rw-
0x7f3eef138000-0x7f3eef13c000 rw-

~
~

libc.so

app

Fig. 7. The process’s identified mapped memory regions and their access
permissions. The left is the output of the maps file, and the right is the result
confirmed by our attack. For simplicity, we depict a libc.so library only.

kernel address space on an Intel i5-12400F. As a result, we found the
kernel address region–which is allocated in five consecutive 2-MiB
pages–within 60 ms, on average. In our attack, we only find the base
address of the large region containing the kernel image. However,
this still derandomizes 18 bits of KASLR entropy and can be used
in combination with our TLB attack (�4) to break the remaining 9
bits of entropy. Additionally, we further conducted our attack on the
KVAS-enabled Windows. In Windows 10 (ver. 1709), the KVAS code
(e.g., KiSystemCall64Shadow) is part of the kernel (as in Linux),
and the offset from the kernel base address is 0x298000. On an Intel
i7-6600U (Skylake), we probed the kernel address space with a 4-
KiB alignment. Consequently, we were able to find the KVAS region
consisting of three consecutive 4-KiB pages in 8 sec. with 100%
accuracy. Thereafter, we found the kernel base address by subtracting
the KVAS offset from the identified address.

H. Breaking KASLR in cloud computing systems

We conducted the attack on global cloud services, Amazon EC2
(Xeon E5-2676), Google GCE (Xeon Cascade Lake), and Microsoft
Azure (Xeon Platinum 8171M). Like with KASLR breaks before, we
probed all possible kernel offsets in the range of randomization. In all
experiments, we successfully identified the kernel’s base address as
well as the currently loaded modules. On Amazon EC2 (Linux kernel
5.11.0-1020-aws), since the processor is vulnerable to Meltdown, we
found the KPTI trampoline at offset 0xe00000, from which we were
able to calculate the kernel’s base address. The runtime is 0.03 ms
for identifying the kernel base and 1.14 ms for the kernel modules.
On Google GCE (Linux kernel 5.13.0), we identified the kernel base
in 0.08 ms and the kernel modules in 2.7 ms. On Microsoft Azure
(Windows 10, 21H2), we derandomized 18 bits of KASLR entropy
in 2.06 sec. (n = 1000).

V. Countermeasures

A. Software-based mitigations

With Function Granular KASLR (FGKASLR) [1], individual kernel
functions are reordered so that even if the kernel address is revealed,
the attacker cannot identify the location of specific functions based
on relative addresses. However, even with FGKASLR enabled, our
attack can still break the fine-grained KASLR by leveraging TLB state
template attacks as described in [20]. We further verified whether our
attack could bypass FLARE [5], which maps dummy physical pages
to mitigate KASLR breaks based on page mappings. On the FLARE-
enabled kernel, we mounted TLB (�4) and page-table (�2) attacks.
As a result, we could clearly identify the fast access times that reveal
the mapped kernel regions in the TLB attack. While dummy mappings
mitigate attacks based on the page table level, they do not prevent our
TLB-based KASLR break. Stronger isolation or re-randomization [29]
should be implemented to mitigate our attack successfully.



B. Hardware-based mitigations

Since our TLB attack is based on TLBs, splitting TLB sets for user
and kernel space can be used to mitigate our attack. However, this
mitigation is not practically possible since the partitioned TLBs do not
fully support continuous virtual addresses, and it requires expensive
hardware changes [9], [18]. Additionally, it is possible to replace the
masked load and store instructions with NOPs only when the mask
bits are all set to zero. In Ubuntu 20.04.3 (kernel 5.11.0-27) with
the default installation, we found only 6 out of 4104 executables that
contain the masked load or store instruction, thus we believe that the
solution of restricting or replacing masked operations has little impact
on the system. We leave the detailed performance evaluation of these
mitigations for future work.

VI. Related works

A. Microarchitectural attacks on KASLR

Hund et al. [12] introduced the first microarchitectural KASLR
break by exploiting TLB states. Jang et al. [17] significantly improved
Hund et al.’s attack [12] by using an Intel TSX. Kosched et al. [18]
exploited tagged TLBs and data caches to break KASLR even in the
KPTI-enabled kernel. Gruss et al. [11] and Lipp et al. [20] exploited
software prefetch, and Schwarzl et al. [26] revisited the prefetch
attack [11]. Evtyushkin et al. [8] leveraged collisions within BTB
and Schwarz et al. [24] and Canella et al. [4] exploited a store-to-
load forwarding optimization. Lipp et al. [21] introduced the first
attack that solely uses power consumption differences. Lipp et al. [20]
exploited power variations of the prefetch instructions on AMD CPUs.
Canella et al. [5] exploited an incomplete hardware fix for Meltdown
and Weber et al. [28] exploited a cache line conflict caused by the
non-temporal moves (MOVNT).

B. AVX side-channel attacks

Gruss et al. [25] introduced the first AVX-based covert-channel,
which is based on the timing differences in AVX2 power saving
feature. Ragab et al. [23] discovered that VMASKMOV instructions (with
all-zero masks) that access invalid addresses issue a machine clear.
Weber et al. [28] discovered a timing side-channel that consists of
VDMADD132PD and FISTP instructions as part of the result of their
side-channel fuzzing framework. In this paper, our side-channel attack
exploits the fault-resistance and timing difference properties of the
AVX masked operations.

VII. Conclusion

This paper introduced a novel AVX timing side-channel attack that
can defeat User or Kernel ASLR. We demonstrated User and Kernel
ASLR breaks on popular OSes, cloud computing systems, and an
SGX enclave. We also showed that our attack can effectively infer
user behavior. Our attack is very fast, reliable, and works on the vast
majority of modern processors. We highlight that stronger isolation
or re-randomization should be implemented to successfully mitigate
our presented attack.
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