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Abstract—Logic-in-memory (LIM) describes the execution of
logic gates within memristive crossbar structures, promising to
improve performance and energy efficiency. Utilizing only binary
values, LIM particularly excels in accelerating binary neural
networks, shifting it in the focus of edge applications. Considering
its potential, the impact of faults on BNNs accelerated with LIM
still lacks investigation. In this paper, we propose faulty logic-in-
memory (FLIM), a fault injection platform capable of executing
full-fledged BNNs on LIM while injecting in-field faults. The
results show that FLIM runs a single MNIST picture 66754×
faster than the state of the art by offering a fine-grained fault
injection methodology.

Index Terms—ReRAM, memristor, faults, reliability, logic-in-
memory

I. INTRODUCTION

The von Neumann architecture describes a computing sys-
tem consisting of two main distinct components: the memory
and the computing unit. The computing unit must fetch/push
from/to the memory in order to process data, representing the
so-called von Neumann bottleneck. The bottleneck drastically
limits conventional computing systems’ performance and en-
ergy efficiency. Consequently, novel computing paradigms are
being investigated to overcome this limitation [1].

Emerging non-volatile memories such as spin-torque-transfer
memory (STT-RAM/MRAM), phase-change random-access
memory (PCRAM), and resistive random-access memory
(ReRAM) provide an ideal substrate for high-density memories
by also enabling the computing-in-memory (CIM) paradigm.
CIM executes operations within the memory without moving
data to the processing unit. Implementing these operations
in an analog fashion requires expensive ADCs/DACs but ac-
complishes the best performance [2]. In comparison, logic-in-
memory (LIM) uses binary values to perform logic operations
within memory, omitting the conversion from the analog to the
digital domain, while being more resilient against technology-
specific non-idealities [3], [4]. Fig. 1 exemplifies a memristive
crossbar array executing parallel XNOR operations.

Binary neural networks (BNNs) represent a set of machine
learning models that replace the typically used full-precision
weights with binary values. These networks trade a lower
overall accuracy with a significant performance improvement
and a lower memory footprint. Due to the quantification of its
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Fig. 1: Memristive crossbar array executing parallel XNOR
operations.

internal layers, the inference is dominantly computed through
the XNOR operation [5]. Hence, BNNs benefit from the mas-
sive parallelization of LIM, particularly in the context of edge
applications.

However, the benefit of non-volatile memories for imple-
menting these emerging applications depends on being able to
guarantee reliability during their lifetime. In more detail, as
observed in CMOS-based memories, these novel memories are
susceptible to time-dependent deviations, causing in-field faults
that affect their lifetime reliability [6], [7]. Time-dependent
deviations are primarily a result of environmental variations,
causing transient faults, such as bit-flips, and temporal varia-
tions, causing degradation over a lifetime. Furthermore, towards
the end of their life cycle, memories encounter stuck-at faults.

The impact of transient faults has been thoroughly investi-
gated for analog CIM [8]. Unfortunately, there is only limited
work on the effect on LIM. X-Fault [9] describes the most
detailed end-to-end fault injection platform injecting different
traditional faults at the device level. However, this approach
limits the platform’s performance, dramatically lowering the
feasibility of real-world models and datasets.

Contributions: In this paper, we propose an ultra-fast fault
injection platform called FLIM, capable of simulating full-
fledged BNN models. FLIM processes an MNIST data frame
66754× faster than X-Fault while injecting different faults
related to time-dependent deviations. In detail, we present
the following investigations. (1) First, we develop a simula-
tion methodology that abstracts in-field faults toward a high-
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Fig. 2: Overview of the simulation methodology: (a) Noise vector generator and (b) fault injector.

performance fault model. (2) Second, we introduce a notion
of time within our simulator, which allows the injection of
faults per layer. (3) Finally, we perform a reliability assessment
considering in-field faults of BNNs using different datasets and
models.

The rest of the paper is organized as follows. Section II
summarizes the state-of-the-art fault injection platforms, as well
as the background related to BNNs and LIM. Section III, de-
scribes the simulation methodology, including the implemented
fault models. Experimental results and a detailed discussion are
presented in Section IV. Section V concludes the paper.

II. BACKGROUND

This section summarizes the main approaches proposed for
performing reliability and security assessments, considering
different types of faults that can affect these novel applications
after manufacturing and during their lifetime. In addition, it
describes the background of BNNs and LIM.

A. Related Work

Fault injection platforms allow for a hands-on investigation
of the impact of faults on various aspects of computing systems.
For instance, these platforms are heavily used to investigate
hardware security primitives [10]–[12]. Especially analyzing
faults in machine learning algorithms has become a vital
field of research considering their widespread usage [13]–[15].
Non-idealities of emerging non-volatile memories and their
impact on CIM have been thoroughly investigated [16], [17].
Chakraborty et al. [18] propose a general approach to model
faults on memristive crossbars executing neural networks. The
framework is capable of simulating linear and non-linear non-
idealities at an architectural level. PytorX [19] presents an
end-to-end neural network tool based on PyTorch. The tool
adjusts the mapping and optimizes the training to overcome the
effect of non-ideal crossbars, and drastically limits the impact
of faults. In general, existing research has mainly focused on
analog-based CIM. The only framework able to simulate LIM
on memristive crossbar is presented by X-Fault [9]. The frame-
work offers a wide range of features, including various fault
models and injection mechanisms. However, the tool simulates
faults on memristor level limiting performance significantly.
Hence, X-Fault cannot simulate larger models or datasets due
to performance issues. Consequently, we propose FLIM, which
closes this gap and allows for an extensive investigation of
faults on LIM-based machine learning algorithms.

B. Binary Neural Networks (BNNs)

BNNs represent a class of neural networks using aggressive
quantization, drastically improving power efficiency but reduc-
ing accuracy [20]. This approach is auspicious for deploying
deep neural networks to resource-constrained devices. Com-
pared to full-precision neural networks, BNNs are behind in
terms of accuracy. However, simple classification tasks achieve
competitive performance. The open-source library Larq [21]
offers an easy entry to build and train BNNs. The library
builds upon Tensorflow and provides pre-trained models. An
XNOR operation within BNNs replaces the matrix-matrix-
multiplication of convolutions in full-precision neural networks.
Thus, BNNs map directly to LIM on memristive crossbars
and position it as a preferred application for CIM on edge.
Since BNNs still require some non-binary computation (e.g.,
activation and integer bit-count), only convolutional and dense
layers are mapped on memristive crossbar arrays. We follow
X-Fault’s conservative approach by assuming that these non-
binary operations are executed in CMOS.

C. Logic-in-Memory (LIM)

Compared to conventional CIM, LIM utilizes the memris-
tive crossbar array in a binary fashion omitting expensive
ADCs/DACS. Due to its binary working mode, LIM trades a
higher error resilience with lower latency. Internally, logical
states (0 or 1) are represented as either high or low resistive
values of the memristive cell. Logic gates are composed of
multiple memristors. An operation voltage applied to the con-
necting word line calculates the respective output based on the
given inputs. Kvatinsky et al. [22] classified logic families into
three categories: statefulness, the proximity of computation, and
flexibility. MAGIC [22] and IMPLY [23] describe two stateful
logic families capable of implementing a complete set of logic
operations. Within the scope of this work, we abstracted the
computation to the application level. Hence, we assume the
underlying usage of a logic family implementing the XNOR
logic gate without modeling it in detail.

III. FAULTY LOGIC-IN-MEMORY (FLIM)
FLIM embodies an end-to-end simulator capable of emu-

lating the impact of faults on BNNs using binary memristive
crossbar arrays. Fig. 2 depicts the internal structure of the fault
injection platform, which consists of a Fault Generator and
a Fault Injector. The Fault Generator constructs a set of fault
vectors encoding the fault type, location, and injection rate. This
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Fig. 3: Internal structure of FLIM consisting of the Fault Generator and the Fault Injector module.

tool is implemented in vanilla Python and hence, independent
of the fault injection mechanism. The Fault Injector extends
the Tensorflow/Larq framework to dynamically inject faults
in arbitrary BNN models. As depicted in Fig. 2b, the Fault
Injector employs the previously generated fault vectors and a
defined dataset to initiate the inference procedure.

Fault masking: FLIM implements bit-flip and stuck-at faults
to investigate the impact of time-dependent deviations. In con-
trast to X-Fault, the proposed platform models and injects faults
on the XNOR operation level yielding enhanced simulation
performance.

For bit-flip and stuck-at faults, a fault mask is generated,
encoding the fault’s location and binary representation. The
bit-flip mask defines a 2-dimensional Boolean array initialized
with zeros. The injection rate specifies the number of elements
within the array set to 1. In addition to these randomly
distributed bit-flips, entire rows/columns may also be faulty.
Thus, these rows/columns are set to 1, respectively.

Furthermore, the platform supports dynamic faults which oc-
cur every n-th XNOR operation [24]. To model dynamic faults,
the fault mask has to be repeated over several layers. Therefore,
multiple bit-flip masks are assembled, which are consecutively
applied to the respective layers of the model during inference.
Likewise, the stuck-at mask follows the same structure by
initializing a 2-dimensional array with zeros and marking all
faulty elements with ones. In general, mask generation happens
as an offline process that significantly improves performance
because the expensive mapping and distribution of faults are
performed once and reused over the whole simulation.

Fault mapping: The generated masks are assigned to spe-
cific layers within the BNN model in the next step. Therefore,
the Fault Generator has to be provided with the dimensions

and the number of crossbars used during the simulation. First,
the mapping tool calculates the number of parallel XNOR
operations based on the crossbars. Considering the implemen-
tation of MAGIC [22] or IMPLY [23], four memristors are
required to facilitate one XNOR operation. Second, the model
extracts the total number of required XNOR operations. Within
a BNN, only the 2-dimensional convolution (conv2D) layer
and fully binarized dense layers are dominantly using the
XNOR operation. Consequently, these layers would be mapped
and accelerated onto memristive crossbar arrays, while all
remaining layers are executed on conventional CMOS. Hence,
the mapping tool extracts the dimensions of these layers and
assigns the previously generated fault masks.

Fault vector extraction: Finally, the required fault vectors
are extracted from the virtual crossbar representation. The 2-
dimensional arrays are flattened to 1 dimension. Furthermore,
the vectors are stored in a binary file annotated with meta-
information about the assigned layer and mask type. The binary
file is independent of the dataset and reusable for a myriad of
experiments.

Fault Injector: The Fault Injector represents the centerpiece
of the FLIM platform. The tool is deeply integrated with
the Larq and Tensorflow framework to aim for maximum
performance by achieving a granular fault injection.

Fig. 3 depicts the internals of the injection mechanism.
The Larq library generally extends the Keras framework to
facilitate BNNs [21]. Larq defines custom quantized layers
as an extension of Keras layers. We extended this layer base
class by adding an instance of the Fault Injector. To trigger the
injection mechanism during the inference, the original convolu-
tion method has been overwritten. The following describes the
procedure of the faulty convolution method. First, the standard
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Fig. 4: Simulation results: Impact of (a) bit-flips, (b) stuck-at, (c) dynamic faults, (d) faulty columns, and (e) faulty rows on
different layers. (f) Performance benchmark.

convolution function calculates the feature map. The feature
map does not yet take into account any faults and, therefore,
represents the correct result of the computation. Second, before
both fault masks are applied on the feature map, the vectors
must be adjusted in length depending on the batch size and
the input dimension. Finally, the fault masks are applied by
performing another XNOR operation.

IV. RESULTS AND DISCUSSION

This section discusses the simulation results. Table I shows
the system specifications used to conduct all experiments. We
verified the functionality of FLIM in two distinct experiments.
The fault injector extends the Tensorflow/Larq framework.
Hence, we compared the inference results of FLIM (without
injecting any faults) with the results of vanilla Tensorflow/Larq.
The fault distribution and mapping have been verified with
X-Fault. Our investigations exhibit the impact of faults on
BNNs from various perspectives. First, the impact on individual
layers is studied. Second, we compare the performance of
our simulator to X-Fault and vanilla Tensorflow. Finally, we
thoroughly explore the resilience of various models on bit-flip
and stuck-at faults.

Layer resilience: This experiment aims to investigate the
resilience of individual layers of a BNN. We use a binary
version of LeNet [25] trained on the MNIST dataset. LeNet
represents a convolutional neural network which, in this ex-
periment, consists of three convolutional layers and two dense
layers. The former aims to extract the visual features from

TABLE I: Adopted experimental setup.
Hardware

CPU AMD Ryzen 7 5800X

RAM DDR4 2666MHz 64GB

GPU NVIDIA GeForce RTX 3080 Ti 12GB
Software

GPU Driver 470.129.06

CUDA 11.4

CuDNN 8.1.0.77-1

TensorFlow 2.8.0

LARQ 0.12.0 (modified)

the input picture. The latter is responsible for the feature
classification. The MNIST dataset embodies a set of 28×28
greyscale pixel images depicting handwritten digits [26]. After
training, the model achieves an accuracy of 97.62% without
any injected faults.

Throughout the experiment, each layer is mapped onto a
single crossbar while sweeping the injection rate of bit-flips,
dynamic faults, and stuck-at faults. To mitigate the impact of
randomly placing the faults on the crossbar, we performed
every experiment hundred times which reinitialized the random
generator with a new seed value.

Fig. 4(a-b) illustrates that stuck-at faults impact the model
more severely than bit-flips independent of the layer. While
stuck-at faults influence almost all layers equally strongly, bit-
flip faults affect the accuracy depending on the layer depth.
Moreover, convolutional layers appear more susceptible to bit-
flips than dense layers. The impact of dynamic bit-flip faults is
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Fig. 5: Simulation results of (a) bit-flips, (b) stuck-at, and (c) dynamic faults on different models.

shown in Fig. 4(c), whereas the x-axis represents the number
of XNOR operations required to sensitize the fault. The results
show that the BNN model’s accuracy stabilizes around its
original value at around four consecutive XNOR operations.

Next, we investigate the impact of faulty rows/columns on
the model’s accuracy. This experiment instantiates a 40×10
crossbar for each layer. Fig. 4(d-e) portrays the results of this
experiment. Once again, the layer’s depth directly correlates
with the impact on accuracy. In particular, the last dense
layer declines almost linearly. In general, the impact of faulty
columns is more substantial than of faulty rows. Considering
the column-wise parallelism of XNOR operations, this result
appears plausible.

Performance evaluation: We evaluate the performance of
our fault injection platform by executing the inference on the
previous LeNet model together with the complete MNIST test
dataset consisting of 10.000 images. While FLIM and the
vanilla Larq implementation perform fifty consecutive runs of
the complete dataset, we estimate the total run time of X-Fault
based on five images. During the inference, the fault injection
mechanism maps the respective operations but does not inject
actual faults. Thus, the vanilla Larq implementation serves as
a lower boundary regarding the total simulation time.

Fig. 4(f) shows the substantial performance improvement of
our work. FLIM classifies the 10.000 images 29375× faster
than X-Fault. Due to the deep integration within Larq and
Tensorflow, FLIM takes advantage of GPUs, doubling the

performance to a speed-up of 66754× compared to X-Fault.
Conclusively, FLIM abstracts the fault model on the XNOR
operation level and, hence, trades simulation accuracy with
noteworthy performance improvement.

Model resilience: The last experiment investigates the re-
silience of various models (see Table II). We pre-trained the
models with the ImageNet [27] dataset and injected bit-flips,
dynamic, and stuck-at faults. Once again, we run every exper-
iment hundred times to mitigate the impact of the randomly
placed faults.

Fig. 5(a-c) displays the simulation results. As expected,
the obtained results indicate that stuck-at faults cause a more
substantial impact on the accuracy than bit-flips. In other
words, it is possible to see that faults related to time-dependent
deviations can affect the reliability of emerging applications
differently. Depending on the injection rate, transient faults
will compromise the reliability of such applications at different
levels. In addition, it is possible to see that the reliability of
emerging applications is more affected by permanent faults.
The BiRealNet and XNOR-Net represent a particular case
because their convolutions are not strictly binarized. BiReal-
Net utilizes real-valued activation functions through identity
shortcuts [28]. On the other hand, XNOR-Net’s weights are
multiplied by an individual gain based on the magnitude of the
channel. Still, FLIM is capable of simulating both models by
slightly adjusting the bit-flip mask.
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TABLE II: Overview of the BNN models and their character-
istics.

Model Top-1 Acc. Size Parameters MACs Binarized

RealToBinaryNet [29] 65.0% 5.13MB 12M 1.81B 92.39%

BinaryDenseNet45 [30] 65.0% 7.54MB 13.9M 6.67B 96.34%

BinaryDenseNet37 [30] 62.9% 5.25MB 8.7M 4.71B 96.76%

BinaryDenseNet28 [30] 60.9% 4.12MB 5.13M 3.79B 94.66%

BinaryResNetE18 [31] 58.3% 4.03MB 11.7M 1.81B 92.4%

BinaryAlexNet [32] 36.3% 7.49MB 61.8M 841M 91.34%

MeliusNet22Z [33] 62.9% 3.88MB 6.94M 4.76B 97.14%

Bi-Real Net [28] 57.5% 4.03MB 11.7M 1.81B 92.4%

XNORNet [34] 45.0% 22.81MB 62.4M 1.14B 90.05%

V. CONCLUSION

This work proposed a fault injection platform, called FLIM,
able to evaluate the impact of in-field faults related to time-
dependent deviations in emerging applications. The platform
injects bit-flips (static and dynamic), related to environmental
variations, and stuck-at faults, associated with temporal varia-
tions. We investigated the impact of these faults on individual
layers and various models. Furthermore, FLIM outperforms the
current state-of-the-art platform by four orders of magnitude in
terms of performance. The obtained results show that a certain
level of in-field faults can be tolerated and that the impact
of bit-flips, even if multiple, compromises the reliability of
emerging applications less than stuck-at faults. These results
also demonstrate that in order to guarantee the development of
high-reliability emerging applications, it is mandatory to adopt
not only fault-tolerant approaches but also strategies able to
monitor and/or mitigate applications’ degradation during their
lifetime. In the future, we want to extend the capabilities of
FLIM to inject faults during training.
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