
ZKROWNN: Zero Knowledge Right of Ownership
for Neural Networks

Nojan Sheybani1, Zahra Ghodsi2, Ritvik Kapila1, Farinaz Koushanfar1
1University of California San Diego, 2Purdue University

1{nsheyban, rkapila, fkoushanfar}@ucsd.edu, 2zahra@purdue.edu

Abstract—Training contemporary AI models requires invest-
ment in procuring learning data and computing resources,
making the models intellectual property of the owners. Popular
model watermarking solutions rely on key input triggers for
detection; the keys have to be kept private to prevent discovery,
forging, and removal of the hidden signatures. We present
ZKROWNN, the first automated end-to-end framework utilizing
Zero-Knowledge Proofs (ZKP) that enable an entity to validate
their ownership of a model, while preserving the privacy of the
watermarks. ZKROWNN permits a third party client to verify
model ownership in less than a second, requiring as little as
a few KBs of communication.

I. INTRODUCTION

Deep Neural Networks (DNN) have emerged as the de facto
solution for major learning applications such as image and face
recognition [1]–[3] and natural language processing [4]. Train-
ing state-of-the-art DNNs requires access to large amounts of
data, as well as massive computational resources; for example,
recent language models are trained on terabytes of data, have
billions of parameters, and require hundreds of GPUs and
algorithmic expertise for training [5], [6].

Given the amount of required data and computing resources
spent on training a model, vendors who give access to their
trained models remotely or release them publicly have an
interest to protect the intellectual property rights of their
models against copyright infringements. Towards this goal,
prior work has proposed methods for watermarking deep
learning models [7]–[9]. Watermarks are designed in order
to target the decision boundary of the model to resist against
various removal attempts such as fine-turning and pruning,
while retaining a high accuracy. Extracting the watermark
signature involves providing a special key input that triggers
the watermark which can be detected at the output, e.g.
by a threshold function. However, once the key pertaining
to the watermark is revealed, the embedded signature can
be easily discovered and removed. This property creates an
impediment for litigating an ownership dispute which would
require providing proofs of ownership during the discover
process to potentially multiple parties.

In this work, we propose use of Zero-Knowledge Proofs
(ZKP) to facilitate legitimate proof of DNN ownership without
revealing any other information. ZKPs are a particular set
of protocols in cryptography involving a prover (P) and
a verifier (V). The prover seeks to prove a mathematical
assertion on a private input to the verifier, without disclosing
any other information about the input. While the use of ZKPs

in legal settings have been proposed in prior work for other
applications [10], [11], to the best of our knowledge, our work
is the first to propose a concrete framework for DNN proof of
ownership. Our work demonstrates how ZKPs can be used by
expert witnesses and other parties to verify ownership claims
without revealing details on the watermarking procedure that
could jeopardize the intellectual property rights of the model
owner. The use of ZKPs in legal settings should satisfy two
main requirements. First, executing the protocol should be
simple, and it is beneficial that the interaction be limited to
P sending a single message to V for verification. Second,
the proof has to be publicly verifiable, i.e., P can perform the
proof generation once that can be verified by any party, without
having to convince every entity in a separate process [11].

Non-interactive Zero-Knowledge Proof systems (NIZK)
[12] support these requirements. NIZK include a one-time
setup, and the process of verifying the proof consists of
a single message sent from the prover to verifier. This is
in contrast to interactive proof protocols where verification
is performed over multiple rounds, and has to be repeated
with every new verifier. Our work builds on zero-knowledge
succinct non-interactive arguments of knowledge (zkSNARKs)
to implement watermark extraction including feed-forward
computations in DNNs and sigmoid thresholding for trigger
detection. zkSNARK setup and proof generation steps are
circuit dependent; if the circuit changes often, this technique
could be quite computationally intensive. Fortunately, our
proposed work only handles a constant circuit representing
the pertinent DNN. Our concrete implementation demonstrates
the applicability of our framework, and we show that our
framework is able to prove ownership with as little as 11s
and 1ms of computation time on the prover and verifier side
respectively, and as little as 35KB of communication for
image recognition benchmarks. Our setting only requires setup
and proof generation once as the circuit does not change,
resulting in amortized prover and setup computation time
compared to the overall usage lifetime.

In summary, our contributions are:
• We propose ZKROWNN, the first end-to-end watermark

extraction and verification framework for deep neural
networks based on zero-knowledge proofs. ZKROWNN
enables a model owner to prove their right of ownership
without revealing details of the watermarking technique.

• ZKROWNN incorporates non-interactive proofs for simpli-
fied proof generation and verification. More specifically,

ar
X

iv
:2

30
9.

06
77

9v
1 

 [
cs

.C
R

] 
 1

3 
Se

p 
20

23



ZKROWNN’s proofs are publicly verifiable, i.e., the proof
is generated once and can be verified by third parties
without further interaction.

• We provide a concrete implementation of ZKROWNN with
extensive evaluation on various benchmarks. ZKROWNN
requires small communication (less than 16MB during
setup and only 128B to transfer the proof for our largest
example), and enables sub-second proof verification.

II. BACKGROUND

A. Neural Network Watermarking

Watermarking techniques have been extended to DNNs to
protect the intellectual property of model owners. Watermark-
ing can be considered analogous to introducing a backdoor in
a neural network, especially in the case of Black box dynamic
watermarking [13]. A backdoor is embedded in the model
by hand-crafting key input triggers which generate the desired
watermark (WM). The model continues to perform at the same
accuracy with minimal overhead, except when these selected
key inputs are used to verify the watermark.

Watermarks can be embedded in weights [14], activa-
tions [7], or near the decision boundary [15] of neural net-
works. For image processing networks, [16] proposes spatially
invisible watermarking mechanisms. A unified and invisible
signature is learned and embedded into all the outputs, which
can be extracted afterwards to verify ownership. Additional
methods include introduction of statistical bias in the weights
while training a neural network [8]. An embedding regularizer,
which uses binary cross entropy loss, is used in the standard
cost function of one of the convolution layers. The watermark
can be extracted by projecting w using a secret key X, where
the jth bit of the watermark is extracted as bj = s(ΣiXjiwi).
Here, s(x) is a step function, wi are the weights of the
network and X is the secret key required to embed and detect
the watermarks. This methodology has advantages over the
usual procedure of embedding the signature in the weights
of a trained network as it does not degrade the network’s
performance after training and embeds the signature during
training itself. However, embedding the signatures in the
weights of the DNN, even while training, poses significant
challenges related to WM robustness, and makes it prone to
watermark overwriting and network morphism.

In this work, we consider the watermarking method pre-
sented in DeepSigns [7] which embeds the watermark into the
probability density function (PDF) of activation maps across
various layers of the network. DeepSigns takes the trained
model along with an owner-defined watermark signature, and
produces a watermarked network.

DeepSigns watermark embedding is a two step process, be-
ginning with securely generating owner-specific WM keys. In
the next step, the owner’s DNN is fine tuned and the generated
WM signature is embedded into the pdf distribution of the
activation maps of selected layers. The encoded watermark
signatures are Independently and Identically Distributed (iid)
arbitrary binary strings. For the intermediate hidden layers, the

data distribution is assumed to be a Gaussian Mixture Model
(GMM). One or more random indices are selected from 1 to
S, where each index corresponds to a Gaussian in the mixture
model. S is the number of classes in the final application.
The WM signature is then embedded into the mean of these
selected Gaussian distributions.

The WM keys contain three parameters, the chosen Gaus-
sian classes s, the input triggers, which are basically a subset
(1%) of the input training data (Xkey), and the projection
matrix A. The projection matrix is used to project the mean
values of the selected Gaussian distributions into binary space.
To minimize the distance between these mean values, that is
the centers of the Gaussian distributions and the owner’s WM
signature, an additional loss term is added to the cost function
while fine tuning.

The watermark extraction phase consists of three steps. It
begins with querying the underlying DNN with the owner-
specific watermark keys (Xkey) generated during embedding.
In the next step, the Gaussian Centers are approximated by
taking a statistical mean of the obtained activation maps.
These Gaussian centers and the projection matrix A, obtained
from the owner’s WM keys, are used to estimate the relevant
Watermark signature. Finally, the bit error rate (BER) between
the obtained WM signature and the owner’s actual signature
is computed. If the BER is zero for any layer, DeepSigns
ascertains that the deployed DNN is the IP of the model owner
in question. This WM methodology is robust to watermark
overwriting, model fine-tuning and model-pruning.

B. Zero-Knowledge Proofs

ZKPs are a cryptographic primitive that allows a prover P
to convince a verifier V that an evaluation of computation C on
P’s private input w, also called the witness, is correct without
revealing anything about w. In a standard ZKP scheme, P
convinces V that w is a valid input such that y = C(x,w),
in which x and y are public inputs and outputs, respectively.
When the communication of this proof is done in a single
message, the ZK scheme is referred to as non-interactive.
ZKPs can also be generated interactively, in which the proof is
computed through several rounds of communication between
P and V , but this requires V to be online for the duration
of proof generation, which is undesirable when there are
many verifiers. Interactive ZKP schemes are limited, as they
only support the designated verifier model, meaning that a
new proof must be generated for each verifier for one circuit
C. In contemporary ZK constructions, C is expressed as an
efficient generalization of an arithmetic circuit, such as Rank 1
Constraint Systems (R1CS) or Quadratic Arithmetic Programs
(QAPs), which have been popularized due to their ease of use
[17], [18].

Zero-knowledge succinct non-interactive arguments of
knowledge (zkSNARKs) have been utilized for a myriad
of tasks, including the real-world case of Zcash’s privacy
preserving cryptocurrency [19]. zkSNARKs have emerged as
a popular ZKP method, acting as the technical foundation for
many ZK works, as this construction provides fast and compu-



Fig. 1. High level description of ZKROWNN

tationally inexpensive proof verification [20]. zkSNARKs also
benefit from being publicly verifiable, meaning that any veri-
fier with the proper verification key can verify a zkSNARK.
The main drawback of zkSNARKs are the reliance on a trusted
setup for every new circuit C and the intensive computation
necessary for proof generation. If C does not change often, or
at all, these computational drawbacks can be amortized.

In this work, we use the Groth16 zkSNARK protocol, which
is based on QAP representations of computation [21]. The
high-level approach for proof generation with Groth16 (and
other NIZKs in general) can be represented with the three
following algorithms:

• (VK,PK)←− Setup(C): A trusted third party or V run a
setup procedure to generate a prover key PK and verifier
key VK. These keys are used for proof generation and
verification, respectively. This setup must be repeated
each time C changes.

• π ←− Prove(PK, C, x, y, w): P generates proof π to
convince V that w is a valid witness.

• 1/0←− Verify(VK, C, x, y, π): V accepts or rejects proof
π. Due to soundness property of zkSNARKs, V cannot
be convinced that w is a valid witness by a cheating P .

The Groth16 protocol allows us to achieve small proofs and
fast verification, independent of the circuit size [21], at the cost
of high prover and setup complexity. Due to the static nature
of C in our ZKROWNN, proof generation and setup only happen
once, so runtimes are amortized and therefore negligible.

III. METHODOLOGY

A. ZKROWNN Setting and Threat Model

In this work we assume a setting where a model owner
holds a watermarked model M with private trigger key K
and watermark parameters W . The model owner claims that
a second model M′ is built based on watermarked model M.
The model owner takes the role of a prover P , and generates
a proof π attesting that M′ produces the watermark W when
triggered with K. In our threat model, prover P is semi-
honest, meaning that P will not deviate from the protocol.
The ownership proof π can be verified by any third party V ,
requiring only a verification key. The proof generation and
verification steps in ZKROWNN are illustrated in Figure 1.
ZKROWNN utilizes zkSNARKs to enable proof of ownership
without revealing the trigger key K and watermark W . We
extend the watermark embedding and extraction technique in
DeepSigns [7]. As detailed in Section II-A, the watermark

is embedded in a specific layer, which is only known to the
original model owner. This watermark is only extractable when
the model takes in a specific trigger key as an input. As
discussed in [7], the watermarks are embedded in and extracted
from the probability density function (pdf) of the activation
maps in the model. With all of this information in hand, we
outline ZKROWNN’s zero-knowledge watermark extraction in
algorithm 1.

Algorithm 1 ZKROWNN Watermark Extraction
Public Values: Model M, target BER θ
Private Input: trigger key Xkey , B-bit watermark wm, projection
matrix AM×N where M = size of feature space and N = size of
wm, embedded layer lwm

Circuit:
check = 1
zkFeedForward(M) on input Xkey until layer lwm

Extract activation maps a at layer lwm

µ1×M = zkAverage(a)
G1×N = zkSigmoid(µ1×M ×AM×N )
ŵm = zkHard Thresholding(G1×N , 0.5)
valid BER = zkBER(wm, ŵm, θ)
return check ∧ valid BER

To support the circuit presented in algorithm 1, we provide
seperate smaller zkSNARK circuits for each computation, such
as sigmoid and thresholding. For the feed-forward operation,
we support Dense, ReLU, and Convolution3d layers, as we
assume that the watermarks are embedded in one of the
initial layers of the model. In addition, we provide end-to-end
zero-knowledge watermark extraction circuits for a Multilayer
Perceptron (MLP) and Convolutional Neural Network (CNN).
In the next section, we provide the implementation details of
each operation that ZKROWNN supports.

B. ZKROWNN Implementation
To implement ZKROWNN, we use xJsnark [22], a high-

level framework that enables zkSNARK circuit development.
The generated circuits are compiled in libsnark, a C++
framework for zkSNARK generation [23]. As stated before,
proof generation and verification are done with the Groth16
protocol using the BN128 elliptic curve, which provides 128
bits of security. While xJsnark and libsnark have open-
source gadgets/arithmetic circuits available for general compu-
tation, none were relevant to the computation that ZKROWNN
requires. Therefore, all circuits were designed specifically for
watermark extraction, however can be generalized and ex-
tended for other relevant applications, such as DNN inference.



zkSNARK arithmetic circuits do not natively support float-
ing point computation without requiring conversion to binary
circuits [24]. This process incurs large overhead for the prover,
which is already the computational bottleneck in zkSNARK
schemes. To avoid floating point computation, we scale our
inputs by several orders of magnitude and truncate the result.
This does not affect the performance, as the floating point
conversions are all done in a preprocessing step before the
proof generation and all functions are modified accordingly
before circuit generation. For readability, we still use floating
point values in our descriptions of algorithm 1 and our
implementations. We now present the implementation details
of the functions that ZKROWNN supports. It is important to note
that, although these operations are used collectively for end-
to-end watermark extraction, each circuit can also be used in
a standalone zkSNARK due to our modular design approach.

1) Matrix Multiplication: We implement a zero knowl-
edge matrix multiplication circuit that efficiently computes
AM×N × BN×L = CM×L, where C is a private matrix and
A or B can be public or private, depending on the application.
This circuit can be used for dense/fully connected layers that
are done in the feed-forward step of watermark extraction, or
for standard matrix multiplication, both of which are necessary
in our end-to-end implementation.

While there have been optimizations for matrix multiplica-
tion in zero knowledge proposed before, such as Freivald’s
algorithm [25], the most notable optimizations require inter-
activity between prover and verifier. As the ZKROWNN use
case greatly benefits from non-interactivity, we do not consider
these optimizations.

2) Convolution: We implement the 3D convolution opera-
tion by flattening the input and kernel into 1D vectors. The
input is grouped and structured based on the size of the kernel
and stride value into a vector. Afterwards, we perform a 1D
convolution operation between the processed input vector, and
the flattened kernel. We develop an arithmetic circuit for zero-
knowledge 1D convolution, which consists of inner product
and shift operations.

3) Sigmoid: The standard sigmoid function is defined as
S(x) = 1/(1 + e(−x)), which is a very difficult computation
to do in zero-knowledge. To work around this, we use the
Chebyshev polynomial approximation of the sigmoid function
presented in [26]:

S(x) = 0.5 + 0.2159198015x− .0082176259x3

+ 0.0001825597x5 − 0.0000018848x7

+ 0.0000000072x9

We reiterate that floating point computation is converted
to integer arithmetic by increasing floating point numbers by
several order of magnitudes and truncating.

4) ReLU and Hard Thresholding: We implement ReLU in
a zero-knowledge circuit that computes f(x) = max(0, x).
Due to the similarity between ReLU and hard thresholding, a
similar circuit is used for the two operations. To implement

hard thresholding, we take in a threshold β as an input and
build a circuit that computes the following piecewise function:

f(x) =

{
1 if x ≥ β

0 if x < β

Hard thresholding is performed on the output of the sigmoid
function, resulting in a vector of ones and zeroes that can be
concatenated to generate the extracted watermark.

5) Bit Error Rate: The bit error rate is defined as the
percentage of bits that differ between the private watermark
wm and the ZKROWNN extracted watermark ŵm. This is the
last computation that is done in our end-to-end implemen-
tations. To compute this, we perform bit by bit comparison
of wm and ŵm as a secondary function implemented in the
hard thresholding circuit. If the bit error rate is below some
predefined threshold θ, the circuit outputs a 1. If not, the circuit
will output a 0.

6) End-to-end Examples: We include implementations of
ZKROWNN applied to a multilayer perceptron (MLP) and
convolutional neural network, assuming that the watermark
is embedded in the first hidden layer for both examples.
ZKROWNN still works when the watermark is embedded in
deeper layers, at the cost of higher prover complexity.

IV. EVALUATION

Experimental Setup. ZKROWNN is implemented with a
libsnark [23] backend using the Groth16 zkSNARK proto-
col. All zkSNARK circuits are built using xJsnark [22]. We
run all experiments on a 128GB RAM, AMD Ryzen 3990X
CPU desktop.
ZKROWNN Evaluation Metrics. We present the following

metrics to evaluate ZKROWNN and the individual circuits:
• Number of Constraints: The number of constraints is used

as an indicator for how large the zkSNARK circuit is. As
number of constraints increases, runtimes also increase.

• Setup Runtime: The setup process is used to generated
the prover key PK and verifier key VK by a trusted
third party. Trusted setup is a core idea in zkSNARKs.
In ZKROWNN’s setting, this process is only run once, so
its runtime can be amortized.

• Prover Runtime: This is defined as the amount of time
for prover P to generate a zkSNARK. As zkSNARKs are
designed to reduce verifier complexity, this often comes
at the cost of increased prover complexity. Much like
the setup, this process is only run once in the ZKROWNN
setting, so its runtime can be amortized.

• Proof Size: Due to the succinctness property of zk-
SNARKs, the proofs that are generated in ZKROWNN are
very small, requiring very little communication between
the prover and all verifiers.

• Prover Key Size: The prover key size grows with respect
to the size witness data in our zkSNARK circuit, so
this can grow quite large in our setting. This requires
communication from the trusted setup provider to the
prover, but, again, this process is only done once.



TABLE I
ZKROWNN PERFORMANCE BENCHMARKS ON ALL INDIVIDUAL ZKSNARK CIRCUITS AND END-TO-END EXAMPLES. ALL INDIVIDUAL, MEANING NOT
END-TO-END, CIRCUITS (E.G. MATMULT) ARE RUN WITH PRIVATE INPUTS AND PUBLIC OUTPUTS, FOR SAKE OF CONSISTENCY. 2D OPERATIONS ARE

RUN WITH 128× 128 INPUTS AND 1D OPERATIONS ARE RUN WITH LENGTH 128 INPUTS. Conv3D IS RUN WITH 32× 32× 3 INPUTS WITH 32 OUTPUT
CHANNELS, 3× 3 FILTER SIZE, AND STRIDE 2.

Benchmark # Constraints Setup Runtime (s) PK size (MB) P Runtime (s) Proof Size (B) VK size (KB) V Runtime (ms)

MatMult 1,097,344 57.3976 215.6518 18.6805 127.375 0.199 0.6
Conv3D 235,899 13.3621 46.3793 4.2081 127.375 0.199 0.6
ReLU 8,832 0.6384 1.7193 0.1907 127.375 5.303 0.7
Average2D 545,793 29.6248 107.3271 9.5570 127.375 5.303 0.6
Sigmoid 454,656 34.4989 90.5934 8.3680 127.375 41.031 0.8
HardThresholding 8,704 0.624 1.6978 0.1857 127.375 5.303 0.7
BER 8,832 0.6423 1.7526715 0.1826 127.375 0.2389 0.6

MNIST-MLP 2,093,648 68.4456 280.3859 45.1208 127.375 16,006.343 29.4
CIFAR10-CNN 590,624 32.35 117.1699 11.22 127.375 34.651 1

TABLE II
DETAILS OF DNN BENCHMARKS. FC(A) REPRESENTS A FULLY

CONNECTED LAYER WITH NEURONS, AND C(A,B,C) REPRESENTS A
CONVOLUTION LAYER WITH OUTPUT CHANNELS, FILTER SIZE B, AND

STRIDE C. MP(A,B) REPRESENTS A MAX POOLING LAYER WITH FILTER
SIZE A AND STRIDE B.

Dataset Architecture

MNIST 784 - FC(512) - FC(512) - FC(10)

CIFAR10
3×32×32 - C(32, 3, 2) - C(32, 3, 1) - MP(2, 1)
C(64, 3, 1) - C(64, 3, 1) - MP(2, 1) - FC(512) - FC(10)

• Verifier Key Size: The verifier key size grows with respect
to the size of the public inputs in our zkSNARK circuit.
This requires communication between the trusted setup
provider and each verifier.

• Verifier Runtime: zkSNARKs aim to minimize verifier
complexity, so verifier runtime is often in the millisecond
range. This greatly benefits ZKROWNN, as our goal is to
provide verifiers with a simple scheme to validate their
ownership of a model.

A. ZKROWNN Performance

We evaluate ZKROWNN on two DNN benchmarks: a mul-
tilayer perceptron (MLP) on the MNIST dataset and a con-
volutional neural network (CNN) on the CIFAR-10 dataset.
These benchmarks are extended from DeepSigns [7]. We
assume that the model owner embedded a 32-bit watermark
in the first hidden layer, however, our framework can handle
extracting the watermark from any layer. We also benchmark
the specific circuits that make ZKROWNN’s automated end-to-
end framework. ZKROWNN does not result in any lapses in
model accuracy, as our scheme does not modify the weights
of the model at all. ZKROWNN is able to achieve the same
BER and detection success from extracted watermarks as
DeepSigns, while protecting the model owner’s trigger keys
and preserving the privacy of the watermark.

Table I highlights the end-to-end performance of ZKROWNN
on the benchmark architectures described in Table II. The

DNN benchmarks use ReLU as the activation function, how-
ever we provide the capability of using sigmoid, at the cost
of potentially lower model accuracy. Alongside end-to-end
performance, we also benchmark the performance of our
individual zkSNARK circuits.

When observing the results of ZKROWNN, we are able to
achieve low communication and runtime for the verifier, even
with large circuits. The corresponding results are bolded in
Table I. Although we witness relatively high prover/setup
runtimes, we reiterate that proof generation and setup only
happen once per circuit. In our setting, we benefit from this,
as the zkSNARK circuit does not change, thus amortizing the
proof generation and setup runtimes and communications.

Our largest circuit, the MLP circuit, only results in a 127B
proof. This only requires 29.4ms to verify, and any third party
with the verifier key can verify this. The verifier key requires
16MB of communication from the trusted setup provider
to each verifier, due to taking in the model’s weights as a
public input. Due to memory constraints, we precompute a
small portion of the first layer matrix multiplication in the
MLP, but ensure that there is no risk of information leakage,
as the precomputed values still act as private inputs. The
CNN circuit, requiring only a quarter of the constraints as
the MLP circuit, has much more desirable setup, prover, and
verifier performance. Prover and setup runtimes and proving
key sizes are cut at least in half. We are able to maintain the
same proof size, with a drastically reduced verifier key, due
to the reduction of public input size. This results in a 1ms
verification time, which is highly attractive for verifiers.

When looking at the results as a whole, we see that proof
size stays constant, no matter what the size of the circuit is,
which is beneficial in our use case. With our largest individual
circuit, matrix multiplication with 128× 128 inputs, we only
need 0.6ms to verify computational correctness. As mentioned
before, the verifier key grows with the public input, which has
a direct effect on the the verification runtime. Some circuits,
such as sigmoid and averaging, required some extra public
inputs to compute correctness, thus leading to some higher



VK sizes. To reduce runtimes and constraints in our end-to-end
example, which are combinations of the individual circuits, we
make specific optimizations such as bitwidth scaling between
operations and combining operations within loops.

Overall, we show the efficiency of ZKROWNN in developing
proofs of model ownership alongside fast verification by
any third party entity. We also present the proof generation
and verification performance for each circuit that is used to
implement the MLP and CNN circuits. The individual circuits
achieve fast and communication-light verification. We use the
individual circuits to implement end-to-end watermark extrac-
tion and verification in ZKROWNN, however, these circuits can
be combined to perform a myriad of tasks, including verifiable
machine learning inference.

V. CONCLUSION

This paper presented ZKROWNN, the first end-to-end water-
mark extraction and verification framework for DNNs based
on zero-knowledge proofs. ZKROWNN utilizes zkSNARKs to
enable a model owner to prove their right of ownership of a
watermarked model while preserving privacy of watermark-
sensitive data. We show ZKROWNN’s end-to-end efficiency
over multiple popular DNN benchmarks, and highlight the
fact that our scheme is publically-verifiable. Therefore, any
third party can check the validity of the generated proofs
in ZKROWNN. This work presents a paradigm shift from
previous watermarking works by providing an end-to-end
zero-knowledge approach to extracting watermarks, therefore
allowing model owners to prove ownership of another model,
without putting their original embedded watermarks at risk.

REFERENCES

[1] Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin,
and Jonathan K Su. This looks like that: deep learning for interpretable
image recognition. Advances in neural information processing systems,
32, 2019.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. Communications
of the ACM, 60(6):84–90, 2017.

[3] Guosheng Hu, Yongxin Yang, Dong Yi, Josef Kittler, William Christmas,
Stan Z Li, and Timothy Hospedales. When face recognition meets with
deep learning: an evaluation of convolutional neural networks for face
recognition. In Proceedings of the IEEE international conference on
computer vision workshops, pages 142–150, 2015.

[4] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria.
Recent trends in deep learning based natural language processing. ieee
Computational intelligenCe magazine, 13(3):55–75, 2018.

[5] Junyang Lin, Rui Men, An Yang, Chang Zhou, Yichang Zhang, Peng
Wang, Jingren Zhou, Jie Tang, and Hongxia Yang. M6: Multi-modality-
to-multi-modality multitask mega-transformer for unified pretraining.
In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pages 3251–3261, 2021.

[6] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper, and Bryan Catanzaro. Megatron-lm: Training multi-billion
parameter language models using model parallelism. arXiv preprint
arXiv:1909.08053, 2019.

[7] Bita Darvish Rouhani, Huili Chen, and Farinaz Koushanfar. Deepsigns:
An end-to-end watermarking framework for ownership protection of
deep neural networks. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 485–497, 2019.

[8] Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh.
Embedding watermarks into deep neural networks. In Proceedings of the
2017 ACM on international conference on multimedia retrieval, pages
269–277, 2017.

[9] Huili Chen, Bita Darvish Rohani, and Farinaz Koushanfar. Deepmarks:
A digital fingerprinting framework for deep neural networks. arXiv
preprint arXiv:1804.03648, 2018.

[10] Dor Bitan, Ran Canetti, Shafi Goldwasser, and Rebecca Wexler. Using
zero-knowledge to reconcile law enforcement secrecy and fair trial rights
in criminal cases. Available at SSRN, 2022.

[11] Kenneth A Bamberger, Ran Canetti, Shafi Goldwasser, Rebecca Wexler,
and Evan J Zimmerman. Verification dilemmas in law and the promise
of zero-knowledge proofs. Berkeley Technology Law Journal, 37(1),
2022.

[12] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Per-
siano. Noninteractive zero-knowledge. SIAM Journal on Computing,
20(6):1084–1118, 1991.

[13] Yue Li, Hongxia Wang, and Mauro Barni. A survey of deep neural net-
work watermarking techniques. Neurocomputing, 461:171–193, 2021.

[14] Yuki Nagai, Yusuke Uchida, Shigeyuki Sakazawa, and Shin’ichi Satoh.
Digital watermarking for deep neural networks. International Journal
of Multimedia Information Retrieval, 7(1):3–16, 2018.

[15] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph
Keshet. Turning your weakness into a strength: Watermarking deep
neural networks by backdooring. In 27th USENIX Security Symposium
(USENIX Security 18), pages 1615–1631, 2018.

[16] Jie Zhang, Dongdong Chen, Jing Liao, Han Fang, Weiming Zhang,
Wenbo Zhou, Hao Cui, and Nenghai Yu. Model watermarking for
image processing networks. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 12805–12812, 2020.

[17] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner,
Madars Virza, and Nicholas P Ward. Aurora: Transparent succinct
arguments for r1cs. In Annual international conference on the theory
and applications of cryptographic techniques, pages 103–128. Springer,
2019.

[18] George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss.
Square span programs with applications to succinct nizk arguments. In
International Conference on the Theory and Application of Cryptology
and Information Security, pages 532–550. Springer, 2014.

[19] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green,
Ian Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized
anonymous payments from bitcoin. In 2014 IEEE symposium on security
and privacy, pages 459–474. IEEE, 2014.

[20] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn.
Sonic: Zero-knowledge snarks from linear-size universal and updatable
structured reference strings. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pages 2111–
2128, 2019.

[21] Jens Groth. On the size of pairing-based non-interactive arguments.
In Annual international conference on the theory and applications of
cryptographic techniques, pages 305–326. Springer, 2016.

[22] xJsnark. https://github.com/akosba/xjsnark.
[23] libsnark. https://github.com/scipr-lab/libsnark.
[24] Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Yinuo Zhang. Suc-

cinct zero knowledge for floating point computations. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications
Security, pages 1203–1216, 2022.

[25] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and Xiao Wang.
Mystique: Efficient conversions for {Zero-Knowledge} proofs with
applications to machine learning. In 30th USENIX Security Symposium
(USENIX Security 21), pages 501–518, 2021.

[26] Zhiguo Wan, Yan Zhou, and Kui Ren. zk-authfeed: Protecting data
feed to smart contracts with authenticated zero knowledge proof. IEEE
Transactions on Dependable and Secure Computing, 2022.

https://github.com/akosba/xjsnark
https://github.com/scipr-lab/libsnark

	Introduction
	Background
	Neural Network Watermarking
	Zero-Knowledge Proofs

	Methodology
	ZKROWNN Setting and Threat Model
	ZKROWNN Implementation
	Matrix Multiplication
	Convolution
	Sigmoid
	ReLU and Hard Thresholding
	Bit Error Rate
	End-to-end Examples


	Evaluation
	ZKROWNN Performance

	Conclusion
	References

