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Abstract—Emerging deep neural network (DNN) applications
require high-performance multi-core hardware acceleration with
large data bursts. Classical network-on-chips (NoCs) use serial
packet-based protocols suffering from significant protocol trans-
lation overheads towards the endpoints. This paper proposes
PATRONoC, an open-source fully AXI-compliant NoC fabric to
better address the specific needs of multi-core DNN computing
platforms. Evaluation of PATRONoC in a 2D-mesh topology
shows 34 % higher area efficiency compared to a state-of-the-art
classical NoC at 1 GHz. PATRONoC’s throughput outperforms a
baseline NoC by 2-8× on uniform random traffic and provides a
high aggregated throughput of up to 350 GiB/s on synthetic and
DNN workload traffic.

Index Terms—Networks-on-chip, multi-core DNN platforms,
AXI, high-performance systems

I. INTRODUCTION

Deep neural networks (DNNs) have become one of the
primary workloads in computing platforms of data centers and
edge devices in the internet of things (IoT). Given the high
proliferation of DNN workloads, research into designing and
developing high-performance specialized hardware accelerators
for DNN has gained much interest, as evidenced by the several
DNN accelerators presented in the past decade [1]. In the quest
to support the ever-growing requirements of DNN workloads,
hardware architectures have evolved from small single-core
implementations to homogeneous [2] and heterogeneous [3]–
[5] multi-core hardware implementations1. The trend of going
multi-core can bring performance gains. However, it also brings
new challenges, such as resource partitioning, workload map-
ping, complex hardware implementations, memory hierarchy
design, and data communication bottlenecks between cores.

Multi-CPU-based general-purpose computing traditionally
uses networks-on-chip (NoCs) and their various optimizations
for inter-CPU data communication. Many topologies exist to
balance the scalability of CPU cores, throughput, latency, and
area impact of the NoC. Moreover, NoC protocols are designed
for packetization and serialization over fairly narrow channels
between cores (e.g., 32 bits), which reduces the number of
routing resources needed. However, this implies additional
hardware at the network’s edges for protocol translation and
serialization/deserialization (SERDES) from standard channel-
oriented protocols at the endpoints (e.g., AXI4 or AXI5) to the

1In this paper, the terms core and accelerator are used interchangeably.

NoC protocol. Moreover, due to their serialized nature, these
NoCs need a high clock frequency to meet the bandwidth
requirements, thus needing clock domain crossing hardware.

Such traditional narrow-channel NoCs work well for inter-
CPU cache traffic. However, the traffic of DNN workloads is
mostly deterministic, with large bursts of non-coherent data
movements requiring high bandwidth interconnection to achieve
high performance and low latency. To achieve high bandwidth,
typical solutions either 1) use a narrow NoC and operate it at 2-
8× the core frequency [6] or 2) build a wide NoC with multiple
channels [7]. The latter solution gains traction as advanced
technology scaling enables the area-efficient integration of more
and more on-chip interconnect resources [7], [8]. However,
modern NoCs need more than just wide links to answer the
needs of DNN workloads, as packet-based serial NoC protocols
are inadequate for workloads that rely on burst-based traffic.

This paper proposes a template for burst-based homogeneous
AXI-compliant NoCs to address the requirements of emerging
multi-core DNN platforms and to tackle the challenges of
packet-based serial NoCs. This work builds upon the open-
source elementary AXI building blocks of [9], which focuses
on crossbar-based topologies, towards a fully-configurable open
source AXI-based NoC framework, PATRONoC. PATRONoC
is subsequently used in a mesh topology and extensively
benchmarked to demonstrate the benefits of having AXI-based
NoCs. As such, this work makes the following contributions:

• We present an open-source parameterizable AXI-compliant
NoC designed for providing high bandwidth links for
multi-core DNN computing platforms. The NoC is avail-
able at https://github.com/pulp-platform/axi.

• We demonstrate that using an AXI protocol for the NoC
creates a fully homogeneous network interface to avoid
high cost of protocol translation and provides a standard
plug-and-play support for ease of integration.

• We show that using the AXI protocol end-to-end, a
multi-channel, wide NoC with burst support and high
bandwidth between cores as well as to-and-from memory
can be supported, thereby improving performance of DNN
applications on multi-core platforms.

The rest of the paper is organized as follows. Section II
discusses the architectural overview of the proposed NoC,
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Fig. 1. PATRONoC instances as a 2 × 2 mesh (left) and a 4 × 4 mesh (right).
The AXI masters and slaves are not shown in the 4 × 4 mesh for ease of
readability. Elementary blocks used for the NoC are also shown: XP (bottom-
left) and XBAR (bottom-right). Red XP is 3-master and 3-slave, light blue
XP is 4-master and 4-slave, and, dark blue XP is 5-master and 5-slave.

followed by details of the NoC’s physical implementation with
GlobalFoundries’ modern 22FDX technology in Section III.
We evaluate our NoC with synthetic and real traffic patterns
extracted from DNN workloads in Section IV. Subsequently,
we compare our work against other modern NoC solutions in
Section V before presenting our conclusions in Section VI.

II. INTERCONNECT ARCHITECTURE OF PATRONOC

This section provides architectural and physical implementa-
tion details of PATRONoC for a mesh topology. NoCs are built
with many elementary routing elements, each forwarding data
from the ingress ports to the egress ports according to their
topology-specific routing table. In this work, we extend the AXI
crosspoint (XP) from [9], shown in Fig. 1 (bottom), allowing it
to be used as PATRONoC’s routing element. The XP consists
of a configurable crossbar (XBAR) switch and ID remappers
to ensure isomorphic XP ports. It is fully AXI-compliant
and supports bursts, multiple outstanding transactions, and
transaction ordering. We used the XP as the building block
for a homogeneous, 2D mesh topology NoC with widely
configurable dimensions, as shown in Fig. 1. Although this work
uses the 2D mesh as a proof-of-concept, any regular topology,
such as a torus, butterfly, or ring, can also be modularly built
using our building blocks. We focused on the mesh due to its
popularity in research and its remarkable simplicity, scalability,
and efficiency [7]. Fig. 1 shows the two mesh topologies, 2 × 2
(top-left) and 4 × 4 (top-right), used to evaluate PATRONoC.

The meshes are built by instantiating the XPs in a 2D
grid and connecting the NESW-bound links to neighboring

TABLE I
MAIN PARAMETERS OF THE PATRONOC 2D MESH.

Parameter Values

Mesh Dimension N×M
Number of AXI Masters 1 to N×M (default)

Number of AXI Slaves 1 to N×M (default)
Data Width 8 bits to 1024 bits

Address Width Arch. dependent (32 or 64 bits)
ID Width 1 bit to 16 bits

Max #Outstanding Trans. 1 to 128
XBAR Connectivity Partial (default) or Fully connected

Register Slice Single channel or all channels (default)

XPs. AXI masters and slaves can be connected as NoC
endpoints at each XP. A common AXI master is a core or
a DNN accelerator, and AXI slaves can be memory or I/O
tiles. Each XBAR is configured with a static routing table
used for deterministic dimension-ordered routing in the mesh.
Specifically, PATRONoC uses a source-based YX routing
scheme, as shown with the green arrows in Fig. 1, to reduce
the complexity of the route calculation step of the crosspoints.
In this algorithm, a transaction is first passed forward in the
same column until it reaches the same row as the destination
XP and then passed forward in the same row until it reaches
the destination XP. An automated script generates the address-
based routing table for each XP which is used for routing the
AXI transactions based on their destination address.

PATRONoC is highly parameterizable, taking advantage of
the flexibility of the AXI protocol. The parameters that can be
tuned at design time are shown in Table I. The number of AXI
masters and slaves indicate the number of connected cores and
memory/IO tiles in the design. Both ranges for possible number
of AXI masters and slaves are valid for the N×M 2D mesh
and are topology-dependent. For example, in a concentrated
mesh, multiple masters and slaves can connect to the same
XP. Furthermore, the data width (DW) can be tuned to meet
the system’s bandwidth requirements, while the address width
(AW) can be tuned to support a larger global address space.

The AXI protocol identifies transactions with IDs used by the
master endpoints to distinguish independent transactions. The
number of unique IDs can be configured using the ID width
(IW) and increases with the number of masters. All transactions
from the same master with the same ID must remain ordered,
but there is no ordering requirement between transactions with
different IDs. Multiple outstanding transactions enable the
master to hide the memory latency. A higher max. number of
outstanding transactions (MOT) improves performance, as all
AXI building blocks can support multiple in-flight transactions,
preventing bandwidth degradation when the NoC is saturated.

The XBAR connectivity parameter configures the XP to
either connect all slave ports to all master ports in the case of a
fully-connected network or partially connect slaves and masters
in the case of a mesh or other non-point-to-point topologies.
The last parameter is the register slice (cut), shown in Fig. 1,
that can be optionally inserted at design time on some or all
AXI channels, improving the timing of the design at the cost of
increased latency. The rest of the paper evaluates PATRONoC
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Fig. 2. Implementation results showing area versus bisection bandwidth of
PATRONoC and ESP-NoC [10] in 2 × 2 mesh configurations. PATRONoC’s
configurations are represented as AXI AW DW IW.

in 2 × 2 and 4 × 4 mesh topologies with multiple configurations
based on the DW, AW, IW, and MOT parameters.

III. IMPLEMENTATION RESULTS

This section provides implementation results in terms of
complexity and scalability of the NoC and its parameters. The
implementation is done in GlobalFoundries’ 22FDX technology
node using a ten-layer metal stack. We used eight-track standard
cells of SLVT/LVT type, characterized at worst-case scenario
(SS/0.72 V/125 °C) for timing analysis. The designs from
Section II are synthesized using Synopsys’ Design Compiler
2022.03 in topographical mode, taking physical endpoint
placement constraints into account. All designs achieve a clock
frequency of 1 GHz at the worst-case condition corner with a
register slice on every AXI channel.

The 2 × 2 PATRONoC mesh, shown in Fig. 1 (top-left),
is first synthesized with different AW and DW parameters,
keeping IW = 2 bits, MOT = 1, and other parameters at default
values. Fig. 2 shows the area versus bisection bandwidth (DW-
dependent) of the mesh for the different configurations. As
expected, the design area scales up with increasing AW and
DW, taking up mere 174 kGE for the smallest configuration of
AW = 32 bits and DW = 32 bits. The biggest design shown in
Fig. 2, with DW = 512 bits, takes an on-chip area of 830 kGE.

The benefit of having a homogeneous NoC is evident when
the design is compared to classic NoC solutions. This work
uses ESP-NoC [10] as our baseline NoC. ESP-NoC is a state-of-
the-art open-source packet-based NoC including six planes for
coherent and non-coherent traffic for multi-core heterogeneous
systems. Synthesis results showing the area of the 2 × 2 ESP-
NoC mesh in its 32-bit- and 64-bit-flit configurations are
presented in Fig. 2. Compared to PATRONoC’s configuration
with AW = 32 bits and DW = 64 bits, ESP-NoC takes up
68 % more area to provide only 25 % more throughput (five
32-bit wide planes providing 160 Gbit/s). The area overhead
can be attributed to ESP-NoC’s multiple planes with large
protocol translation interfaces at each endpoint. The advantage
of PATRONoC is much more evident in Fig. 2 when comparing
its area efficiency (slope) with ESP-NoC. We define area
efficiency as the bisection bandwidth normalized to the standard
cell area, providing a measure of NoC performance at a given
complexity. Fig. 2 shows that PATRONoC is closer to the
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Fig. 3. Implementation results showing area vs. bisection bandwidth of
PATRONoC in 4 × 4 mesh configurations (left). Configurations are represented
as AXI AW DW IW. Area vs. MOT tradeoff for DW = 64 bits (right).

Pareto front providing better area efficiency compared to the
ESP-NoC in 32-bit and 64-bit configurations.

We implement the 4 × 4 mesh shown in Fig. 1 (top-right)
to show the scalability of PATRONoC. For building the 4 × 4
mesh, the IW of the AXI blocks is increased to 4 to support
16 unique IDs required for 16 masters. The results of the area
and bisection bandwidth of this mesh are summarized in Fig. 3
(left). As the mesh dimensions change, the area overhead of
the NoC becomes approximately 32 % compared to the 2 × 2
mesh in similar AW and DW configurations, leading to a drop
in area efficiency by 25 %. Increasing the MOT improves the
performance of the NoC at the cost of larger complexity in
terms of area. Fig. 3 (right) shows the tradeoff between MOT
and the area of the 4 × 4 PATRONoC with DW = 64 bits.
While this work focuses more on performance and area aspects
of the NoC, the power consumption at 1 GHz for the 4 × 4
PATRONoC is 45 mW (for DW = 32 bits) and 171 mW (for
DW = 512 bits) on uniform random traffic. This accounts
for less than 10 % of the projected power consumption of a
complete platform, assuming that a typical DNN accelerator
connected to one NoC node uses 100 mW to 200 mW.

IV. PERFORMANCE EVALUATION

PATRONoC’s performance is characterized in terms of
throughput versus injected load through a cycle-accurate
register-transfer level (RTL) simulation. This section evalu-
ates the performance of the 4 × 4 PATRONoC mesh in two
configurations: 1) as a slim NoC with DW = 32 bits and 2)
as a wide NoC with DW = 512 bits, both with AW = 32 bits,
IW = 4 bits, and MOT = 8. Each master is a DMA engine, and
the slaves are AXI-capable memories that cater to the DMA
requests. The configurable and workload-specific maximum
burst length is used by the RTL model of the DMA engine to
create AXI-compliant bursts (adhering to address boundaries
and max number of beats) for the NoC. In our evaluation
framework, the workload-specific burst length is randomized
within a user-defined range to emulate a random burst length
with a random source and destination address, while the bursts
in the NoC are subject to AXI compliance. All analyses assume
a clock frequency of 1 GHz for the endpoints and the NoCs.

A. Uniform Random Traffic

The Noxim simulator [11] is used to set the baseline NoC
performance, taking a 4 × 4 mesh with the default XY routing,
32-bit flits, and eight flits per packet to closely match the slim
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simulator for a 4 × 4 2D mesh and uniform random traffic on the slim
PATRONoC with increasing DMA burst length.

PATRONoC configurations. Fig. 4 shows the non-exhaustive
characterization of the Noxim NoC on this traffic in two
configurations: 1) a standard single virtual channel with 4
flits per router buffer for a compact implementation, and 2)
four virtual channels with 32 flits per router buffer for high
performance. The saturation throughput of the Noxim NoCs are
1.6 GiB/s and 2.25 GiB/s, respectively. Increasing the number
of virtual channels (VCs) [12] and flits per buffer improves
the NoC’s performance, but also increases router complexity.

Fig. 4 also shows the NoC throughput for the uniform
random traffic running on the 4 × 4 slim PATRONoC mesh. It
is clear that PATRONoC is beneficial for burst traffic. At
small transfer lengths of less than 4 B, similar to normal
CPU traffic, PATRONoC performs equivalently to the Noxim
NoC with 1.5 GiB/s throughput. However, when using longer
bursts, PATRONoC’s performance improves and reaches up
to 19 GiB/s aggregated throughput at DMA burst lengths up
to 10 KiB and 64 KiB. This provides an improvement of 8.4×
over the saturation throughput achieved by the best Noxim
NoC configuration (4 VCs, buffers 32-flit deep), showing that
PATRONoC largely outperforms it by using bursts.

B. Synthetic Traffic

Fig. 5 shows the three synthetic traffic patterns considered:
1) all global access, 2) max two-hop access, and, 3) max single-
hop access. We characterize the 4 × 4 PATRONoC mesh in
both slim and wide configurations with the synthetic patterns.

a.) All global access: In this traffic pattern, all the AXI
master and DMA endpoints communicate with a single slave
endpoint leading to predominately global accesses. Fig. 5a)
shows this traffic pattern on the 4 × 4 mesh, where the endpoint
(2, 1) acts as the AXI slave. b.) Max two-hop access: In this use
case, the AXI slave accesses are distributed to four endpoints
(1, 1), (1, 2), (2, 1), and (2, 2). This considers architectures
that have a distributed shared L2/L1 memory, either uniform or
non-uniform. The 16 AXI masters can communicate to any of
the four endpoints, but in this case, the masters are restricted to
only communicate to slaves which are a maximum of two hops
away. c.) Max single-hop access: In this traffic pattern, the
AXI slaves are further distributed across eight endpoints along
the edges except for the corners. The 16 masters are restricted
to access only slaves which are at most one hop away. The last
two cases are considered because in traffic from many DNN

Priv. L1

Accel

DMA

AXI-R

Traffic to same endpoint 
using the local port of switch

Traffic to other endpoints 
using the NESW ports of switch

a) All global access b) Max two-hop access c) Max single-hop access

Fig. 5. Synthetic traffic patterns for the performance evaluation.

workloads, data scheduling can be done on nearby cores to
prevent long latency and low-performance data communication.

The slim NoC can be used in architectures that are area-
constrained but require more throughput than what most
traditional NoCs can provide. Fig. 6 (left) shows the NoC
utilization, with respect to bisection bandwidth, of the slim NoC
on the three synthetic patterns at different burst sizes. Starting
with traffic pattern a.), the slim NoC provides a minimum of
1.5 GiB/s of throughput with short bursts. This is approximately
4.7 % NoC utilization considering the slim NoC has a 32 GiB/s
bisection bandwidth. The access pattern limits the traffic to a
few links of the NoC and, thus, a low utilization is expected.
The throughput improves considerably with increasing burst
length and reaches a maximum of 6 GiB/s for burst lengths up
to 64 KiB, providing a NoC utilization of around 18.75 %. For
pattern b.), the NoC performs similarly to pattern a.) for short
burst lengths. However, the aggregated throughput improves
considerably with larger bursts and saturates at 17.2 GiB/s for
burst lengths up to 10 KiB and 64 KiB. This leads to a higher
NoC utilization of about 53.75 %, showing that all mesh links
can be utilized more efficiently. Similar to pattern b.), the
pattern c.) under-performs at small bursts but the aggregated
saturation throughput at larger bursts improves to 22.5 GiB/s
for bursts up to 64 KiB with a NoC utilization of 70.3 %.

The wide NoC is geared towards high-bandwidth large-burst
multi-core DNN-workload traffic. A significant performance
gain can be achieved with such wide NoC, but being parame-
terizable means that also alternative DWs between 32 bits and
512 bits can be considered by designers to find an optimal
size for given system requirements. Fig. 6 (right) shows the
NoC utilization characteristic of the wide NoC on the synthetic
access patterns with different burst sizes. For the traffic pattern
a.), the wide NoC can only achieve a utilization of 0.29 % at
small bursts up to 4 B large, providing a maximum throughput
of 1.5 GiB/s (bisection bandwidth of 512 GiB/s). As seen with
the slim NoC, this is an expected performance degradation
with this access pattern. The degradation in NoC utilization is
further exacerbated by the wide DWs but short burst lengths.
The throughput improves, however, with larger burst sizes of up
to 64 KiB and reaches saturation at 95 GiB/s with 18.55 % NoC
utilization. Both patterns b.) and c.) result in low throughput and
utilization with small burst sizes. The aggregated throughput
improves at larger bursts with length up to 10 KiB and 64 KiB
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2 hop, and max 1 hop traffic patterns with different DMA burst sizes.
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Fig. 7. Overview of the DNN workloads used for PATRONoC evaluation.
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reaching 255 GiB/s (49.8 % utilization) and 345 GiB/s (67.4 %
utilization) for the patterns b.) and c.), respectively.

C. DNN Workload Traffic

Synthetic traffic does not capture the full scope of access
patterns in real multi-core hardware architectures running DNN
workloads. In order to characterize the NoC in more realistic
use cases, this section evaluates three emulated CNN-based
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Fig. 8. Throughput analysis for DNN workload traffic on the PATRONoC.

workloads: a.) distributed training, b.) parallelized convolutions,
and c.) pipelined convolutions, shown in Fig. 7. We use
GVSoC [13] to generate real traffic patterns for the RTL
simulation. GVSoC is an open-source, highly configurable,
and event-driven simulator for heterogeneous RISC-V-based
SoC platforms used for full-system software development and
performance evaluation.

a.) Distributed training: For this workload, we replicate and
deploy a ResNet-34 (90 % channel shrink factor) distributed
training model for the ImageNet dataset on 16 cores. In terms of
data communication, a mix of L2 to L1 (core), L1 (core) to L2,
and L1 (core) to L1 (core) transfers are needed. b.) Parallelized
convolution [14]: This is a CNN-based inference workload
in which the layers of the network and inputs are tiled and
deployed on separate cores. This is a pure L2 to L1 (core)
and L1 (core) to L2 memory traffic pattern and has no inter-
core communication. c.) Pipelined convolution [14]: Depth-first
or pipeline dataflow is used in many new DNN platforms to
efficiently run CNN-based inference. In this scheme, layers are
executed in parallel, in a pipelined way across the different
cores to reduce the data traffic to higher memory levels [15].
This workload has mostly L1 (core) to L1 (core) traffic and
only cores 0 and 15 do L1 (core) to/from L2 transfers.

Fig. 8 shows the evaluation results of the 4 × 4 slim and wide
NoCs running the three DNN workloads. For the slim NoC, the
parallelized convolution—which consists of mostly core to/from
shared memory transfers—reaches a throughput of 4.27 GiB/s.
For the training workload, the throughput is better than the
parallelized convolution workload as it involves a mix of core
to/from shared memory and core-to-core transfers. On the
pipelined convolution, which consists of predominantly core-
to-core traffic, the NoC achieves a high 19.17 GiB/s throughput.
Similar trends are reported for the 4 × 4 PATRONoC wide NoC
shown in Fig. 8 (right), but at much higher throughput, with
pipeline convolution reaching a peak throughput of 310 GiB/s.

V. RELATED WORK

NoCs are an active area of research, and much effort has gone
into optimizing topologies, routing algorithms, flow control
schemes, and the microarchitecture of routers [12], [26], [27].
Multi-core (CPU) architectures have been exploiting these
optimizations of NoCs for many decades. However, NoCs for
multi-accelerator DNN platforms are still in nascent stage.



TABLE II
COMPARISON OF PATRONOC WITH STATE-OF-THE-ART NOCS IN SOCS

Metric

Work Open Full Burst- Config- NoC-BW
Source AXI support urable (Gbps)∗

SpiNNaker [16] × × × × 5 (async)
Reza et al [17] × × × × 4000

MCM [18] × × × × 35
MC-NoC [6] × × × × 2368

NeuNoC [19] × × × × -
TETRIS [20] × × × × -

PUMA [21] × × × × -
OpenSoC [22] ✓ × × ✓ -

ESP-SoC [4] ✓ × × Limited 351
Celerity [23] ✓ × × Limited 80

FlexNoC [24] × × × - -
Constellation [25] ✓ × × ✓ -
Andreas et al. [9] ✓ ✓ ✓ ✓ 2146

PATRONoC ✓ ✓ ✓ ✓ 2700
∗Normalized to 1 GHz for fair comparison.

Table II provides a brief overview of state-of-the-art NoCs
used in multi-core DNN platforms compared to PATRONoC.
PATRONoC is the only design that provides open-source AXI-
compliant homogeneous burst-based configurable NoC for
multi-core DNN platforms. Moreover, PATRONoC outperforms
most of the designs in terms of throughput, with the exception
of [17], which uses a bigger 8 × 8 concentrated mesh (CMesh)
topology with primarily local access patterns. Moreover, its
results are taken from the gem5 simulator [28], and the RTL
of the design is not openly available. Using a CMesh topology
for PATRONoC would similarly improve its performance.

OpenSoC Fabric [22] is among the few open-source NoCs
with a custom non-coherent NoC protocol. It provides a socket
to plug AXI-Lite-based endpoints. Unfortunately, AXI-Lite
does not support bursts needed by high-performance systems.
The ESP framework [4], [10] also provides an open-source
implementation of its multi-plane NoC, supporting coherent
and non-coherent endpoints. The NoC is a 2D mesh topology
and uses a custom packet-based protocol. We used ESP-NoC as
a baseline for comparison with PATRONoC. Section III shows
that PATRONoC is more area efficient and provides higher
bandwidth owing to its homogeneous network. BaseJump
Manycore is an open-source non-coherent NoC based on a
2D mesh used in the Celerity chip [23]. Those NoCs are
generally limited to meshes and use classical packet-based
NoC protocols, which lead to high area overhead and low
bandwidth. In comparison, PATRONoC can be used to design
any topology, while providing a highly parameterizable NoC.

VI. CONCLUSION

This work presented the first homogeneous AXI-compliant
network-on-chip architecture, building a complete open-source
infrastructure for generating various NoC topologies. Using
the benefits of a burst-based AXI protocol, PATRONoC targets
the emerging field of multi-core DNN platforms requiring
high-bandwidth burst-based traffic. The NoC provides high-
performance gain compared to state-of-the-art NoCs by using

its burst capability and achieves up to a maximum of 310 GiB/s
aggregated throughput on DNN workloads. The work provides
insight into the exploration of different design parameters
which affect the performance and complexity of the NoC. It
also enables future work to explore different NoC topologies
which might be suited for emerging DNN platforms.
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