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Abstract—Biologically inspired Spiking Neural Networks
(SNNs) have attracted significant attention for their ability to
provide extremely energy-efficient machine intelligence through
event-driven operation and sparse activities. As artificial in-
telligence (AI) becomes ever more democratized, there is an
increasing need to execute SNN models on edge devices. Existing
works adopt weight pruning to reduce SNN model size and
accelerate inference. However, these methods mainly focus on
how to obtain a sparse model for efficient inference, rather
than training efficiency. To overcome these drawbacks, in this
paper, we propose a Neurogenesis Dynamics-inspired Spiking
Neural Network training acceleration framework, NDSNN. Our
framework is computational efficient and trains a model from
scratch with dynamic sparsity without sacrificing model fidelity.
Specifically, we design a new drop-and-grow strategy with de-
creasing number of non-zero weights, to maintain extreme high
sparsity and high accuracy. We evaluate NDSNN using VGG-
16 and ResNet-19 on CIFAR-10, CIFAR-100 and TinyImageNet.
Experimental results show that NDSNN achieves up to 20.52%
improvement in accuracy on Tiny-ImageNet using ResNet-19
(with a sparsity of 99%) as compared to other SOTA methods
(e.g., Lottery Ticket Hypothesis (LTH), SET-SNN, RigL-SNN). In
addition, the training cost of NDSNN is only 40.89% of the LTH
training cost on ResNet-19 and 31.35% of the LTH training cost
on VGG-16 on CIFAR-10.

Index Terms—spiking neural network, neural network pruning,
sparse training, neuromorphic computing

I. INTRODUCTION

Biologically inspired Spiking Neural Networks (SNNs)
have attracted significant attention for their ability to pro-
vide extremely energy-efficient machine intelligence. SNNs
achieve this performance through event-driven operation (e.g.,
computation is only performed on demand) and the sparse
activities of spikes. As artificial intelligence (AI) becomes ever
more democratized, there is an increasing need to execute SNN
models on edge devices with limited memory and restricted
computational resources [1]. However, modern SNNs typically
consist of at least millions to hundreds of millions of parameters
(i.e., weights), which requires large memory storage and
computations [2, 3, 4]. Therefore, it is desirable to investigate
efficient implementation techniques for SNNs.

Recently, the use of sparsity to compress SNN model size
and accelerate inference has attracted a surge of attention [5,
6], including the train-prune-retrain method (e.g, alternating
direction method of multipliers (ADMM) pruning [5, 7, 8, 9]),
iterative pruning (e.g., lottery ticket hypothesis (LTH) [6, 10])).

The aforementioned methods are shown in Fig. 1 and mainly
focus on how to obtain a sparse model for efficient inference.
However, the training process to obtain a sparse model is not
efficient. To illustrate consider the case VGG-16 on CIFAR-10,
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Fig. 1: Sparsity change of different sparsification methods on VGG-16
/ ResNet-19 CIFAR-10.

for train-prune-retrain [5, 11] (orange line), the first 150 training
epoches are dense (zero sparsity); For iterative pruning [6], the
sparsity gradually increases in the first 150 training epoches.
As shown in the highlighted grey area, both methods have low
sparsity hence low training efficiency.

In the field of neuroscience, the total number of neurons
declines with age during the process of neuron’s degeneration
(i.e., old neuron’s death) and redifferentiation (i.e., new neuron’s
birth), in human hippocampus, referred as Neurogenesis
Dynamics [12, 13]. In this paper, inspired by the Neurogenesis
Dynamics, we propose an efficient Spiking Neural Network
training acceleration framework, NDSNN. We analogize the
neuron’s death-and-birth renewal scheme to the drop-and-grow
schedule in SNN sparse training. We dynamically reduce the
number of neuron connections in SNN sparse training, to reduce
training memory footprint and improve training efficiency [14].
The number of zeros decreases in the dynamically changing
process of weight mask tensor (i.e., a binary tensor which has
the same size as weight, 0s / 1s denotes zeros / non-zeros
in corresponding weight tensor). The sparsity during NDSNN
training is illustrated in Fig. 1 as the green curve. We could
train from a highly sparsified model (e.g., initial sparsity is
80%) and achieve the final sparsity (e.g., 95%).

Overall our paper makes the following contributions:
• Inspired by neurogenesis dynamics, we propose an energy

efficient spiking neural network training workflow.
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(a) Neuron degeneration and redifferentiation 
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Fig. 2: (a) shows the neurogenesis dynamics of nerve cells in the nervous system. A indicates inflammatory factors accumulating in nerve
system. B indicates neuron degeneration and redifferentiation process. C is the final nerve system. (b) shows drop and grow process of the
neural network. The total number of nonzero weights decreases with the increasing of drop-and-grow times.

• To reach high sparsity and high energy efficiency with
dense model like accuracy, we design a new drop-and-
grow strategy with decreasing number of non-zero weights
in the process of dynamically updating sparse mask.

• We evaluate the training efficiency of NDSNN via nor-
malizing spike rate. Results show that the cost of NDSNN
on ResNet-19 and VGG-16 is 40.89% and 31.35% of
state-of-the-art (SOTA), respectively.

• We demonstrate extremely high sparsity (i.e., 99%) model
performance in SNN based vision tasks with acceptable
accuracy degradation.

We evaluate NDSNN using VGG-16 and ResNet on CIFAR-
10, CIFAR-100 and TinyImageNet. Experimental results show
that NDSNN achieves even high accuracy than dense model for
ResNet-19 on CIFAR-10. On Tiny-ImageNet, NDSNN achieves
up to 20.52% increase in accuracy compared to the SOTA at
a sparsity of 99%. The training cost of NDSNN VGG-16 is
10.5% of training a dense model.

II. RELATED WORK AND BACKGROUND

A. Related Work on Sparsity Exploration in SNN

Several network compression schemes for SNNs have been
proposed. In [5] the alternating direction method of multipliers
(ADMMs) pruning is employed to compress the SNNs on
various datasets. However, this technique has significant
accuracy loss, especially when the model has high sparsity.
Although IMP could find highly sparse neural network with
high accuracy, it is time consuming (e.g. it takes 2720 epochs to
achieve 89.91% sparsity on both CIFAR-10 and CIFAT-100) [6].
In [15] they propose a Spike Timing Dependent Plasticity
(STDP) based pruning method. Connections between pre-
synaptic and post-synaptic neurons with low spike correlation
are pruned. The correlation is tracked by STDP algorithm. The
performance of this method is limited as the original model
only achieves 93.2% accuracy on MNIST, and accuracy drops
to 91.5% after 92% weights are pruned. In [16] they propose
a technique to prune connections during training. Weights will
be pruned if they are less than a certain threshold or decrease
significantly in a number of training iterations. However, the

method’s evaluation is limited, as it is only tested on a single
dataset Caltech-101.
B. Spiking Neural Network

A key difference of SNN from DNN is that spiking neuron
is a stateful system that can be modeled by different equations.
The commonly used Leaky Integrate and Fire (LIF) spiking
neuron is defined as follows.

v[t] = αv[t−1] +
∑
i

wisi[t]− ϑo[t− 1] (1a)

o[t] = u(v[t]− ϑ) (1b)
u(x) = 0, x < 0 otherwise 1 (1c)

where t indicates time. Eq. (1a) depicts the dynamics of the
neuron’s membrane potential v[t]. α ∈ (0, 1] determines v[t]
the decay speed. si[t] ∈ {0, 1} is a sequence which consists
of only 0 and 1 to represent the i− th input spike train and
wi is the corresponding weight. o[t] ∈ {0, 1} is the neuron’s
output spike train, u(x) is the Heaviside step function.

Note that Eq. (1a) is recursive in the temporal domain, so it is
possible to use Backpropagation Through Time (BPTT) to train
SNNs. However, an issue arises with Eq. (1c), whose derivative
is the Dirac Delta function ∆(x). To overcome this, surrogate
gradient method can be used [17] so that the derivative of u(x)
is approximated by the derivative of a smooth function. In the
forward pass, the SNN still outputs spikes, while in backward
pass, ∆(x) is replaced by a surrogate function so the Heaviside
step function has an approximate derivative.

The BPTT for SNNs using a surrogate gradient is derived
as follows. Let L be the loss, δl[t]= ∂L

∂ol[t]
be the error signal at

layer l time step t, εl[t]= ∂L
∂vl[t]

. δl[t] is propagated recursively
as following rules, and gradient of lth layer weight wl is
calculated using Eq. (3).

δl[t] = εl+1[t]wl+1 (2a)
εl[t] = δl[t]φl[t] + αεl[t] (2b)

∂L

∂wl
=

T−1∑
t=0

εl[t] · [sl[t]]ᵀ (2c)
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Fig. 3: A toy example of NDSNN training process. Red arrows denote dropping weights and green arrows denote growing weights.

where φl[t]=
∂ol[t]
∂vl[t]

=∂u(vl[t]−ϑ)
∂vl[t]

. Note that u(x) does not have
a well-defined derivative, so we use the gradient surrogate
function proposed in [18] to approximate it, such that:

∂u(x)

∂x
≈ 1

1 + π2x2
(3)

III. NEUROGENESIS DYNAMICS-INSPIRED SPARSE
TRAINING ON SNN

We illustrate the overall workflow of the biological and
corresponding computational methods in Fig. 2.

A. Analogizing Neurogenesis Dynamics in Sparse Training

In human hippocampus, the total number of neurons declines
with age during the process of neuron’s degeneration (i.e., old
neuron’s death) and redifferentiation (i.e., neuron’s birth) [13].
We analogize the neuron’s death-and-birth renewal scheme to
the drop-and-grow schedule in sparse training [19, 20, 21, 22].
Here drop means the insignificant connections are deactivated
(weights with least absolute magnitude are set as zeros).
In our formulation grow refers to creating new connections
(weights with high importance are updated to nonzeros). For
the dynamics of neurogenesis in the human hippocampus, the
neurons declines with age [13]. Similarily in our framework,
we reduce the number of connections or reduce the number of
activated weights in the sparse training process in consideration
of the memory limitation of neuromorphic chips [14].

B. Problem Definiton

We aim to achieve high sparsity (low memory overhead)
during training and high energy efficiency (through SNN
implementation) without noticeable accuracy loss. The problem
is formally defined as: consider a L-layer SNN with dense
weights W = [W1,W2, ...,WL], a dataset X , and a target
sparsity θf , our goal is to develop an training workflow such
that the training process requires less memory overhead and
less computation, and the trained model achieves high accuracy.

C. Neurogenesis Dynamics-inspired Spiking Neural Network
(NDSNN) Training Acceleration Framework

Fig. 2 shows the overview of neurogenesis dynamics-
inspired spiking neural network (NDSNN) workflow. Fig. 2(a)
demonstrates the neuron cell loss or degeneration (the grey

neuron cells) and redifferentiation process (the green neuron
cells). In Fig. 2(b) we illustrate the training process of NDSNN,
where we drop the weights (i.e., setting the smallest positive
weights and the largest negative weights as zeros) in grey
color and grow the weights (i.e., update the zeros weights to
nonzeros) in green color, every ∆T iterations. The number
of weights we dropped is larger than the grown ones each
drop-and-grow schedule. Thus, the number of nonzero weights
decreases with the increasing of drop-and-grow times.

The goal of the proposed training method is to reduce
memory footprint and computations during the whole training
process. To achieve it, our proposed method uses less weights
and gradients than SOTA methods via dynamically updating
the sparse mask and training from scratch. Specifically, we
denote θi and θf as the initial and target sparsity, respectively.
t0 is the starting step of training, ∆T is the pruning frequency.
The full training workflow is be formed in the following steps.

1 First round / last round weight sparsity distributions
across different layers. Let Θi = θ1

i , θ
2
i , ..., θ

L
i denote the

initial sparsity distribution (i.e., sparsity of different layers at the
beginning of training) of SNN model and Θf = θ1

f , θ
2
f , ..., θ

L
f

denote the final sparsity distribution (i.e., sparsity of different
layers at the end of training) of the model. Here, we use
ERK [23] to distributing the non-zero weights across the
layers while maintaining the overall sparsity. We denote nl as
the number of neurons at l-th layer and wl, hl as the width
and height of the l-th convolutional kernel,then the number
of parameters of the sparse convolutional layers are scaled
proportional to 1 − nl−1+nl+wl+hl

nl−1∗nl∗wl∗hl . In our case, the overall
sparsity at the beginning of training θi is less than the one at
the end of training θf . Following the same scaling proportion
distribution, the sparsity of each separate convolutional layer at
the beginning of training is smaller than it’s sparsity at the end
of training (i.e., for l-th layer, we have θli ≤ θlf ). The sparsity
of l-th layer at t-th iteration is formulated as:

θlt = θlf + (θli − θlf )(1− t− t0
n∆t

)3,

t ∈ {t0, t0 + ∆T, ..., t0 + n∆T}, l ∈ {1, 2, ..., L}.
(4)

2 Training. We define non-active weights as weights has
value of zeros and active weights as weights has value of non-
zeros. For each iteration, we only update the active weights.



In backward path, gradients are calculated using BPTT with
surrogate gradient method, and forward pass is carried out like
standard neural network training.

3 Dropping (neuron death). During training, the sparse
masks are updated every ∆T iteration, i.e., for l-th layer, we
drop Dl

d weights that are closest to zero (i.e., the smallest
positive weights and the largest negative weights). we denote
d0 as the initial death ratio (i.e., the ratio of weights to prune
from non-zeros) and dt as the death ratio at step t. We use the
cosine annealing learning rate scheduler [24] for death ratio
updating. Then, we have

dt =dmin + 0.5(d0 − dmin)(1 + cos(
πt

n∆t
)),

t ∈ {t0, t0 + ∆T, ..., t0 + n∆T},
(5)

where dmin is the minimum death rate during the training.
At qth round, the number of 1s in sparse mask of l-th layer
Npre

l
q before dropping is

Npre
l
q = N l(1− θlq−1), 1 ≤ q ≤ n, l ∈ {1, 2, ..., L} (6)

where N l is the number of all weight elements in l-th layer
and θlq−1 is the training sparsity of l-th layer at (q − 1)-th
round. We denote the number of dropped weights of l-th layer
at q-th round as Dl

q , then, we have

Dl
q = dt ×Npre

l
q, 1 ≤ q ≤ n, l ∈ {1, 2, ..., L}. (7)

4 Growing (neuron birth). After dropping weights, the
number of 1s in l-th layer sparse mask Npostlq is

Npost
l
q = Npre

l
q −D

l
q, 1 ≤ q ≤ n, l ∈ {1, 2, ..., L}. (8)

Combining Equation 4 and 8, we obtain the number of
weights to be grown, which is denoted as Glq , we have

Gl
q = N l −Npost

l
q − θ

l
t ×N l, 1 ≤ q ≤ n, l ∈ {1, 2, ..., L}. (9)

The toy example of the training process is shown in Fig. 3.
Algorithm 1: NDSNN training flow.

Input: a L-layer SNN model g with dense weight W = W1,W2, ...,WL, input
data X , update frequency ∆T , initial sparsity θi, final sparsity θf , learning rate α,
total number of training iterations Tend.
Set M1,M2, ...,ML as the sparse masks.
Output: a L-layer sparse network with sparsity distribution Pf .
Calculate Θi = θ1

i , θ
2
i , ..., θ

L
i and Θf = θ1

f , θ
2
f , ..., θ

L
f using initial sparsity θi

and final sparsity θf , respectively via ERK.
W′ = W′1,W′2, ...,W′L ← sparsify W1,W2, ...,WL with Pi

for each training iteration t do
Loss E ← g(xt,W′), xt ∈ X
if t (mod ∆T ) == 0 and t < Tend then

for 1 ≤ l ≤ L do
Calculate the number of weights to drop Dl

t/∆T using Equation 5 6 7
W′i ← ArgDrop(W′i,ArgTopK(W′i, D

l
t/∆T ))

Calculate the number of weights to grow Gl
t/∆T using Equation 8 9

Calculate gradient Gradl by equation ( 2c)
W′l ←ArgGrow(W′l,ArgTopK(Gradl · (Ml == 0), Gl

t/∆T ))
end for

else
W′l ← W′l − α∇(W′l)δt

end if
end for

D. Memory Footprint Analysis

We further investigate the training efficiency of our proposed
method in terms of memory footprint. Suppose a sparse SNN
model with a sparsity ratio (the percentage of number of
zeros in weight) of θ ∈ [0, 1]. In each round of forward
and backward propagation, N weights and tN gradients are
saved. For training, we use single precision (FP32) for weights
and gradients to guarantee training accuracy. For inference,
the weight precision bw is platform/implementation specific,
for example Intel Loihi uses 8 bits [14], mixed-signal design
HICANN [26] has 4 bits for weights, FPGA-based designs
such as [27] employes mixed precision (4 bits - 16 bits). For
sparse models, we use indices (denoted by bidx-bit numbers) to
represent the sparse topology of weights/gradients within the
dense model. Compressed sparse row (CSR) is a commonly
used sparse matrix storage format.

Consider a 2-D weight tensor reshaping from a 4-D tensor.
Each row of the 2-D weight tensor denotes the weight from
a filter. For the l-th layer, we denote Fl, Chl, and Kl as
the number of filters (output channels), number of channels
(input channels), and kernel size, respectively. Thus, the size
of the weight matrix is Fl rows by Chl ·K2

l columns. Thus,
the total number of indices of the entire network is (1 −
θ) · N +

∑
l(Fl + 1). And the memory footprint of model

representation together with gradients for unstructured sparsity
is (1 − θ) · ((1 + t)N · bw + N · bidx) +

∑
l((Fl + 1) · bidx).

Since the number of filters is much smaller than the total
number of weights, we approximate the memory footprint as
(1−θ) ·((1+t)N ·bw+N ·bidx). Given same timestep t, higher
sparsity means the lower memory overhead, which support the
effectiveness of proposed method in reducing training memory
since it has much higher training sparsity than SOTAs.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

1) Architectures and Datasets.: We evaluate NDSNN on
two popular neural network architectures (i.e., VGG-16 and
ResNet-19) for three datasets (i.e., CIFAR-10, CIFAR-100 and
Tiny-ImageNet). For fair comparison, we set the total number
of training epochs as 300 on both CIFAR-10 and CIFAR-100,
while as 100 on Tiny-ImageNet as LTH-SNN. We use SGD as
the optimizer while setting the momentum as 0.9 and weight
decay as 5e− 4. Also, we follow the setting in [6] and set the
training batch size as 128, initial learning rate as 3e− 1 and
timesteps as 5 across all experiments.

2) Baselines.: We train VGG-16 / ResNet-19 dense SNNs
on various datasets and use them as our dense baselines. Other
baselines are divided into two types based on the initial sparsity
status of the training process (i.e., dense or sparse). For the
former, we choose the SOTA pruning methods (i.e., LTH and
ADMM) on SNN. For the latter, we implement the sparse
training methods (i.e., SET [23], RigL [25]) on SNN models
(i.e., SET-SNN, RigL-SNN).

3) Evaluation Platform: We conduct all experiments using
PyTorch with CUDA 11.4 on Quadro RTX6000 GPU and



Dataset CIFAR-10 CIFAR-100 Tiny-ImageNet

Sparsity ratio 90% 95% 98% 99% 90% 95% 98% 99% 90% 95% 98% 99%

VGG-16(Dense) 92.59 69.86 39.45

LTH-SNN [10] 89.77 89.97 88.97 88.07 64.41 64.84 62.97 51.31 38.01 37.51 35.66 30.98

SET-SNN [23] 91.22 90.41 87.26 83.40 66.52 63.48 58.04 50.83 38.80 37.34 33.40 26.74
RigL-SNN [25] 91.64 90.06 87.30 84.08 66.59 63.47 58.21 52.26 38.96 37.75 32.94 28.39
NDSNN (Ours) 91.84 91.31 89.62 88.13 68.07 66.73 63.51 58.07 39.12 37.77 36.23 33.84

ResNet-19(Dense) 91.10 71.94 50.32

LTH-SNN [10] 87.57 87.16 85.91 82.29 54.66 54.78 42.10 41.46 38.40 37.74 31.34 21.44

SET-SNN [23] 90.79 90.07 87.24 83.17 68.12 64.65 57.49 49.11 49.46 42.13 37.25 27.79
RigL-SNN [25] 90.69 90.02 87.19 83.26 67.33 65.23 56.96 47.96 49.49 40.40 37.98 24.13
NDSNN (Ours) 91.13 90.47 88.61 86.30 70.08 68.95 65.48 59.61 49.25 47.45 45.09 41.96

TABLE I: Test accuracy of sparse VGG-16 and ResNet-19 on CIFAR-10, CIFAR-100, Tiny-ImageNet datasets. The highest test accuracy
scores are marked in bold. The LTH-SNN results are our reproduced accuracy using method from [6].

Intel(R) Xeon(R) Gold 6244 @ 3.60GHz CPU. We use
SpikingJelly [28] package for SNNs implementation.

B. Accuracy Evaluations of NDSNN

1) CIFAR-10 and CIFAR-100: Evaluation results on CIFAR-
10 and CIFAR-100 using VGG-16 and ResNet-19 are shown
in Table I. We compare NDSNN with baselines at sparsity
ratios of 90%, 95%, 98% and 99% on different models and
datasets. Experimental results show that NDSNN outperforms
the SOTA baselines on each dataset for VGG-16 and ResNet-
19. Specifically, on CIFAR-100, for VGG-16, our proposed
method has up to 3.66%, 3.26%, 5.47%, 7.24% increase in
accuracy (that is relatively 5.68%, 5.14%, 9.42% and 14.24%
higher accuracy) at four different sparsity, respectively. While
for ResNet-19, NDSNN has 15.42%, 14.17%, 23.88% and
18.15% increase in accuracy (that is relatively 28.2%, 14.17%,
23.38%, 18.15% higher accuracy) compared to LTH-SNN,
obtains 1.96%, 4.30%, 7.99%, 10.5% higher accuracy than
SET-SNN and achieves 2.75%, 3.72%, 8.52%, 11.65% higher
accuracy than RigL-SNN at a sparsity of 90%, 95%, 98% and
99%, respectively. On CIFAR-10, for VGG-16, NDSNN has up
to 2.07%, 1.34%, 2.36%, 4.73% relatively higher accuracy than
SOTA at sparsity of 90%, 95%, 98% and 99%, respectively.
While for ResNet-19, NDSNN has even higher accuracy than
the dense model at a sparsity of 90% and achieves the highest
accuracy compared to other baselines at different sparsity.

2) Tiny-ImageNet: The accuracy results on Tiny-ImageNet
are shown in Table I. Overall, for both VGG-16 and ResNet-19,
NDSNN outperforms other baselines. More specifically, for
VGG-16, NDSNN has up to 7.1% higher accuracy than other
methods at a sparsity of 99%. For ResNet-19, NDSNN has
10.85%, 9.71%, 13.75%, 20.52% higher accuracy than LTH-
SNN at sparsity of 90%, 95% and 98%, 99%, respectively.
Compared to SET-SNN, NDSNN has 7.10% and 14.17%
increase in accuracy at the sparsity of 99% for VGG-16 and
ResNet-19, independently. Compared to RigL-SNN, NDSNN
has up to 5.45% and 17.83% increase in accuracy at a sparsity
of 99% for VGG-16 and ResNet-19, respectively.

3) Comparison with ADMM Pruning: We compare NDSNN
with ADMM pruning using data from [5] as shown in Table II.
It can be seen that the accuracy loss become noticeable when
the sparsity reaches 75% on CIFAR-10 using LeNet-5. However,

the accuracy loss is almost 0 on CIFAR-10 using VGG-16
at the sparsity of 75% which indicates that NDSNN has less
accuracy loss when achieving the same sparsity.

Dataset CIFAR-10

Sparsity ratio 40% 50% 60% 75%

LeNet-5(Dense) 89.53

ADMM [5] 89.75 89.15 88.35 87.38

Acc. Loss (%) 0.18 -0.38 -1.18 -2.15

VGG-16(Dense) 92.59

NDSNN (ours) 92.46 92.32 92.33 92.18

Acc. Loss (%) -0.001 -0.003 -0.003 -0.004

TABLE II: Comparison of ADMM with NDSNN on CIFAR-10.

C. Efficiency Evaluations of NDSNN

We quantitatively analyze the training cost of dense SNN
model, LTH and NDSNN, as showed in Fig. 5. Since no
computation is required if there is no input spikes or a
connection is pruned. Such that the relative computation cost
of sparse model with respect to dense model at training epoch
i can be calculated as: [Ris × Sparsityi]/Rid, where Ris or Rid
is the average spike rate of the sparse model (LTH/NDSNN) or
the dense model at epoch i, which can be tracked throughout
entire training. Sparsityi is the sparsity of the model. On
CIFAR 10, the training cost of NDSNN VGG-16 is 10.5%
of training a dense model. The cost of NDSNN on ResNet-
19 and VGG-16 is 40.89% and 31.35% of LTH, respectively.
On CIFAR 100, the training cost of NDSNN ResNet-19 is
27.63% and 40.12% of dense model and LTH respectively;
The training cost of NDSNN VGG-16 is 11.87% and 36.16%
of dense model and LTH respctively.

D. Design Exploration

1) Effects of Different Initial Sparsity: As the initial sparsity
has influence on the average training sparsity, thus the overall
training cost. we study the effects of different initial sparsity on
accuracy and training FLOPs. Experimental results on VGG-
16 / ResNet-19 models and CIFAR-10 / CIFAR-100 datasets
are shown in Table III. It’s observed that the accuracy gap is
small for different initial sparsity. For high training sparsity,
we choose initial sparsity from {0.6, 0.7, 0.8} for experiments
on CIFAR-10 / CIFAR-100 / TinyImageNet.



(a) (b) (c) (d)

Fig. 4: Comparison of the accuracy of NDSNN and LTH for different sparsity when trained with smaller timestep (timestep=2) on different
models and datasets. (a) VGG-16/CIFAR-10. (b) VGG-16/CIFAR-100. (c) ResNet-19/CIFAR-10. (d) ResNet-19/CIFAR-100
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Fig. 5: Training cost comparison on CIFAR-10/CIFAR-100 using
VGG-16 and ResNet-19.

Target Initial VGG-16 VGG-16 ResNet-19 ResNet-19
sparsity sparsity CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

0.9 90.36 64.52 89.97 66.09
0.8 91.02 65.74 90.21 67.59

0.95 0.7 91.31 66.57 90.47 68.30
0.6 91.11 66.73 90.56 68.95
0.5 90.94 66.82 90.57 68.39

0.9 89.13 61.92 88.58 63.25
0.8 89.62 63.51 88.61 64.39

0.98 0.7 89.56 63.21 88.48 65.48
0.6 89.50 62.69 88.25 64.74
0.5 89.48 63.13 88.10 74.89

TABLE III: Study on effects on different initial sparsity.

2) Effects of Smaller Timesteps: We compare the accuracy
performance of NDSNN and LTH on a smaller timestep (i.e.,
t = 2) to further validate the effectiveness of proposed method
on a more efficient training approach (i.e., the smaller training
timesteps, the smaller training cost in time) as shown in
Fig. 4. It’s observed that NDSNN outperforms LTH on the four
experiments (i.e., VGG-16/CIFAR-10, VGG-16/CIFAR-100,
ResNet-19/CIAFR-10, ResNet-19/CIAFR-100). On CIFAR-
100, NDSNN has 5.55% and 13.34% improvements in accuracy
at a sparsity of 99% on VGG-16 and ResNet-19, respectively.

V. CONCLUSION

In this paper, we propose a novel, computationally effi-
cient, sparse training regime, Neurogenesis Dynamics-inspired
Spiking Neural Network training acceleration framework,
NDSNN. Our proposed method trains a model from scratch
using dynamic sparsity. Within our method, we create a
drop-and-grow strategy which is biologically motivated by
neurogenesis to promote weight reduction. Our method gives
higher accuracy and is computationally less demanding than
competing approaches. For example, on CIFAR-100, we can

achieve an average increase in accuracy of 13.71% over LTH
for ResNet-19 across all sparsities. For all datasets, DNSNN
has an average of 6.72% accuracy improvement and 59.9%
training cost reduction on ResNet-19. Overall, NDSNN could
shed light on energy efficient SNN training on edge devices.
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