
Shoggoth: Towards Efficient Edge-Cloud Collaborative Real-Time Video
Inference via Adaptive Online Learning

Liang Wang∗,†,‡, Kai Lu∗,‡, Nan Zhang†, Xiaoyang Qu†§, Jianzong Wang†, Jiguang Wan∗§, Guokuan Li∗, Jing Xiao†
∗Huazhong University of Science and Technology, China
{iggiewang, emperorlu, jgwan, liguokuan}@hust.edu.cn

†Ping An Technology (Shenzhen) Co., Ltd., China
{nzhang889@gmail.com, quxiaoy@gmail.com, jzwang@188.com, xiaojing661@pingan.com.cn}

Abstract—This paper proposes Shoggoth, an efficient edge-
cloud collaborative architecture, for boosting inference perfor-
mance on real-time video of changing scenes. Shoggoth uses
online knowledge distillation to improve the accuracy of models
suffering from data drift and offloads the labeling process to the
cloud, alleviating constrained resources of edge devices. At the
edge, we design adaptive training using small batches to adapt
models under limited computing power, and adaptive sampling
of training frames for robustness and reducing bandwidth.
The evaluations on the realistic dataset show 15%–20% model
accuracy improvement compared to the edge-only strategy and
fewer network costs than the cloud-only strategy.

I. INTRODUCTION

Real-time video inference, such as object detection [1],
is a foundational component in many applications, including
intelligent traffic surveillance and automatic driving. Real-time
video inference applications prefer edge devices for analytics
because they require prompt feedback. Edge computing elimi-
nates the need for costly network connections to stream videos
to the cloud, which can solve high transmission latency.

Although the rapid progress in deep neural networks
(DNNs) has driven the development of real-time video infer-
ence, as edge devices are resource-constrained, only DNNs
with fewer weights and shallower architectures can be de-
ployed. These lightweight DNNs are vulnerable to data drift,
i.e., real-time video data drastically varies [2]. It is difficult to
achieve the desired accuracy for multiple environments in one
offline training, especially due to the impact of even minor
variations on accuracy. However, video scenarios also change
over time for a given device, e.g., crowd densities, weather,
and illumination. As a result, lightweight DNN models have
poor adaptability and only perform well in limited scenarios.

We argue that real-time video scenarios exhibit a significant
class imbalance, and the visual appearance of objects from
the same class can vary due to changes in the scene. It is the
primary cause of data drift during video analysis, as shown
in Figure 1. The strong correlation of video frames over short
time intervals and the data distribution shift over long periods
are notable difficulties. Thus, we must consider the ability of
models to migrate from domain to domain.

One promising approach to improve inference efficiency
is knowledge distillation [3], [4]. The primary idea is to
prepare a complex DNN model as the teacher model and
a specialized lightweight model as the student model, and
continually distill knowledge from the teacher to the student.

‡These two authors have contributed to this work equally.
§Corresponding authors.

daytime distribution

night distribution

Daytime domain

Data shift

Real-time

Inference Results

T

truck

van

bus

car

misalignment

Night domain

Video

frames

Edge device

Camera

Lightweight

Model

(b)

(c)(a)

Fig. 1. Illustration of data drift. (a) displays the camera connect to the edge
device for real-time video inference, (b) shows data drift from daytime to
night domains due to variations in data distribution and illumination, and (c)
shows the shift in class distributions of data drift, resulting in many objects
at night being difficult to distinguish for the lightweight model.

However, due to the high computational requirement of the
knowledge distillation process, it is equally impossible to
perform the entire knowledge distillation process online on
edge devices. In fact, edge-cloud collaboration has become a
prevailing computing paradigm that can effectively leverage
cloud computing and edge computing [5]–[8]. Cloud comput-
ing has higher computational efficiency, while edge computing
can provide low latency. Intensive collaboration can maximize
the performance of real-time video inference applications.

In this paper, we propose Shoggoth, a novel edge-cloud
collaborative architecture, continually adapting lightweight
models running on edge devices by knowledge distillation for
inference of changing videos in real-time. During performing
inference, edge devices periodically send video frame samples
to the cloud for online labeling to fine-tune the local model.

However, achieving such an adaptive video inference ar-
chitecture based on edge-cloud collaboration is not without
challenges. The first is the retraining efficiency on the device
with limited computing resources. Collecting all video data
accumulated throughout the lifetime of the deployed frame-
work and retraining the entire model from scratch is infeasible,
particularly given the frequent real-time changes. Conversely,
solely using the newly available data to retrain the prediction
model leads to catastrophic forgetting [9]. We demonstrate that
utilizing small batches for adaptive training with replay mem-
ory is a flexible solution. The second is the communication
overhead. We show that the adaptive frame sampling method
over a carefully selected recent frame horizon presents robust

ar
X

iv
:2

30
6.

15
33

3v
1

 [
cs

.C
V

]
 2

7
Ju

n
20

23

rationality — neither too small to retrain frequently and overfit
nor too big to exceed the model generalization capacity.

We evaluate Shoggoth on the real-time video object de-
tection task with the lightweight model (YOLOv4 [10] with
Resnet18 [11] backbone). Our experiments use the realistic
dataset, which has different conditions like sunny, cloudy,
rainy, and night. Our results illustrate the superiority in every
respect of Shoggoth combined with adaptive online learning
compared to edge-only, cloud-only, or other strategies.

In general, we make the following contributions:
• We propose Shoggoth, an efficient real-time video infer-

ence edge-cloud collaborative architecture with adaptive
online learning that addresses the data drift problem by
decoupled knowledge distillation.

• We design adaptive training to fine-tune edge models
using replay memory to combat catastrophic forgetting
and adapt the limited computing power of edge devices.

• We design adaptive frame sampling to increase system
robustness and reduce bandwidth.

II. RELATED WORK

Edge-cloud collaborative video inference. Existing video
inference solutions using edge-cloud collaboration tradeoff be-
tween low latency and high accuracy. PETRI [7] implements a
latency-hiding pipeline workflow and employs a retro-tracking
method to detect missed targets at the edge, thereby reducing
bandwidth to the cloud. NoScope [12] accelerates inference by
cascading models and filtering. Clownfish [13] fuses current
inference results from the specialized model running on the
edge and deferred results from the complex model executing
in the cloud. Unfortunately, these solutions use offline-trained
models, ignoring model adaptation and data drift on model
accuracy. In addition, Ekya [14] and AMS [15] make an initial
exploration of using knowledge distillation to continually train
and adapt edge models, boosting their performance on the
live video. They perform both labeling and training processes
on the remote server, and streaming model updates to edge
devices aggravates the bandwidth consumption. In addition,
allocating additional GPU time to training reduces the number
of scalable edge devices supported by a single GPU.

Data Drift. Edge DNNs have a restricted capacity to
memorize scenarios and object appearances. Therefore, they
are especially susceptible to data drift [2], which occurs when
real-time video data diverges significantly from domain to
domain. Temporal fluctuations in scene density (e.g., rush
hour) and illumination (e.g., daytime vs. nighttime, sunny
vs. rainy) present a significant challenge for traffic cameras
to achieve accurate object detection. In addition, the data
distribution of objects changes over time, which decreases the
accuracy of the edge model [16]. Due to their limited capacity
to remember variations, edge DNNs must be continually fine-
tuned with recent video data to achieve high accuracy.

Online continual learning. Continual learning (CL) has
gained increasing interest recently in computer vision [17],
[18]. We investigate a more realistic and difficult situation in
which data are delivered in small batches, and models are

trained once on each batch. Our strategy depends on represen-
tative memory replays [18]. As video streams arrive endlessly
in real-time, it is laborious to annotate all the video frames
for computational training models. Reducing the burdensome
costs of labeling remains an under-explored and challenging
problem in CL. In our case, online distillation and adaptive
frame sampling are applied to reduce the onerous costs of
labeling. Overall, we design adaptive online learning, focusing
on training with small online-labeled batches compatible with
the limited computing resources available on edge devices.

III. SHOGGOTH DESIGN

A. System Overview
Figure 2 shows the overall architecture of Shoggoth, com-

prising two parts: the cloud and the edge. The ultimate goal of
this architecture is to achieve high real-time video inference
efficiency no matter what changing scenarios.

Video

frames

Online

labeling (Ⅲ-A)

Results

Labels

Edge Cloud

Adaptive frame

sampling (Ⅲ-C)

Teacher

Model

Frame

batch

Sampling rate

controller (Ⅲ-C)

Compute 𝜙
Buffer

Real-time inference

Reply

Memory

Student

Model

Camera

Adaptive

training
(Ⅲ-B)

Fig. 2. Shoggoth system overview.

Real-time video inference runs at the edge, receiving all
video frames and outputting the results. Decoupled knowl-
edge distillation is designed in Shoggoth architecture, which
decouples the labeling process and the training process, of-
floading the labeling process to the cloud and performing the
training process at the edge device. The cloud communicates
with the edge over the network. All edge devices share the
complex computation-intensive teacher model in the cloud,
which has been pre-trained on extensive image datasets and
maneuvers billions of model parameters. With abundant com-
puting resources in the cloud, the teacher model is capable of
running on the cloud server with high accuracy. Edge devices
periodically collect video frame samples and send them to
the cloud. The cloud server labels them online and sends
them with labels back. Subsequently, the edge device utilizes
them to fine-tune the lightweight student model, improving
the accuracy of real-time video inference for the current
environment. The entire fine-tuning workflow is described as
adaptive online learning, which is divided into two stages,
online labeling and adaptive training.

Online labeling. The cloud server labels the incoming video
frames online by the teacher model detector. Shoggoth naively
treats pseudo-labeled data from various domains and labeled
data equally for loss. All pseudo-labeled samples are assigned
the label of 1, i.e., for the i-th training sample Xi (not an
image, but a region in an image), the label yi is defined as

yi =

{
1, if Xi is a pos. sample (from detector).
0, if Xi is a neg. sample.

(1)

Adaptive training. The edge device trains the student
model to adapt for scene changes and minimize the loss over
the samples from the buffer in the current video. Specifically,
we design adaptive training with replay memory to meet
resource-constrained edge devices’ computational and memory
requirements, which is detailed in Section III-B.

Optimization. Practically, the cloud server should dynami-
cally adapt the frame sampling rate utilized by the edge device,
depending on the video characteristics (how quickly scenarios
change). To increase robustness and reduce bandwidth, the
adaptive frame sampling algorithm is designed to modify each
device’s frame sampling rate via the sample rate controller in
the cloud. This is discussed in Section III-C. To be specific,
we describe our design using the object detection task as an
example, but the architecture is general and able to be extended
to various video inference applications.

B. Adaptive Training with Replay Memory
Adaptive training aims to adjust the model to handle do-

main change scenarios. Through adaptive training, the model
continually accumulates knowledge based on new data and
improves its performance. The main challenge is catastrophic
forgetting [9], which denotes the model forgetting data learned
in the past. Replay is a widely recognized approach to address
the catastrophic forgetting issue.

However, adaptive training on the resource-constrained edge
device poses some questions on both the efficiency and
sustainability of the process. We implement a lightweight
strategy for real-time on-device adaptation without forgetting.
Our solution focuses on addressing the relevant data drift in
real-time video over time and meeting the computational and
memory requirements of edge devices. The proposed solution
applied to object detection paradigm can be seen in Figure 3.

Concat

Backbone

Reply Memory

Forward Pass

Backward Pass

Neck & Head

Class

Predication

Box

Predication

Input Images

Forward Pass

Backward Pass

Reply

Layer

Fig. 3. Adaptive Training Schema of Object Detector with Replay Memory.

Forgetting is mainly localized at the classification head,
which refers to the last fully connected layer of the adopted
network, and its tuning is essential to maximize accuracy.
The layers near the input are responsible for low-level feature
extraction, and the weights are pretty stable and reusable in
different scenes after adequate pre-training. On this basis, the
replay memory is designed to store the activation volumes of
images in a specific layer (Replay Layer) instead of raw input
image data. To keep the validity of the stored activations, the

Algorithm 1 Replay Memory Management

1: M← ∅
2: Msize ← number of images memorized in M
3: for each adaptive training i do
4: B ← current training batch
5: train the model on B ∪M
6: if ISFULL(M) then
7: h← Msize

i
8: Madd ← random sampling of h images from B
9: Mreplace ← random sampling of h images from M

10: M← (M−Mreplace) ∪Madd
11: else
12: M←M∪Madd
13: reset B

training process is supposed to decrease the learning rate of
all layers before the replay layer and allow full learning of all
layers after the replay layer. This technique can speed up the
training process on a pre-trained model.

Adaptive training utilizes mini-batch SGD: (i) the forward
step involves a concatenation at the replay layer that combines
images across the front layers and activations from the replay
memory; (ii) the backward step updates the weights. In the
extreme case that the front layers are entirely frozen (i.e.,
decelerate to 0), the backward pass is terminated just before
the replay layer for replay memory. However, in ordinary
cases where the front layers are not entirely frozen, replay
memory activations are affected by an aging effect, meaning
they increasingly deviate over time from the activations that
the same image would generate if it is fed from the input
layer. Nevertheless, if the front layer training is slow enough,
the aging impact is negligible since the replay memory has
sufficient time to be updated with new images.

Replay Memory Management. Replay memory allows
data augmentation to work properly, and managing replay
memory is a crucial aspect of adaptive training. Algorithm
1 illustrates replay memory management. Replay memory
M updates are triggered only after an adaptive training run.
During each retraining batch B, a randomly selected subset
of images from the batch replaces an equally random subset
of images in the replay memory, keeping the replay memory
at the proper size. In particular, if replay memory is not
full (during the initial runs), all the available images are
memorized. Finally, the current batch is emptied for preparing
the next training. The replay memory management ensures that
each training batch sampled during a training session has an
equal probability of being stored in the replay memory, thus
improving the model’s learning and preventing forgetting.

Training Control. A constant proportion of original and
replay images is maintained to streamline training. If every
training batch contains N images and the replay memory
includes M images, within a mini-batch of size K we concate-
nate K×N

N+M original images (of the current batch) with K×M
N+M

replay images, i.e., only K×N
N+M images need to cross the red

layers of Figure 3. An efficient strategy to implement learning

slowdown in the front layers is to freeze the weights by
adjusting the learning rate to 0 after first batch, while making
the batch normalization (BN) moments adapt freely to the
input image statistics across all batches. Further, in the adopted
model, BN layers are replaced with Batch Renormalization
(BRN) [19] layers, which has been shown to be an effective
way of controlling internal covariate shift, hence making
learning with fine-grained batches faster and more robust.

C. Increasing Robustness and Reducing Bandwidth
Models for videos where the scene is constantly changing

require frequent retraining, while models for stationary videos
with little scene change only need to be retrained at longer
intervals. Thus, adaptive training frequency on different edge
devices is supposed to be different and changing for robustness
to handle scene variations better—the model will not overfit
narrowly or surpass the generalization capacity. Meanwhile,
frequency is affected by the frame sampling rate because each
edge device uploads a certain number of frames at a time
to the cloud for labeling and then performs adaptive training.
We design the adaptive frame sampling approach, dynamically
adjusting the frame sampling rate on edge devices depending
on the speed and degree of scene changes observed in videos,
inference accuracy, and resource usage. It also reduces the
edge device load for slowly-changing or stationary videos
and the uplink bandwidth (edge-to-server network costs). We
define three metrics to adapt the frame sampling rate:
• ϕ: the rate of change over time for video frames.

Compared with raw pixels, labels are commonly picked up
in a much smaller space (e.g., a few object classes), making
them a more robust signal for the measurement of change.
We follow Khani et al. [15] to use labels of the teacher
model to compute the ϕ in the cloud server. Consider a
series of frames {Ik}nk=0, with {T (Ik)}nk=0 denoting the
teacher model’s output on these frames. For each frame
Ik, we define ϕk using the same loss function that is used
to define the task, with T (Ik) and T (Ik−1) serving as the
prediction and ground-truth labels, respectively. It means ϕk

is the loss (error) of the teacher model’s prediction on Ik
relative to the label T (Ik−1). Therefore, the smaller ϕk is,
the more similar are the labels for Ik and Ik−1, i.e., slowly-
changing or stationary scenes tend to obtain lower scores.

• α: the estimated inference accuracy. The model infers
every unlabeled frame of videos in the current domain.
A prediction is considered accurate if the (normalized)
confidence score for the i-th prediction (i.e., the model’s
posterior), di, exceeds a threshold θ. In object detection, a
commonly used value for θ is 0.5. The percentage of ac-
curate predictions, α, is calculated as the estimated average
accuracy of video inference.

• λ: the resource usage over a period of time. Edge devices
continuously collect resource usage and send the usage to
the cloud. In our implementation, the target resource is
simplified — only GPU or CPU resource usage in percent
for every second is monitored. And a few configuration
variables are provided, such as collecting frequencies.

The cloud server periodically calculates the average ϕ on
recent frames, and collects α since the last adaptive training
and GPU/CPU usage λ for adaptive training from the edge
device. Then, the sampling rate of the edge device is adjusted
by the sampling rate controller to keep the ϕ close to the target
value ϕtarget and the α near another target value αtarget:

rt+1 = [R(ϕ) +R(α) +R(λ)]rmax
rmin

(2)

R(ϕ), R(α) and R(λ) are denoted as

R(ϕ) = ηr · (ϕ̄t − ϕtarget)

R(α) = ηα ·max(0, αtarget − αt)

R(λ) = (1 + λ̄t+1 − λ̄t) · rt
(3)

where ηr and ηα are the step size parameters, and the symbol
[·]rmax

rmin
indicates that the sampling rate is constrained within

the range [rmin, rmax]. In our case, rmin = 0.1 frames per
second (fps) and rmax = 2 fps are adopted.

To further reduce bandwidth, the edge device buffers sam-
ples and applies H.264 video encoding standard to compact
this buffer before transmission. In our experiments, compress-
ing the buffered samples takes 1-3 seconds.

IV. PERFORMANCE EVALUATION

A. Setup & Methodology
We choose the object detection task in real-time video

inference as our evaluated workload for Shoggoth, and all
experiments are conducted with this task.
Datasets. We evaluate Shoggoth on three typical benchmarks:
UA-DETRAC [20], KITTI (Car only) [21] and Waymo Open
[22]. They include various kinds of weather (i.e., sunny,
cloudy, and rainy) and illumination circumstances (night and
day). UA-DETRAC offers 100 challenging video sequences in
real-world traffic scenarios, consisting of more than 140,000
frames, from which we select several video sequences to
link together to form a long video stream. In addition, since
the KITTI and Waymo datasets do not contain sequential
timestamps, we concatenated images from the same camera to
create lengthy video sequences in chronological order for these
datasets. Videos playback at 30 frames per second (fps). With
these videos, the efficiency and effectiveness of our system
under changing scenarios are evaluated.
DNN models. At edge devices, we use the YOLOv4 [10]
with Resnet18 [11] backbone. At the cloud server, we use an
expensive golden model (Mask R-CNN [23] with ResNeXt-
101) to obtain ground truth labels, and we verify that the
generated labels are very similar to human-annotated labels.
Platforms. We adopt NVIDIA Jetson TX2 as our edge device
due to its low-power GPU and suitability for large-scale edge
deployment. A cloud server equipped single NVIDIA V100
GPU is used for all evaluations.
Strategies. We evaluate the following strategies: 1) Shoggoth.
The edge-cloud collaborative strategy with adaptive online
learning is proposed in this paper. For experiments of Shog-
goth, all images are resized to 512 × 512. Every training
batch contains 300 images with 1500 replay images, and the
mini-batch size is 64. Replay occurs on the penultimate layer

TABLE I. Comparison of different strategies on three datasets.
Dataset Metric Edge-Only Cloud-Only Prompt AMS Shoggoth

UA-DETRAC [20] Up/Down Bandwidth (Kbps) 0/0 3257/3539 303/22 151/226 135/10
mAP@0.5 (%) 34.2 58.9 48.3 51.6 53.5

KITTI [21] Up/Down Bandwidth (Kbps) 0/0 2184/2437 179/10 94/203 91/5
mAP@0.5 (%) 56.8 78.0 71.4 72.8 74.7

Waymo Open [22] Up/Down Bandwidth (Kbps) 0/0 2687/2880 278/15 127/207 112/8
mAP@0.5 (%) 47.5 64.7 61.5 59.1 61.9

3 0

5 . 2

2 3 . 5
2 9 . 7 2 7 . 3

E d g e - O n l y C l o u d - O n l y P r o m p t A M S S h o g g o t h0

1 0

2 0

3 0

Av
era

ge
FP

S

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 01 0

2 0

3 0

FP
S

T i m e (s)S t r a t e g i e s
Fig. 4. Average FPS overall for different strategies (left) and FPS over time
in Shoggoth for UA-DETRAC video sequence of the initial moment (right).

(pool). A training session consists of 8 epochs. 2) Edge-
Only. The edge model without video-specific customization
performs all inferences on the edge device. 3) Cloud-Only. All
frames are uploaded to the cloud using the complex model for
detection and returning the results. 4) Prompt. It can be seen
as Shoggoth without adaptive sampling. The main difference
from Shoggoth is that the sampling rate is configured as 2
fps, the same as the maximum frame sampling rate used in
Shoggoth. Model adaptation happens promptly and regularly.
5) Adaptive Model Streaming (AMS). Compared to Shoggoth,
AMS [15] performs the entire knowledge distillation in the
cloud for model adaption, and the updated model is sent back
to the edge device. All other configurations are the same as
Shoggoth, including adaptive sampling, etc.
Performance Metrics. The results are mainly evaluated by
uplink and downlink bandwidth and mAP@0.5 (mean Average
Precision, and Intersection over Union = 0.5).

B. Evaluation Results
Our results show the performance advantages of Shoggoth,

and the impact of adaptive training and adaptive sampling.
Overall improvements. Table I summarizes the results on the
three streams. The main takeaways are:
1. Shoggoth provides significant mAP score gains, achieving

15-20% better than Edge-Only (no model adaption). Be-
sides, Shoggoth uses significantly less network bandwidth
than other strategies using the cloud.

2. For Cloud-Only, all frames need to be uploaded to the
cloud server for inference. Cloud-Only offers the optimum
mAP accuracy, but it requires approximately 24× the uplink
bandwidth and 350× the downlink bandwidth of Shoggoth.
In comparison, Shoggoth brings less than 5% degradation
in mAP but saves enormous bandwidth.

3. The prompt strategy incurs more bandwidth overhead, but
there is no guarantee that overall model accuracy will
necessarily be higher than Shoggoth with adaptive frame
sampling. On videos that vary significantly over time,
updating the model promptly and regularly can lead to
accuracy improvement. However, customizing the model

TABLE II. mAP (%) and training time (in seconds) of different methods.

Method mAP Training Time

Forward Backward Overall
Ours (Baseline) 53.5 17.8 0.8 18.6

Input 49.6 536.2 31.6 567.8
Completely Freezing 50.7 17.8 0.7 18.5

Conv5 4 52.3 20.2 5.8 26.0
No Replay Memory 45.6 95.7 6.2 101.9

for the intervals can backfire when dealing with stationary
videos with little scene change, in contrast to adaptive
frame sampling, which constantly adapts the model to video
content and improves accuracy.

4. AMS fine-tunes (a copy of) the edge device’s model entirely
leveraging sample frames on the cloud server to mimic the
teacher model. It brings a similar increase in accuracy to
Shoggoth. However, the need to send the updated student
model leads to redundant downlink bandwidth. In addition,
AMS requires more computing resources for training on the
cloud, so Shoggoth can support more edge devices when
several edge devices share the same GPU server.

Impact of adaptive training. Figure 4 shows how adaptive
training affects inference. Compared to the Edge-Only, Shog-
goth causes an average loss of 2.7 fps. This is because when
adaptive training takes resources away from the inference,
fps drops dramatically for the inference (from 30 to 15).
However, the adaptive training process is fast, so we only
observe a slight average loss. Then, we additionally perform
an ablation study to investigate the effects of key choices
in the adaptive training approach with the replay memory
implementation. Table II shows mAP and training time results.
We comparatively evaluate (i) placing the replay memory on
the input layer rather than the replay layer; (ii) the front
layers are completely frozen; (iii) the conv5 4 layer variant
identifies the replay memory; (iv) no replay memory, only the
current new batch of data is used for training. Our findings
validate that the use of replay memory significantly improves
the system’s overall performance, with the highest mAP score
and almost the same training time as freezing all front layers.
Impact of adaptive frame sampling. Table III demonstrates
the effect of different sampling rates on the uplink bandwidth
and the average IoU of inference. No matter how much of a
fixed sampling rate is adopted, it is not on a par with adaptive
frame sampling in terms of accuracy (high sampling rates
cause overfitting to a few recent frames). Furthermore, we
compared the cumulative distribution of mAP improvement
for all solutions in comparison to Edge-Only over all frames
to demonstrate that Shoggoth with adaptive frame sampling
shows good robustness on the overall frames in the scene

TABLE III. Sensitivity to different sampling rates.

rate → 0.1 0.2 0.4 0.8 1.6 2.0 Adaptive

Up BW (Kbps) 19 36 61 122 249 307 135
Average IoU 0.483 0.524 0.556 0.623 0.612 0.597 0.640

- 0 . 1 0 . 0 0 . 1 0 . 2 0 . 3 0 . 40 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

CD
F

m A P G a i n o v e r E d g e - O n l y

 C l o u d - O n l y
 S h o g g o t h
 A M S
 P r o m p t

Fig. 5. CDF of mAP gain vs. Edge-Only across all frames for other strategies.

rather than being limited to certain still scene segments in the
video. The results are shown in Figure 5. As expected, due to
the highly accurate model and the high computational power
in the cloud, Cloud-Only performs best. Even so, Shoggoth
with adaptive frame sampling still slightly outperforms Cloud-
Only on almost 20% of frames. The prompt strategy is not as
impressive, as it only exceeds Edge-Only or is comparable to
it 78% of the time and consistently underperforms the other
three methods, though it updates the model more frequently.
Notably, Shoggoth with adaptive frame sampling achieved
better mAP than AMS with all frames 73% of the time.
Adaptive frame sampling prevents overfitting to recent frames,
making the system respond to scene changes more effectively.

V. CONCLUSION

In this paper, we introduce Shoggoth, a novel edge-cloud
collaborative real-time video inference architecture. By adap-
tive online learning, Shoggoth maximizes the benefit of col-
laboration between edge and cloud resources to improve
inference performance effectively. In addition, Shoggoth de-
signs adaptive frame sampling, which significantly increases
the robustness of scene changes and reduces communication
overhead. Shoggoth outperforms state-of-the-art solutions in
the trade-off between low latency and high accuracy, achieving
15%–20% accuracy improvement compared to the edge-only
strategy and requiring 24× less uplink bandwidth to achieve
similar accuracy to the cloud-only strategy.

ACKNOWLEDGMENT

This work is supported by the Key Research and De-
velopment Program of Guangdong Province (Grant No.
2021B0101400003), the Creative Research Group Project of
the NSFC (Grant No. 61821003), and the National Natural
Science Foundation of China (Grant No. 62072196).

REFERENCES

[1] P. Zhao, G. Yuan, Y. Cai, W. Niu, Q. Liu, W. Wen, B. Ren, Y. Wang,
and X. Lin, “Neural pruning search for real-time object detection of
autonomous vehicles,” in 2021 58th ACM/IEEE Design Automation
Conference (DAC). IEEE, 2021, pp. 835–840.

[2] D. Maltoni and V. Lomonaco, “Continuous learning in single-
incremental-task scenarios,” Neural Networks, vol. 116, pp. 56–73, 2019.

[3] G. Hinton, O. Vinyals, J. Dean et al., “Distilling the knowledge in a
neural network,” arXiv preprint arXiv:1503.02531, vol. 2, no. 7, 2015.

[4] X. Qu, J. Wang, and J. Xiao, “Enhancing data-free adversarial distillation
with activation regularization and virtual interpolation,” in ICASSP 2021-
2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2021, pp. 3340–3344.

[5] M. Li, Y. Li, Y. Tian, L. Jiang, and Q. Xu, “Appealnet: An efficient and
highly-accurate edge/cloud collaborative architecture for dnn inference,”
in 2021 58th ACM/IEEE Design Automation Conference (DAC). IEEE,
2021, pp. 409–414.

[6] C. Gao, Y. Wang, W. Chen, and L. Zhang, “An intelligent video
processing architecture for edge-cloud video streaming,” in 2021 58th
ACM/IEEE Design Automation Conference (DAC). IEEE, 2021, pp.
415–420.

[7] R. Liu, L. Zhang, J. Wang, H. Yang, and Y. Liu, “Petri: Reducing
bandwidth requirement in smart surveillance by edge-cloud collaborative
adaptive frame clustering and pipelined bidirectional tracking,” in 2021
58th ACM/IEEE Design Automation Conference (DAC). IEEE, 2021,
pp. 421–426.

[8] W. Liu, J. Geng, Z. Zhu, J. Cao, and Z. Lian, “Sniper: cloud-edge collab-
orative inference scheduling with neural network similarity modeling,”
in Proceedings of the 59th ACM/IEEE Design Automation Conference,
2022, pp. 505–510.

[9] M. McCloskey and N. J. Cohen, “Catastrophic interference in connec-
tionist networks: The sequential learning problem,” in Psychology of
learning and motivation. Elsevier, 1989, vol. 24, pp. 109–165.

[10] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Op-
timal speed and accuracy of object detection,” arXiv preprint
arXiv:2004.10934, 2020.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[12] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia, “Noscope:
Optimizing neural network queries over video at scale,” Proceedings of
the VLDB Endowment, vol. 10, no. 11, 2017.

[13] V. Nigade, L. Wang, and H. Bal, “Clownfish: Edge and cloud symbiosis
for video stream analytics,” in 2020 IEEE/ACM Symposium on Edge
Computing (SEC). IEEE, 2020, pp. 55–69.

[14] R. Bhardwaj, Z. Xia, G. Ananthanarayanan, J. Jiang, Y. Shu, N. Kar-
ianakis, K. Hsieh, P. Bahl, and I. Stoica, “Ekya: Continuous learning
of video analytics models on edge compute servers,” in 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
22), 2022, pp. 119–135.

[15] M. Khani, P. Hamadanian, A. Nasr-Esfahany, and M. Alizadeh, “Real-
time video inference on edge devices via adaptive model streaming,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 4572–4582.

[16] Z. Liu, Z. Miao, X. Zhan, J. Wang, B. Gong, and S. X. Yu, “Large-
scale long-tailed recognition in an open world,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 2537–2546.

[17] R. Aljundi, M. Lin, B. Goujaud, and Y. Bengio, “Gradient based sample
selection for online continual learning,” Advances in neural information
processing systems, vol. 32, 2019.

[18] L. Pellegrini, G. Graffieti, V. Lomonaco, and D. Maltoni, “Latent
replay for real-time continual learning,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2020, pp.
10 203–10 209.

[19] S. Ioffe, “Batch renormalization: Towards reducing minibatch depen-
dence in batch-normalized models,” Advances in neural information
processing systems, vol. 30, 2017.

[20] L. Wen, D. Du, Z. Cai, Z. Lei, M.-C. Chang, H. Qi, J. Lim, M.-H. Yang,
and S. Lyu, “Ua-detrac: A new benchmark and protocol for multi-object
detection and tracking,” Computer Vision and Image Understanding, vol.
193, p. 102907, 2020.

[21] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013.

[22] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui,
J. Guo, Y. Zhou, Y. Chai, B. Caine et al., “Scalability in perception
for autonomous driving: Waymo open dataset,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2020,
pp. 2446–2454.

[23] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961–2969.

	Introduction
	Related Work
	Shoggoth Design
	System Overview
	Adaptive Training with Replay Memory
	Increasing Robustness and Reducing Bandwidth

	Performance Evaluation
	Setup & Methodology
	Evaluation Results

	Conclusion
	References

