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Abstract—Graph neural networks (GNNs) have emerged as a popular
strategy for handling non-Euclidean data due to their state-of-the-art per-
formance. However, most of the current GNN model designs mainly focus
on task accuracy, lacking in considering hardware resources limitation
and real-time requirements of edge application scenarios. Comprehensive
profiling of typical GNN models indicates that their execution charac-
teristics are significantly affected across different computing platforms,
which demands hardware awareness for efficient GNN designs. In this
work, HGNAS is proposed as the first Hardware-aware Graph Neural
Architecture Search framework targeting resource constraint edge devices.
By decoupling the GNN paradigm, HGNAS constructs a fine-grained
design space and leverages an efficient multi-stage search strategy to
explore optimal architectures within a few GPU hours. Moreover, HGNAS
achieves hardware awareness during the GNN architecture design by
leveraging a hardware performance predictor, which could balance the
GNN model accuracy and efficiency corresponding to the characteristics
of targeted devices. Experimental results show that HGNAS can achieve
about 10.6 x speedup and 88.2% peak memory reduction with a negligible
accuracy loss compared to DGCNN on various edge devices, including
Nvidia RTX3080, Jetson TX2, Intel i7-8700K and Raspberry Pi 3B+.

Index Terms—Hardware-Aware, Graph Neural Network, Neural Archi-
tecture Search, Edge Devices

[. INTRODUCTION

Graph neural networks (GNNs) have achieved state-of-the-art per-
formance in various graph representation scenarios, including node
classification [1], link prediction [2], recommendation [3] and 3D
representation learning on point clouds [4]. Due to the powerful feature
extraction capabilities on topological structures, GNNs have become
a popular strategy for handling point cloud data, such as DGCNN [5].
Moreover, with the rising popularity of 3D scanning sensors in edge
devices, such as mobiles, unmanned aerial vehicles, etc., it is natural to
investigate how to design efficient GNN models for edge applications.

The most challenging issue of GNNs is their hungry demands for
hardware resources. Especially for resource-constrained edge devices,
GNNs usually exhibit low hardware efficiency and Out-Of-Memory
(OOM) problem, limiting their potential to handle real-world edge
applications. For instance, given a frame of point cloud data, DGCNN
performs KNN operations in each GNN layer for graph construction,
resulting in poor hardware efficiency on edge platforms. As shown
in Fig. 1, the examined GNN'’s inference latency and peak memory
usage for handling point cloud classification tasks continues increasing
rapidly as the number of processed points grows. Specifically, for
the default setting with 1024 points, DGCNN [5] needs more than
4 seconds to handle a single frame on Raspberry Pi (i.e. about 1/4
fps, frame per second), which is intolerable for real-time applications.
In addition, processing the involved graphs with more than 1536
points will cause OOM problems during DGCNN inference. Therefore,
deploying GNNs on edge devices is extremely challenging with
resource constraints.
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Fig. 1. Comparison between our approach and DGCNN. Inference latency

and peak memory usage on Raspberry Pi are illustrated on the left. Inference
speed and memory efficiency improvement across different edge devices are
illustrated on the right.

Several handcrafted approaches have been proposed to tackle the
prohibitive inference cost of GNNs in point cloud processing [6—
8]. Even though they could achieve notable speedups by simplifying
the GNN computations, manual optimization is difficult to adapt for
different computing platforms, regarding the huge design space and
various hardware characteristics [7]. As a very promising approach,
hardware-aware neural architecture search (NAS) could explore opti-
mal architectures automatically according to given objectives, which is
independent of human experience and avoids manual labor. By lever-
aging this approach, several works have made encouraging progress
in developing efficient DNN models on edge devices [9, 10]. More
specifically, we aim to exploit hardware-aware NAS for efficient GNNs
derived from point cloud applications on edge platforms.

Although several NAS frameworks have been introduced for GNNs
[11, 12], most of them have rarely considered the hardware constraints
and latency requirements inspired by real-world edge applications. In
this paper, HGNAS is proposed as an efficient hardware-aware graph
neural architecture search framework for point cloud applications on
edge computing platforms. Such a hardware awareness is achieved by
integrating hardware efficiency as a partial objective when perform-
ing the single-path one-shot evolutionary search. Given the targeted
edge devices, HGNAS automatically explores the optimized graph
neural architectures by guaranteeing both accuracy and efficiency
under hardware constraints (i.e. inference latency, model size, etc.).
One straightforward approach to achieve hardware awareness is to
deploy the generated architecture candidates on the targeted devices
and feedback the measured data during exploration. However, the
required tremendous real-time hardware measurement leads to very
inefficient exploration process since the cost of edge inference and
communication is often unbearable. As such, a more elegant way to
evaluate GNN hardware efficiency for different platforms is warranted.
In addition, the redundant operations within the layer-wise GNN
design space and lengthy search times also pose great challenges to
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Fig. 2. (a) Typical GNN Pipeline with MP paradigm. (b) Accuracy and latency
comparison when performing sampled results reuse among different DGCNN
layers on ModelNet40 [13] dataset and RTX3080 platform.

the efficient GNNs exploration process.

To address these challenges, our proposed HGNAS framework
leverages novel hardware-aware techniques for procuring both de-
sirable GNN performance and search efficiency. We spot that GNN
architectures themselves are also graphs that can be well represented
by GNNs. Such a concept is put into good use by drawing on the idea
of Use GNN to perceive GNNs. Therefore, HGNAS can effectively
perceive the latency of GNN candidates through a well-polished
GNN-based predictor. Furthermore, we develop a fine-grained design
space composed of basic operations to unleash the potential of GNN
computations. HGNAS also adopts an efficient multi-stage hierarchical
search strategy by dividing the GNN design space, reducing the search
time to a few GPU hours. As shown in Fig. 1, HGNAS has been
proven superior in both latency and peak memory usage across various
edge devices. Specifically, HGNAS on resource-constrained Jetson
TX2 could achieve the same level of inference latency compared with
DGCNN on powerful RTX3080, providing 47x (i.e. 350W vs. 7.5W)
power efficiency improvement without accuracy loss. In summary, the
contributions of this work are listed as follows:

o Framework. To the best of our knowledge, HGNAS is the
first NAS framework to perform efficient graph neural archi-
tecture search for resource-constrained edge devices. HGNAS
can automatically explore GNN models with multiple objectives
(accuracy, latency, etc.) for targeted platforms.

« Hardware awareness. To the best of our knowledge, HGNAS is
also the first work to achieve hardware performance awareness for
GNNs across edge devices. The proposed GNN-based predictor
can perceive the latency of a given GNN architecture on the
targeted platform in milliseconds.

« Evaluation. We have conducted extensive experiments on point
cloud classification tasks. By deploying HGNAS-designed models
on various edge devices, we achieve about 10.6x speedup and
88.2% peak memory reduction with a negligible accuracy loss.

II. RELATED WORKS AND MOTIVATION

In combination with previous related works, we introduce several
important observations on motivating efficient GNN explorations for
edge computing platforms.

Observation D: Redundant operations bring significant overhead.

Generally, GNN computations follow the message massing (MP)
paradigm, which consists of graph sampling, aggregation, and combi-
nation, as shown in Fig. 2(a). By reusing operation results across GNN
layers, we observe that redundancy may exist within the MP paradigm.
As illustrated in Fig. 2(b), reusing the sampled results between GNN
layers does bring some negligible accuracy loss, but could provide
a considerable boost to computational efficiency. It indicates that
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Fig. 3. Execution time breakdown of DGCNN across different platforms.

redundant operations usually bring significant overhead, which is one
of the major obstacles in optimizing computational efficiency.

Motivation @: Decouple the MP paradigm by leveraging fine-
grained GNN design space.

The above results demonstrate that building GNNs by stacking
generic GNN layers together will inevitably bring redundant opera-
tions. The most straightforward approach for this problem is opti-
mizing GNN models through large amounts of ablation studies and
analysis. Typically some redundant sampling operations are eliminated
in DGCNN for achieving better efficiency [6]. However, these hand-
crafted approaches heavily rely on design experience and are non-
reproducible for different tasks. Inspired by the success of designing
scalable GNN models by decoupling GNN paradigm [14, 15], GNN
layers are decoupled into operations for building a fine-grained design
space in an operation-wise manner. With the freedom offered by fine-
grained design space, various configurations (i.e. aggregation range,
operation order, etc.) could be generated by learning rather than
manual laboring.

Observation @): Exploring fine-grained design space is costly.

Compared with layer-wise design space, the fine-grained design
space takes operations as candidate options instead of layers, greatly
expanding the scope of exploration. For example, the backbone of
DGCNN consists of four GNN layers, and each layer includes three
basic operations, i.e. sample, aggregate, combine. Therefore, to cover
most DGCNN architectures, the fine-grained design space must con-
tain at least 12 positions, 3 candidate operations, and /N functions for
each operation (details in Sec. III-B). As a result, there are staggering
(3N)'? options to explore in the design space, which significantly
increases the exploration complexity.

Motivation @: Speedup exploration by search space simplification.

The exploration complexity demands a very efficient search strategy
to navigate through the huge options. Intuitively, some studies [16]
have proposed to shrink the design space for better search efficiency.
Unfortunately, the boost in efficiency comes with the price of po-
tentially discarding some valued choices. In reality, the contribution
of different layers towards the overall accuracy within a model may
vary greatly [17]. The representational power of front layers usually
contributes more to the whole GNNs [7]. Hence, they simplify the
latter parts of DGCNN to obtain better model performance. All of these
inspire us to improve exploration efficiency by dividing the search
space and guiding the search tendencies at different positions.

Observation 3): The same GNN model may behave differently on
various computing platforms.

Detailed execution time breakdown of DGCNN is illustrated in
Fig. 3 for different platforms. These results are obtained by PyTorch
Profiler [18]. For Nvidia RTX3080 and Jetson TX2, the sample
operation occupies the majority of execution time. This is because
GPUs are better at handling compute-intensive matrix operations,
and not so good at memory-intensive graph sampling operations. For
Intel i7-8700K, aggregate and sample take up most of the execution
time, which is caused by a massive number of irregular memory
accesses. As the results indicate, the execution of DGCNN on the
above platforms belongs to I/0-bound. However, on the Raspberry
Pi, due to the limited resources, all three phases occupy relatively large
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Fig. 4. Overview of the HGNAS framework. Oper. and Func. denotes Operation and Function respectively.

proportions of execution time, which makes the execution process also
compute-bound. They demonstrate that the same GNN model may
result in various execution characteristics across computing platforms.

Motivation @: Perceive the hardware sensitivities of GNNs across
different computing platforms.

Due to differences in hardware architectures and available resources,
GNNs that are computationally efficient on GPUs may not be suf-
ficient on other platforms. Moreover, the hybrid execution mode of
GNNs, which consists of both memory-intensive and computation-
intensive operations, poses great challenges for effectively perceiving
GNNs hardware sensitivities [19]. Some works attempt to improve
hardware efficiency by analytical estimation for hardware/algorithm
co-design [20]. However, these approaches introduce obvious accuracy
drop and are difficult to extend to other platforms [21]. Although
real-time measurement could really capture hardware behaviors, its
tremendous overhead is intolerable for efficient exploration. Therefore,
an efficient and scalable hardware-aware approach is highly demanded
for GNNs exploration. Inspired by [9], a GNN-based end-to-end hard-
ware performance predictor is integrated to efficiently and accurately
perceive GNNs hardware performance across various platforms.

III. HGNAS FRAMEWORK
A. Problem Definition and HGNAS Overview

In this paper, we aim to co-optimize the accuracy and hardware
efficiency of GNNs on edge devices. Given a target edge device H,
and hardware constraints C, the multi-objective optimization process
of HGNAS can be formulated as:

arg {I}\l’a?-}t(} (o * accoqs W™, A) — B xlat (A, H)), (1)

st. W" =arg max acCirain(W, A)
lat(A,H) < C

where )V denotes the model weights, accirain is the training accuracy,
accyq 1s the validation accuracy, lat is the inference latency on
targeted platform 7, A is the GNN architecture candidate, o and /3
are the scaling factors used to adjust the optimize propensity between
accuracy and latency.

Fig. 4 shows the overview of our HGNAS framework. Given a spe-
cific task, a target device, the hardware constraints, and the optimizing
metrics, HGNAS will first generate a fine-grained operation-based de-
sign space which consists of the Function Space and Operation Space.
HGNAS then constructs a supernet covering the GNN design space
to adopt the one-shot exploration approach. Afterward, HGNAS will
explore the hierarchical design spaces based on the proposed multi-
stage hierarchical search strategy. During exploration, the evaluation
result of each candidate architecture is determined by both the accuracy
on the validation dataset, and the hardware performance on the target
device. The hardware performance of GNNs is provided by the GNN
hardware performance predictor integrated in HGNAS. In subsequent
sections, we will detail the three main components of HGNAS.

; @)

TABLE 1
THE AVAILABLE CHOICES IN GNN’S SUPERNET.

Operation | Function
Connect Skip-connect, Identity

Aggregator type: sum, min, max, mean
Aggregate | Message type: Source pos, Target pos, Rel pos,

Distance, Source||Rel pos, Target||Rel pos, Full
Combine 8, 16, 32, 64, 128, 256
Sample KNN, Random

B. Fine-grained Operation-based Design Space

The GNN supernet. To lift the restrictions of the traditional GNN
design space, instead of presetting the number of GNN layers, HGNAS
builds the design space upon positions for GNN operations to achieve
more flexibility. Specifically, for each position in the supernet, there
are four basic operations including connect, aggregate, combine, and
sample, each containing specific attributes. Aside from the operations
derived from the MP paradigm, the connect operation, including
direct connection and skip-connection, provides more freedom in GNN
model construction. For point cloud processing applications, the mes-
sage type attribute of aggregate operations specifies the construction
method of the messages to be aggregated. As shown in Fig. 4, the
supernet is organized by stacking all the positions together. In practice,
supernet training demands that operations within each position must
obtain the same hidden dimension length. HGNAS appends linear
transformations to operations incapable of altering hidden dimensions,
such as sample and aggregate, to ensure dimension alignment among
operations. These linear transformations will be disposed of in the
finalized architecture to avoid introducing additional overhead.

The hierarchical design space. HGNAS detaches attributes from
operations to construct an independent Function Space to further
decouple the fine-grained design space. The remainder of design space
made up of operation types is then used to assemble the Operation
Space. In addition, these two sub-spaces can be explored separately by
leveraging the proposed multi-stage hierarchical search strategy (see
Sec. I1I-C) to reduce exploration complexity. All candidate operations
and functions are listed in Tab. L.

C. Multi-stage Hierarchical Search Strategy

HGNAS divides the search process into two stages corresponding
to Function Space and Operation Space, in order to reduce the explo-
ration complexity of the fine-grained design space as aforementioned
in Observation . Inspired by [22], the search strategy in HGNAS is
based on an evolutionary algorithm (F A), as illustrated in Alg. 1. In
particular, HGNAS first searches a set of functions for GNN supernet
from function space. After the optimal function set is determined,
HGNAS trains the GNN supernet and performs a multi-objective
operation search for all the positions. Finally, the algorithm outputs
the top-performing model within the design space. During supernet



Algorithm 1: Multi-stage hierarchical search strategy.

Graph Neural Architecture

Constructing Architecture Graph

Generate Adjacency Matrix and
Node Features

1 Inputs: population size P, hardware constraints C, target device
‘H, operation space S,p, function space Sy, max iteration T,
number of positions N.

Outputs: the best found GNN design .A* for target device H.

Initialize GNN supernet NVsyper With N positions and two
function sets upper < @, lower < @

/* Stage 1: Function search */

Assign function set: Nsyper [0, N/2] < upper,

Nsupe'r[N/? + ].7 N} <+ lower

w N

[N

for 1 <t <T do
‘ {upper, lower} <= EA(P, Nsuper,S¢, 0bj = max(accyqr))
end
Fix function set F < {upper, lower} for Nsuper
10 Re-initialize and pre-train Nsuper (Sop, F)
11 /* Stage 2: Operation search */
12 Initialize operation set O < @
13 for 1 <t < T do
14 ‘ O « EA(P, Nsuper,F, Sop, 0bj = max(Fop;(C)))
15 end
16 return optimal architecture A* < {O,F}

e ® 9 &

training, a random sub-network is generated by sampling operations
for each position in the GNN supernet, whose weights WV are updated
via back propagation. Details of the multi-stage search strategy are
presented as follows.

Stage 1: Function Search. In this stage, HGNAS aims to find
a function setting to maximize the supernet accuracy. To further
improve the exploration efficiency, HGNAS divides N positions in
GNN supernet into two halves, and shares a set of functions among
the Upper half (0, ..., N/2) and another set among the Lower half
(N/2+1,...,N). For a supernet with 12 positions, through sharing
functions among positions in the decoupled design space, HGNAS
can reduce the number of exploration candidates from 4.2 x 102
to 1.7 X 107. Finally, an optimal function set F is determined for
initializing the supernet Nsyper. Note that fixing F in this stage will
significantly reduce the complexity of subsequent operation searches.

Stage 2: Operation Search. By pre-training the supernet and
performing EA-based searches, HGNAS obtains a set of operations
that maximizes the objective function value in the Operation Space.
Benefiting from the one-shot search strategy, supernet training and op-
eration search are divorced to avoid the exorbitant cost of sub-network
retraining during the search. To improve the search efficiency and meet
the hardware constraints on the targeted device, HGNAS evaluates the
candidate architectures based on the proposed hardware performance
predictor (see Sec. 11I-D) during the search. Only the architectures that
meet the hardware constraints will be further evaluated for the accuracy
metric. Specifically, the objective function during the operation search
is formulated as:

Fors (€)= { 0 o

Q * ACCyqr — B *x lat, if

lat > C
lat < C 3)

D. GNN Hardware Performance Predictor

To meet the efficiency requirements on targeted devices, we build
a GNN hardware performance predictor that can efficiently learn
the relationship between GNN architectures and hardware efficiency.
Specifically, its execution process consists of the following phases:
graph construction, node feature generation, and inference latency
prediction, as shown in Fig. 5.

Graph construction. During this phase, HGNAS abstracts GNN
architectures into directed graphs as the input of the GNN predictor.
The nodes in these architecture graphs represent inputs, outputs, and
operations, while the edges represent the dataflow within the GNN
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Fig. 5. Latency prediction of a candidate model for the target device.

architecture. In practice, accurate prediction of hardware efficiency
requires both candidate model architecture and the graph property of
the input dataset, which GNN execution highly depends on. However,
the plain abstraction of the original GNN architectures is too sparse
for the predictor to obtain enough structural features, while lacking
the necessary information on input data. Hence, HGNAS introduces
a global node connected with all nodes in the graph to improve the
graph connectivity. The input data information is also encoded into
the global node for better prediction accuracy.

Node feature generation. For an operation node, the node feature
consists of the operation type and its corresponding function. Specif-
ically, HGNAS encodes these two components into a 7-dimensional
and a 9-dimensional one-hot vector respectively, and concatenates the
results to represent the node feature. For input and output nodes,
HGNAS assigns them with a zero vector. For the global node, HGNAS
encodes the input graph data properties (number of nodes, density, etc.)
into a 16-dimensional vector as the global node feature.

Latency prediction. To avoid the over-smoothing problem often
induced by deeper GNNs on small-scale graphs (i.e., the abstracted
architecture graph), the predictor consists of only three GCN layers [1]
and a multi-layer perceptron (MLP). The inputs of the predictor
are information on the target device, adjacency matrix, and node
features. Specifically, the GCN layers utilize the sum aggregator
with hidden dimensions of 256 x 512 x 512. The three layers in
MLP with hidden dimensions of 256 x 128 x 1, are followed by a
LeakyReLU function for generating a scalar prediction of latency. As
the architecture graphs normally contain no more than a few dozen of
nodes, the overhead brought by latency prediction is mostly negligible.
For instance, the GNN-based predictor can predict the latency of a
candidate architecture for a target edge device within milliseconds on
the Nvidia RTX3080.

IV. EXPERIMENTS
A. Experimental Setup

Baselines and datasets. For evaluating HGNAS, we consider three
baselines: the popular point cloud processing model DGCNN [5], and
two manually optimized methods on the DGCNN architecture [6, 7].
Our experiments are conducted on the public benchmark Model-
Net40 [13] for classification task with 1024 points, and following the
default hyperparameter settings in [7]. In addition, all the experimental
and profiling results are developed on PyTorch Geometric (PyG)
framework [23], taking the average results of 10 runs.

HGNAS settings. We assign 12 positions for the GNN supernet to
cover DGCNN architectures. During the design space exploration, the
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percentage error (MAPE) was used as the loss function during training.

Edge devices. We employ four edge devices for comparing HGNAS
and competitors: (1) Nvidia RTX3080, (2) Intel i7-8700K, (3) Jetson
TX2 with 8GB memory, (4) Raspberry Pi 3B+ with a Cortex-AS5
processor and 1GB memory. The latency and peak memory usage
are obtained by deploying the GNN models on the above devices for
inference using the PyG framework.

B. Exploration by HGNAS

The models designed by HGNAS are comprehensively compared
with baselines in terms of model size, accuracy, latency, and peak
memory.

1) Accuracy vs. Latency: Fig. 6 reports the exploration results of
HGNAS. The ideal solution is located in the top-left corner, indicated
by a star. The green points named Device_Acc (e.g. RTX_Acc) are the
optimal architectures designed for the targeted device by HGNAS with
no loss of accuracy, while the red points named Device_Fast allow 1%
accuracy loss. The results show that HGNAS consistently maintains
a better performance frontier (higher accuracy and lower latency)
on various devices, which is guaranteed by the accurate hardware
performance prediction of the candidate architecture during the search.
By setting the scaling factors, HGNAS can easily achieve the tradeoff
between hardware efficiency and task accuracy. Specifically, when /3
is smaller, the search results are more in favor of lower latency than
higher accuracy. Conversely, when «/3 is larger, the search results
tend to emphasize more on accuracy.

2) HGNAS over Existing Graph Neural Architectures: As shown
in Tab. II, compared with the baselines, GNN models designed by
HGNAS have better hardware efficiency across all edge computing
platforms with similar accuracy. Such remarkable results are due

to the hardware awareness incorporated during exploration. Com-
pared to DGCNN, HGNAS achieves up to 10.6x, 10.2x, 7.5x
and 7.4x speedup, while reducing 88.1%, 31.6%, 88.2%, 43.7%
peak memory usage across four devices. Moreover, HGNAS on the
resource-constrained Jetson TX2 attains the same hardware efficiency
as DGCNN on the high-performance Nvidia RTX3080 platform, and
reduces peak memory usage by 86.8%. The above results clearly
demonstrate that flexibility offered by the fine-grained design space
in HGNAS enables the pursuit of exceptional GNN computation
efficiency on edge. For a fairer comparison with manual optimizations
in [6, 7], we adopt their reported accuracy, inference speedup, and
memory reduction as the baseline on the GPU platform. For other
edge platforms, we reproduce these baselines based on PyG, due to
the lack of pre-trained models and evaluation results. These results
show that GNN models designed by HGNAS have outperformed the
manual optimizations across all platforms, benefiting from the accurate
prediction of hardware performance during model explorations.

C. Evaluation on GNN Predictor

As shown in Fig. 8, our proposed hardware performance predictor
achieves high prediction accuracy across various platforms. Specifi-
cally, the MAPE of prediction results on RTX3080, Intel i7-8700K,
and Jetson TX2 is about 6%, while this metric is around 19% on
Raspberry Pi due to fluctuations in latency measurement results. The
accuracy of GNN predictor is more than 80% across devices with
a 10% error bound. In practice, the GNN predictor obtains better
performances for models with a faster inference speed, which assists
HGNAS in more efficient design exploration.
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Fig. 9. (a) Performance comparison between real-time- and predictor-based
search. (b) Search time reduction with the multi-stage strategy.

D. Ablation Studies

Predictor vs. real-time measurement. Fig. 9(a) shows the HGNAS
search process leveraging GNN predictor or real-time measurement on
Intel CPU and Nvidia GPU platforms. The results demonstrate that
the GNN predictor can effectively improve the search efficiency, as
the models searched with both methods obtain similar performances.
In particular, our predictor will play a crucial role when the real-time
measurement is impossible (e.g., on Jetson TX2 and Raspberry Pi).

Multi-stage vs. one-stage search strategy. As shown in Fig. 9(b),
exploring with the traditional one-stage search strategy would often be
entangled in the huge fine-grained design space. In contrast, the multi-
stage hierarchical search strategy greatly accelerates the exploration
process, with the capability of finding an optimal GNN architecture
within a few GPU hours.

E. Insight from GNNs Designed by HGNAS

Fig. 10 provides the visualization of GNNs designed by HGNAS.
Note that the adjacent KNN operations will be merged during execu-
tion due to duplicate graph construction. The results clearly show that
the hardware-efficient architectures designed by HGNAS are closely
associated with the characteristics of the target device, which are
consistent with the characterization of GNN models in Observation
@. For example, as KNN occupies the majority of execution time on
RTX3080 and Jetson TX2, GNN models designed for these devices
would comprise fewer valid KNN operations. Moreover, the optimal
model for Intel CPU has fewer aggregate operations, and models
designed for Raspberry Pi tend to simplify each operation.
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Fig. 10. Visualization of GNN models designed by HGNAS.

V. CONCLUSIONS

In this paper, we propose HGNAS, the first hardware-aware frame-
work to explore efficient graph neural architecture for edge devices.
HGNAS can automatically search for optimal GNN architectures that
maximize both task accuracy and computation efficiency. HGNAS
leverages the multi-stage hierarchical search strategy and GNN hard-
ware performance predictor to efficiently explore the fine-grained GNN
design space. Extensive experiments show that GNN models generated
by HGNAS consistently outperform SOTA GNNs, achieving about
10.6x speedup and 88.2% peak memory reduction across various
edge platforms. We believe that HGNAS has made pivotal progress in
bringing GNNs to real-life edge applications.
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