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Abstract—Genome sequence analysis is a powerful tool in med-
ical and scientific research. Considering the inevitable sequencing
errors and genetic variations, approximate string matching
(ASM) has been adopted in practice for genome sequencing.
However, with exponentially increasing bio-data, ASM hardware
acceleration is facing severe challenges in improving the through-
put and energy efficiency with the accuracy constraint.

This paper presents ASMCap, an ASM acceleration approach
for genome sequence analysis with hardware-algorithm co-
optimization. At the circuit level, ASMCap adopts charge-domain
computing based on the capacitive multi-level content addressable
memories (ML-CAMs), and outperforms the state-of-the-art ML-
CAM-based ASM accelerators EDAM with higher accuracy
and energy efficiency. ASMCap also has misjudgment correc-
tion capability with two proposed hardware-friendly strategies,
namely the Hamming-Distance Aid Correction (HDAC) for the
substitution-dominant edits and the Threshold-Aware Sequence
Rotation (TASR) for the consecutive indels. Evaluation results
show that ASMCap can achieve an average of 1.2x (from 74.7% to
87.6%) and up to 1.8x (from 46.3% to 81.2%) higher F1 score (the
key metric of accuracy), 1.4x speedup, and 10.8x energy efficiency
improvement compared with EDAM. Compared with the other
ASM accelerators, including ResMA based on the comparison
matrix, and SaVI based on the seeding strategy, ASMCap achieves
an average improvement of 174x and 61x speedup, and 8.7e3x
and 943x higher energy efficiency, respectively.

Index Terms—genome sequence analysis, approximate string
matching, capacitive multi-level content addressable memory.

I. INTRODUCTION
Recently, genome sequencing has received a lot of attention

and triggered new innovations in several applications including
precise medical care [1], virus surveillance [2], evolutionary
theory [3], etc. With recent advances in sequencing technolo-
gies like Next-Generation Sequencing (NGS) [4] or Third-
Generation Sequencing (TGS) [5], massive amounts of ge-
nomics data can be generated at low cost. Such exponentially
increasing bio-data scale much faster than the computing
capability [6], which brings severe challenges to the genome
sequence analysis.

In genome sequence analysis, small random fragments of
the original DNA sequence extracted by machines, called
reads, are analyzed by a computational process called read
mapping. Specifically, each read is aligned to one or more
possible locations in the reference sequence. Then, at these lo-
cations, matches and differences, i.e., distance, are determined
between the read and the reference sequence segments [7].
Considering the inevitable errors caused by sequencing, ge-
netic mutations and variations, Approximate String Matching
(ASM) is necessary in the read mapping.
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Fig. 1. ASM acceleration for genome sequence analysis: (a) Three types of
errors: substitution, insertion, and deletion; (b) Higher energy efficiency is
desired for ASM acceleration.

In ASM, as shown in Fig. 1(a), in addition to substitutions,
there are two basic errors: insertions and deletions (collectively
called indels). These three types of errors are typically referred
to as edits. In the von Neumann architecture, finding the
Edit Distance (ED), involves many complex operations and
produces huge intermediate data with the growing sequence
length, which further increases the data movement between the
on-chip processors and the off-chip memory or storage [8]. It is
a severe challenge towards efficient genome sequence analysis.

ED can be calculated exactly using Comparison Matrix
(CM), but this iterative process is very costly even with
the filtering and PIM techniques in ResMA [9]. Therefore,
the seeding strategy is frequently utilized in genomics [10],
[11], and several corresponding PIM-based accelerators have
been developed on different platforms [12]–[14]. These two
strategies find the most possible matched location by exactly
matching all k-length read fragments, (called k-mers), with
the reference and then extending or voting the matched k-
mers. Therefore, significant performance improvement can be
achieved over the CM method, but they still suffer from
limited throughput due to the computationally expensive k-
mer counting and the extending or voting process [14].

Recently, EDAM, an ASM accelerator based on the Multi-
Level Content Addressable Memories (ML-CAMs) [15]–[17],
was reported in [18] with orders of magnitudes higher energy
efficiency, as shown in Fig. 1(b). Unlike the conventional
CAMs or ML-CAMs, for a certain base, EDAM matches not
only the co-located base but also its left and right neighbors.
Therefore, it can tolerate intra-mer edits, making it possible to
directly match the reads with the reference without fragmen-
tation. Combining the in-situ parallel match of CAMs, EDAM
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achieves much higher performance. However, the current-
mode computing and sensing in EDAM are not variation-
resistant and scalable, which limits the read length and de-
grades energy efficiency. Furthermore, the matching method
in EDAM may induce misjudgments under certain conditions,
which affects the accuracy and limits its application.

From the analysis above, as shown in Fig. 1(b), there is a
trade-off between accuracy and energy efficiency in existing
ASM accelerators, and it is very challenging to find a good
balance. In this paper, we propose ASMCap, a novel ASM
architecture based on the capacitive ML-CAMs [17]. ASMCap
investigates the matching method proposed in EDAM and
makes significant progress: (i) The charge-domain compu-
tation with no area cost is proposed to provide linear and
stable voltage output scaled by the matching results, and
achieve much higher reliability and read length upper bound
with lower capacitor variations; (ii) ASMCap proposes two
hardware-friendly heuristic misjudgment correction strategies,
namely the Hamming-Distance Aid Correction (HDAC) and
the Threshold-Aware Sequence Rotation (TASR), to improve
the accuracy with negligible area overheads.

The contributions of this paper are as follows:

• We propose ASMCap, a novel ASM architecture based on
the capacitive ML-CAMs with inherent high reliability,
throughput, and energy efficiency.

• We propose two hardware-friendly heuristic misjudgment
correction strategies, i.e., HDAC and TASR, for higher
accuracy with negligible overheads.

• We perform extensive experiments for ASMCap. Results
show an average of 1.2x and up to 1.8x higher F1

accuracy score than EDAM, and an average of 174x,
61x and 1.4x speedup and 8.7e3x and 943x and 10.8x
higher energy efficiency than the state-of-the-art ASM
accelerators ReSMA, SaVI and EDAM, respectively.

Next, Section II introduces the genome sequence analy-
sis background. Section III presents ASMCap with further
software optimizations in Section IV. Section V shows the
experimental results and Section VI concludes this work.

II. BACKGROUND

A. Genome Sequence Analysis
Genome sequences consist of four types of bases: Adenine

(A), Guanine (G), Cytosine (C), and Thymine (T). A-T and
C-G are complementary base pairs (bps). To perform the
genome sequence analysis, the positions of the reads need
to be determined, and read mapping is to align each read
sequence to one or more possible locations in the reference
sequence. The read alignment includes Exact Alignment [19]
and Approximate Alignment [10], [20]. Considering the in-
evitable errors, Approximate Alignment, i.e., ASM, needs to
be supported in practical genome sequencing [20].

There are two major error sources in genome sequences: se-
quencing errors and genetic variations. For example, NGS [4]
can produce short reads (∼50-500 bps) with low errors
(∼0.1%-1%) [21], while TGS [5] can produce long reads
(thousands to millions of bps) with high errors (∼10%-
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Fig. 2. The adopted matching method in ASMCap [18].
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Fig. 3. ML-CAMs in the (a) current-domain [15], [16] and (b) charge-
domain [17] for multi-level content matching.

15%) [20]. The error rate of genetic variations is relatively
low (∼0.1% for human [6]).

B. Approximate String Matching and Related Works
ED between two sequences is the minimum number of

edits required to transform one sequence to the other one.
Given a read sequence R=[r1r2...rm], a reference sequence
Q=[q1q2...qn], m=|R|, n=|Q|, m≤n and a ED threshold T, the
ASM goal is to find all possible subsequences S in Q and
their positions such that ED(S, R)≤T.

ED can be calculated exactly using the Comparison Matrix
M [i, j], but the time complexity of this ED computation is
O(N2), which is very costly [9]. ReSMA [9], a Resistive
Random Access Memory (RRAM) based PIM accelerator,
utilizes the RRAM crossbars to exploit anti-diagonal paral-
lelism in M [i, j] and the RRAM CAMs for filtering, which
gains great performance improvement. However, the iterative
process during CM computation incurs massive intermediate
data and updates the crossbars frequently, which heavily
degrades the performance and energy efficiency.

A more common method in genomics is the seeding strat-
egy, including the seed-and-extend strategy [10] and the seed-
and-vote strategy [11]. The seeding strategy splits the read into
many k-mers, and then finds all locations of the reference for
each k-mer by exact matching, and finally, extends or votes
the matched k-mers to find the best possible match between
the read and the reference. The voting process is faster than
the extending process but suffers from the accuracy loss [11].

There have been several existing accelerators for the seeding
strategy based on 3D RRAM, DIMM, TCAMs, etc. [12]–[14].
These two strategies can both be much faster than the CM
computing, but still suffer from limited throughput due to the
memory-hungry and time-consuming k-mer counting [13]. In
addition, both extending and voting processes involve complex
computation, which further degrades the performance.

The recent ASM accelerator EDAM [18] is based on ML-
CAMs [15]–[17]. As illustrated in Fig. 2, EDAM performs
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Fig. 4. The proposed ASMCap architecture. (a) Top architecture; (b) ASM array in the ASMCap units; (c) Detailed circuit design in an ASMCap cell.

the search operation for a certain base with not only the co-
located base but also the left and right neighbors of the co-
located base. If there is at least one match, the matching result
of this base is ‘match’. Otherwise, the result is ‘mismatch’.
The distance estimated by EDAM is defined as ED* in this
paper. From the examples in Fig. 2, it is seen that ED* can
be more close to ED compared with Hamming Distance (HD)
when insertions or deletions occur. In other words, EDAM
can tolerate intra-mer edits, support much larger k, and even
match the read directly without fragmentation. In this way,
the k-mer counting and the extending or voting process can be
reduced and even eliminated. With the in-situ parallel match
of CAMs, EDAM can achieve ultra-high throughput.
C. Current Domain and Charge Domain ML-CAMs

ML-CAM is one type of CAM that can not only perform
exact matching or not, but also detect the degree of match.
EDAM uses the current-domain ML-CAM [15], as shown
in Fig. 3(a). The matching result of each base controls a
transistor: a ‘match’ turns off the transistor, and a ‘mismatch’
turns on the transistor. The matchline (ML) is pre-charged, and
the decreasing slope of the ML voltage VML scales with the
number of mismatched cells. However, this dynamic timing-
dependent sensing method is inherently vulnerable to device
and timing-control variations and power-consuming, which
results in poor scalability and limits the maximum read length
that EDAM can support. Besides, the pre-charge operation in
EDAM also consumes significant power.

To address the inherent challenge of the current-domain
ML-CAM, charge-domain ML-CAM, i.e., the capacitive ML-
CAM, was proposed [17] for one-shot learning. As shown in
Fig. 3(b), the matching result of each base outputs a certain
voltage (VDD for ‘match’ and GND for ‘mismatch’) to the
bottom plate of a capacitor, and the top plates of all capacitors
are connected to ML. It shows that VML scales linearly with
the degree of match, and is stable and timing-independent.
Besides, capacitor variations are much less than the current
variations, which enhances the accuracy and scalability.

III. PROPOSED ASMCAP ARCHITECTURE

This section presents the proposed ASMCap, including
the top architecture and detailed building blocks. Operation
mechanisms and performance analysis are also included.

A. Top Architecture
Fig. 4(a) shows the top architecture of ASMCap. The reads

generated by the sequencing machine are firstly stored in the

memory and the global buffer can fetch the entire reads or
k-mers for the subsequent match according to the read length.
The controller receives instructions from the host CPU and
controls the process. The reads or k-mers from the global
buffer are sent to the ASMCap arrays through the H-tree.

B. ASMCap Array
As shown in Fig. 4(b), each ASMCap array includes M×N

ASMCap cells, the decoder, the wordline (WL) driver, the
searchline (SL) buffer and driver, the sense amplifiers (SAs)
on the matchline (ML), and the shift registers with an enable
signal. Each row stores a reference segment of the same length
as the input reads or k-mers. The decoder and the WL driver
obtain the address and select rows to execute write and search
operations. SL buffer and driver transform the input data to
the corresponding voltage and drive the SLs and SLs.

The SAs compare VML with the reference voltage (Vref ).
Different from EDAM [18], the sample and hold circuit and
the timing are not required in ASMCap, thanks to the stable
output voltage on the ML, which reduces the search latency.
the SAs are required to output ‘1’ (‘match’) when VML ≤ Vref
corresponding to ED*≤T.

The shift registers with enable signal can rotate the input
reads or k-mers left or right base-by-base, and are utilized in
the proposed TASR strategy in Section IV-B.

C. ASMCap Cell
Fig. 4(c) shows the circuit design of the ith ASMCap cell

in a row of the ASMCap array. The ith base of the reference
segment is stored in the two 6T SRAM cells. The comparison
logic compares the stored base with the co-located base and its
left and right neighbors in the read, and produces the partial
matching results, i.e., OC , OL, and OR, respectively. If match
occurs, the corresponding partial matching result is ‘1’. Then,
two multiplexers (MUXs) control the matching mode. If the
select signal of the MUXs (S) is ‘1’, the output matching result
(O) is OC +OL +OR. Otherwise, O = OC . In this way, the
ASMCap array can perform the search operation using both
ED* and HD, which is utilized in the proposed HDAC strategy
in Section IV-A. Note that the select signal S is shared by all
MUXs in the ASMCap array, and MLs are not required to be
pre-charged during the search operation as EDAM [18], which
also reduces the search latency.

For the matching mode using ED*, if at least one partial
matching result is ‘1’, O is ‘0’ and the ith cell is a matched
cell. Otherwise, O is ‘1’, and the ith cell is a mismatched cell.



Therefore, VML = nmis

N V DD, where nmis is the total number
of mismatched cells equivalent to ED*. Therefore, ED*≤T
corresponds to VML ≤ Vref when Vref is set to T

N V DD.
Furthermore, if all capacitors in the ASMCap array follow

the independent and identically distributed normal distribution
N (µC , σ

2
C), as [17], the energy consumption per search

operation (ES) and the VML variance can be estimated as:

ES ≈
Mnmis(N − nmis)

N
µCV DD

2 (1)

V ar(VML) ≈ nmis(N − nmis)
N3

(
σC
µC

)2V DD2 (2)

It is seen that ES and V ar(VML) are small when nmis is close
to 0 or N. Considering the genome sequence characteristics,
nmis is close to N for most rows, making ASMCap superior to
EDAM with much lower power consumption and variations.

IV. MORE SOFTWARE OPTIMIZATIONS

Although EDAM can tolerate edits and is efficient in
estimating ED when the indels occur, misjudgments limit the
accuracy of EDAM. Because of the huge design space, it
is challenging to correct those misjudgments with low hard-
ware overhead. This section focuses on two common kinds
of misjudgments and describes two proposed corresponding
hardware-friendly heuristic strategies, i.e., HDAC and TASR,
for misjudgment correction with the overhead analysis.

A. Hamming-Distance Aid Correction

Observation: As illustrated in Fig. 5, a common kind of
misjudgment happens when there are many substitutions but
few or even no indels. If performing the search operation using
HD, most edits can be discovered. However, EDAM performs
the search operation for a certain base with the left and right
neighbors, many edits are likely to be hidden. It leads to the
misjudgment, i.e., False Positive (FP), when the threshold T
is between ED* and ED (The ED* matching result is ‘match’
but the result should be ‘mismatch’ due to ED>T).

Solution: We propose the HDAC strategy to address this
issue. As shown in Fig. 5, we perform the search operation
using both HD and ED*, and then select the HD matching
result with a p possibility. The pseudo codes of the HDAC are
listed in Algorithm 1. The main challenge is how to design the
function f() in line 1 such that p is large enough when edits
are mainly from substitutions, and decreases rapidly when
more indels occur. In this paper, the function is designed as
es

es+eid
e−(αeid+βT ), where es is the substitution error rate,

eid is the indel error rate (eid = ei + ed, where ei is the
insertion error rate, and ed is the deletion error rate), and α
and β are constants. The es

es+eid
part is to enlarge p with

larger proportion of substitutions in edits. The e−αeid part
is to exponentially alleviate the effect of more indels due
to larger eid. The e−βT part is to exponentially alleviate the
effect of a larger threshold T because many matching results
of indel-induced large HD are ‘mismatch’, but more of them
with small ED should be ‘match’ with larger T, which leads
to another misjudgment, i.e., False Negative (FN). Besides,
es

es+eid
e−(αeid+βT ) can be pre-processed off-line to reduce the

Reference:

Read:

HD=5>T, ED=5>T

ED*=1<T, ED=5>T

Random
Number (x)

If x<p:

Else:
HD matching result

ED* matching result

If selected:
Solution:

C C C C A A A T T T G C T TA A

C G C C A T A T T G T C A TA A

Fig. 5. The proposed HDAC strategy for substitution-dominant edits (5
substitutions, no indels, and T = 4 in this example).

Algorithm 1 Hamming-Distance Aid Correction
Input: OHD: The HD matching result; OED∗: The ED*

matching result; es: The substitution error rate; eid: The
indel error rate; T : The threshold

Output: O: The final matching result
1: Let p← f(es, eid, T ); // Can be pre-processed off-line
2: if OHD 6= OED∗ then
3: Generate a random number X ∼ U(0, 1);
4: if X < p then
5: Let O ← OHD;
6: else
7: Let O ← OED∗;
8: end if
9: end if

computation overhead. It is also necessary to point out that this
function is only an example. More accurate functions can be
designed analytically or obtained by other powerful tools such
as neural networks.

Overhead Analysis: HDAC involves two additional MUXs
per ASMCap cell in ¶ of Fig. 4. The MUXs are achieved by
two NMOS transistors controlled by S and S̄, respectively.
Estimated from the layout, two MUXs induce about 0.1%
area overhead through layout optimization. Besides, the HDAC
strategy also induces one more cycle to perform the search
operation using HD, we can disable the HDAC strategy when
p is less than a certain threshold (e.g., 1%).

B. Threshold-Aware Sequence Rotation

Observation: As illustrated in Fig. 6, another common kind
of misjudgment happens when several consecutive insertions
or deletions occur, which causes ED* to be much larger than
ED. If T is between ED and ED*, the FN happens.

Solution: An effective way is Sequence Rotation (SR) [18].
SR rotates the read base-by-base NR times (can be the left or
right rotation), and the reference segment is compared with
the original read and NR rotated reads. If there is at least
one ‘match’, the final matching result is ‘match’. However, as
illustrated in Fig. 6, the ED*s between the reference segment
and some rotated reads may be smaller than ED, so the
FP occurs if T is between ED and these ED*s, especially
when T is relatively small. In this paper, we propose an
improved strategy, i.e., TASR, and the pseudo codes are listed
in Algorithm 2. We set a lower bound of T, called Tl, such
that the rotations are triggered only if T ≥ Tl. In this way, the
FP is avoided when T is relatively small. Tl also involves huge
design space exploration, and here we design Tl as d γeidme,
where γ is a constant and m is the read length, considering Tl
should be small when eid is high to improve accuracy and be
large when eid is low to save time and power consumption.
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Fig. 6. The proposed TASR strategy for consecutive insertions or deletions
(delete consecutive ‘AA’ in the read and Tl = 2 in this example).

Algorithm 2 Threshold-Aware Sequence Rotation
Input: R: The read; S: The reference segment; NR: The total

rotation number; T : The threshold; Tl: The lower bound
of T to trigger the sequence rotation

Output: O: The final matching result
if T < Tl then

2: Let O ← ED*(S, R) ≤ T ;
else

4: for i from 0 to NR do
Let Ri ← Rotate(R, i); // Rotate left (right) i bases

6: Let O ← O or ED*(S, Ri) ≤ T ;
end for

8: end if

Overhead: TASR requires additional shift registers with
enable signals in · of Fig. 4, but the average area overhead
per cell is only 0.2%. Besides, the rotation-and-comparison
process also induces NR more cycles. With the Tl limitation,
the average latency overhead can be significantly reduced.

V. EXPERIMENTS AND DISCUSSION
A. Experimental Setup

Genome Sequence Analysis: The datasets used in the
experiments are the human genome from NCBI [22]. In this
paper, we mainly focus on short reads considering the capacity
and the sensing ability of the ML-CAMs. The reads are set
to 256-base length within the typical range of the read length
(∼50-500 bps [21]), and extracted from random positions in
human DNA sequences. Then, edits are randomly injected,
which creates metagenomic datasets with the following two
kinds of mixed error rates for edits considering the typical
error range of the short reads (∼0.1%-1%) [21]:

• Condition A: es = 1% and ei = ed = 0.05%;
• Condition B: es = 0.1% ei = ed = 0.5%;
Each 256-base-long read in the metagenomic datasets is

directly sent to the EDAM and ASMCap arrays without frag-
mentation. The references extracted from the human genome
are segmented and stored in the EDAM and ASMCap arrays.

To compare the accuracy, we evaluate the F1 score as
EDAM, and the F1 score is calculated by:

Sensitivity =
TP

TP + FN
,Precision =

TP

TP + FP
(3)

F1 =
2× Sensitivity × Precision
Sensitivity + Precision

(4)

where the TP is True Positive that the matching result is
‘match’ and it indeed should be ‘match’. Besides, as EDAM,
we use the popular tool Kraken2 [23] as a baseline and the
normalized F1 score is normalized by F1(Kraken2).

TABLE I
CIRCUIT-LEVEL COMPARISON BETWEEN ASMCAP AND EDAM

EDAM [18] ASMCap

ML-CAM Mode Current domain Charge domain
Technology 65nm 65nm
Cell Area 33.4µm2 (1.4x) 24.0µm2 (1x)

Supply voltage 1.2V 1.2V
Search time 2.4ns (2.6x) 0.9ns (1x)

Average Power per cell1 1.0µW (8.5x) 0.12µW (1x)
1 The average power under two conditions.

EDAM and ASMCap Configurations: ASMCap is de-
signed in a commercial 65nm CMOS process, and 2fF MIM
capacitors are used in ASMCap cells. The search voltage, the
array size, and the array number of EDAM and ASMCap
are both set to 1.2V, 256×256, and 512, respectively. For the
proposed two strategies of ASMCap, α and β are set to 200
and 0.5 in HDAC, respectively, and NR and γ are set to 2 and
2× 10−4 in TASR, respectively.

Other ASM Solutions: We compare ASMCap with other
state-of-the-art ASM solutions mentioned in Section II-B,
including the CM computation using i9-10980XE CPU (CM-
CPU) as the baseline and the CM computation using RRAM-
based PIM accelerators (ReSMA [9]) and the seed-and-vote
strategy using TCAM (SaVI [14]). All these ASM solutions
also process 256-base-long reads for a fair comparison.
B. Area and Power Breakdown of ASMCap

For a 256×256 ASMCap array, the area and power are
1.58mm2, and 7.67mW, respectively. For area, more than 99%
of the area is occupied by the ASMCap cells. For power, the
ASMCap cells, the shift registers, and SAs occupy 75%, 19%,
and 6% of power, respectively.

C. Circuit-Level Comparison with EDAM
We evaluate the circuit-level simulations using Cadence

Virtuoso, and Table I lists the circuit-level comparison between
ASMCap and EDAM. Results show that ASMCap achieves
1.4x cell area reduction, 2.6x less search time, and 8.5x power
reduction compared with EDAM.

Through layout estimation, the area reduction results from
both the reduced transistors for the discharge process in
EDAM and layout optimizations. Although the area of a 65nm
2fF MIM capacitor is about 1.4µm2 [17], the capacitors can
be placed on top of the cell, which induces no area penalty
considering the large cell area.

The less search time is from the skipped pre-charge oper-
ation and the sampling operation in EDAM, as analyzed in
Section III. Besides, the smaller parasitic effect due to the
smaller area also helps ASMCap reduce the search time. The
power reduction is mainly from the charge-domain computa-
tion mode, as analyzed in Section III.
D. Accuracy Comparison with EDAM

To perform the accuracy comparison, Monte Carlo simu-
lations are carried out for both ASMCap and EDAM. The
estimated current variation in EDAM is 2.5%, supporting at
most 44 distinguishable states under the 3σ constraint for
VML. Meanwhile, the capacitor variation in ASMCap is only
1.4%. Combined with Equation 2, ASMCap can support 566
distinguishable states even with the worst case.
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Fig. 7. Accuracy (F1) comparison between ASMCap with the proposed
strategies and EDAM. H. and T. represent HDAC and TASR, respectively.

In this way, as shown in Fig. 7, ASMCap without the HDAC
and TASR strategies achieves an average of 1.13x and 1.11x
higher F1 in Condition A and B, respectively (1.12x higher
F1 on average). Furthermore, the proposed HDAC strategy
achieves an average of 1.07x further higher F1 in Condition
A, and the proposed TASR strategy achieves an average of
1.08x further higher F1 in Condition B. Therefore, ASMCap
with the HDAC and TASR strategies achieves an average of
1.2x higher F1 (from 74.7% to 87.6%), and up to 1.8x higher
F1 (from 46.3% to 81.2%) when T=1 in Condition A. Finally,
compared with Kraken [23] with exact matching, ASMCap can
achieve an average of 4.5x and 7.7x higher F1 in Condition
A and B, respectively (6.6x higher F1 on average).
E. Comparison with Existing ASM Accelerators

To evaluate the system-level performance and energy effi-
ciency, 512 ASMCap arrays are utilized with 64Mb memory
capacity, which can entirely store some small virus sequences
(e.g., SARS-CoV-2 in coronavirus pandemic [18]). As shown
in Fig. 8, without the proposed HDAC and TASR strategies,
ASMCap achieves an average of 9.7e4x, 362x, 126x and 2.8x
speedup and an average of 5.1e6x, 2.3e4x, 2.4e3x and 28x
energy efficiency compared with CM-CPU, ReSMA, SaVI,
and EDAM, respectively. Considering the average effect of the
proposed HDAC and TASR strategies, ASMCap achieves an
average of 4.7e4x, 174x, 61x and 1.4x speedup and an average
of 2.0e6x, 8.7e3x, 943x and 10.8x energy efficiency compared
with CM-CPU, ReSMA, SaVI, and EDAM, respectively.

For accuracy, the CM computation can reach 100% accu-
racy, while the seed-and-vote strategy achieves about 93.8%
accuracy on average [11]. Therefore, with ultra-high through-
put and energy efficiency with comparable accuracy, ASMCap
is more suitable for the task-intensive but accuracy-insensitive
scenarios such as fast testing.

VI. CONCLUSION

This paper proposes ASMCap, an ASM acceleration ap-
proach based on capacitive ML-CAMs that achieves the high-
est reported energy efficiency. Compared with prior ML-CAM
based accelerators, the charge-domain computation of ASM-
Cap improves the accuracy and power efficiency. ASMCap
also embodies two hardware-friendly strategies, i.e., HDAC
and TASR, to overcome the accuracy loss challenge in prior
state-of-the-art approximate matching methods with negligible
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Fig. 8. Speedup and energy efficiency comparison between ASMCap and
existing ASM accelerators. H. and T. represent HDAC and TASR, respectively.

area cost. Results show that ASMCap outperforms the prior
state-of-the-art ASM accelerators in both energy efficiency and
speed with comparable accuracy.
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