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Abstract—Autonomous systems, such as Unmanned Aerial
Vehicles (UAVs), are expected to run complex reinforcement
learning (RL) models to execute fully autonomous position-
navigation-time tasks within stringent onboard weight and power
constraints. We observe that reducing onboard operating voltage
can benefit the energy efficiency of both the computation and
flight mission, however, it can also result in on-chip bit failures
that are detrimental to mission safety and performance. To this
end, we propose BERRY, a robust learning framework to improve
bit error robustness and energy efficiency for RL-enabled au-
tonomous systems. BERRY supports robust learning, both offline
and on-board the UAV, and for the first time, demonstrates the
practicality of robust low-voltage operation on UAVs that leads to
high energy savings in both compute-level operation and system-
level quality-of-flight. We perform extensive experiments on 72
autonomous navigation scenarios and demonstrate that BERRY
generalizes well across environments, UAVs, autonomy policies,
operating voltages and fault patterns, and consistently improves
robustness, efficiency and mission performance, achieving up to
15.62% reduction in flight energy, 18.51% increase in the number
of successful missions, and 3.43× processing energy reduction.

I. INTRODUCTION

Autonomous systems are becoming prevalent for Position-
Navigation-Timing (PNT) applications. To achieve fully au-
tonomous PNT, state-of-the-art unmanned aerial vehicles
(UAVs) are expected to run complex reinforcement learning
(RL) models on-board with little-to-no offloading computation
support [1]–[3]. However, these safety-critical UAVs usually
have Size, Weight, and Power (SWaP) constraints, hence it
becomes imperative to deliver energy-efficient computation
without compromising on robustness and safety [4], [5]. To
satisfy these constraints, processors on-board the UAV are
usually designed with techniques proposed for energy-efficient
AI accelerators, such as quantization [6], specialized compute
units, and optimized dataflows [7], [8].

In contrast to other embedded and mobile applications,
the processing power is only a small fraction of the total
UAV power, with the majority being used for flight motion.
However, a small reduction in processing power would enable
it to be re-targeted towards increasing the flight speed, thus
resulting in significant energy savings on account of reduced
flight time [9], [10]. Given the quadratic relation between
energy and operating voltage, lowering the supply voltage of
the onboard processor is a powerful means of energy-efficient
computing within prescribed SWaP budgets.
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Fig. 1: Relation between supply voltage, payload weight, velocity,
flight time, flight energy and the number of missions observed in DJI
Tello UAV. (1) Lowering the supply voltage of the onboard processing
unit helps reduce peak temperature, and correspondingly, the heatsink
weight. (2) A reduced payload can significantly improve acceleration
and velocity, thus (3) reducing flight time and energy, (4) making the
UAV complete more missions on a single battery charge.

Fig. 1 shows the relationship between factors affecting UAV
navigation. Scaling the processor supply voltage reduces its
peak temperature, which would then reduce the required size
and weight of the heatsink. This reduction in the payload
translates to a further reduction in overall flight time and
energy. A further advantage is that voltage scaling methods
are complementary to and can be applied in conjunction with
other energy-saving techniques described above.

However, scaling down the voltage towards near-threshold
ranges can have adverse implications on the overall reliability
of the UAV. Operating below rated voltage ranges can result
in memory bit errors [11]–[16] and logic timing errors [17].
While [11], [13] incur overheads of error detection and
mitigation through circuit-microarchitecture methods, other
works present methods to generate DNN inference models that
are robust to bit errors using error-aware training [18]–[20].
Although modern-day processors are equipped with RAS-
enhancing features such as parity, ECC and redundancy, they
are primarily targeted toward mitigating transient errors and
are ineffective against low-voltage induced errors.

In this paper, we propose BERRY, a robust reinforcement
learning framework for autonomous systems. BERRY applies
error-aware training to optimize system robustness, thus boost-
ing the processing efficiency and improving mission-level per-
formance under low operating voltage. BERRY supports both
offline and on-device learning paradigms to enable robust and
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efficient low-voltage operation. BERRY generalizes across
devices and voltages, and improves robustness and mission
performance across UAVs, environments, models, and tasks.

This paper, therefore, makes the following contributions:
• We systematically analyze the impact of lowering pro-

cessor voltage on autonomous systems, and determine
the relation between voltage, robustness, and mission
performance.

• We propose BERRY, a robust learning framework for
RL-based autonomous systems, with both offline and on-
device learning support. This is the first work to focus
on robust learning for low-voltage operation on UAVs,
achieving high task robustness, processing efficiency, and
mission performance.

• We evaluate BERRY on 72 UAV deployment scenar-
ios and show that BERRY generalizes across UAVs,
environments, voltages, and bit error patterns. BERRY
achieves up to 15.62% energy savings, 18.51% increase
in successful missions with 3.43× processing energy
reduction on navigation.

II. BACKGROUND AND RELATED WORK

A. Reinforcement Learning (RL)-Based Autonomous Systems

In RL-based autonomous systems, the agent learns a policy
by interacting with the environment to achieve defined goals.
The learning procedure is modeled by a Markov Decision
Process (MDP) as M = (S,A,P,R, γ), where S is the
state space, A is the action space, P : S × A → S is
the MDP transition probabilities, R : S × A → R is the
reward. At each interaction i, the agent observes the tuple
Di = (si, ai, si+1, ri), where si, si+1 ∈ S is the current
and next state, ai ∈ A is the action taken at step i, and
ri = R(si, ai) is the obtained reward.

We aim to learn an optimal policy π∗ given the observed Di

that can maximize the reward, i.e., π∗(s) = argmaxa Q
∗(s, a),

with the function Q∗ : S ×A → R. We use Q-learning where
the Bellman backup operator is used to update the Q function:

Qπ (si, ai)←
[
R(si, ai) + γmax

a′
Qπ (si+1, a

′)
]

(1)

The above policy converges to an optimal π∗ (deterministic)
under the Bellman backup operator. We use Deep Q-Network
(DQN) approximation fθ: S → A to estimate the Q function
parameterized by weights θ. This neural network learns an
updated mapping from s → Q(s, ·) using back-propagation
by minimizing the loss between the predicted and Bellman
updated target Q-values (Eq. 1). Prior works have proved that
DQN performs well in UAV autonomous systems [1], [2].

B. Low-Voltage Induced Bit Errors

Lowering operating voltages towards near-threshold ranges
exacerbates bit cell variations. This manifests as an exponential
increase in bit errors, affecting accelerator memories in which
weights are stored and updated. Fig. 2 shows this relationship
for an exemplary 14nm FinFET SRAM chip fabricated in [13]
and a sample spatial distribution of bit errors in a segment
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Fig. 2: Low-Voltage Operation, Energy and Bit Errors. SRAM bit
error rate increases and access energy drops with decreasing supply
voltage for a 14nm FinFET SRAM chip fabricated in [13]. The
voltage (x-axis) is normalized to Vmin, the lowest measured voltage
at which there are no bit errors. Reproduced on the right is a random
spatial error pattern in a cross-section of the memory array from [13],
[19].

of the tested memory arrays. At a given voltage, these bit
flips are persistent across multiple reads and write to the same
location. The locations are random and independent of each
other across different chips and arrays [12], [18], [19]. It needs
to be noted that these are not transient errors, so computational
redundancy in space and time cannot mitigate them. Similarly,
standard ECC may not correct all observed errors since there
could be multiple faulty bits per memory word.

C. Bit Error-Aware Training

Rather than incurring the cost of hardware-based error
mitigation [11], [13], [21], some works [14], [18], [19] ad-
vocate improving robustness by generating a model resilient
to bit errors. Profiled bit errors are injected during offline
training on error-free hardware, resulting in a robust model
during inference on low-voltage devices. BERRY proposes
the generation of robust models but tackles entirely different
challenges: (i) BERRY targets learning (both offline and
on-device) as opposed to inference, meaning that learning
can occur on low-voltage devices with bit errors affecting
parameters. (ii) Prior works are restricted to supervised object
classification while BERRY focuses on reinforcement learn-
ing, leading to a new error-aware training framework. (iii)
BERRY tackles the complex relationship between low-voltage
operation and cyber-physical autonomous systems aiming to
improve both compute-level and system-level efficiency while
ensuring robustness.

D. Resilience Characterization in UAVs

Several prior works have attempted to characterize the
resilience of applications running on-board UAVs. [22]–[24]
analyze the transient error impact on the resilience of learning-
based and control-based UAV navigation systems. [25], [26]
characterize the reliability and robustness of RL algorithms in
terms of their inter-run variability, while [27] proposes tech-
niques to train robust RL models in the presence of adversarial
perturbations and interferences. In contrast, BERRY tackles
the problem of bit errors due to low voltages while running
RL models on UAVs, and supports both offline and on-device
robust learning to mitigate fault effects.
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Fig. 3: Robustness to Bit Errors and Flight Energy Savings. Low-
voltage-induced bit errors degrade flight success rate, while BERRY
improves robustness significantly. Robustness to higher bit error rates
allows more energy-efficient operation (Fig. 2). Compute correlates
with physics in UAV (Fig. 1), and the robust operation brings 15.62%
flight energy savings and 18.51% more missions for navigation tasks.

III. LOW VOLTAGE FAULT IMPACT CHARACTERIZATION

This section explores how low-voltage operation and its in-
duced bit errors impact the robustness, efficiency, and mission
performance of autonomous navigation systems.

We evaluate the impact of low-voltage operation on an
example autonomous system where the UAV aims to navigate
from the start position to the goal position in the shortest
time without colliding into obstacles (Sec. V-A). Task success
rate, processing energy, and quality-of-flight (flight time, flight
energy, endurance) are evaluated during the mission.

Task success rate: As in Fig. 3, we observe that the low-
voltage induced bit errors greatly degrade autonomous system
robustness. The increasing number of bit errors gradually
pollutes error-free learned policy and results in the UAV
taking the wrong actions to collide with obstacles. The task
success rate drops to <85% when bit error rate p > 0.01%
(∼0.8Vmin).

Flight time: The corrupted flight actions due to bit errors
can directly lead to path detours, resulting in longer trajectory
distance and extended flight time for a given task.

Flight energy: The increased flight time consequently in-
creases total flight energy despite processing energy savings
from low-voltage operation (Fig. 3). This is because ∼95%
flight energy is consumed by rotors that closely correlate with
the flight time.

Endurance: The increased single-mission flight energy and
duration further reduces the total number of missions that the
UAV can successfully complete on a single charge before its
battery depletes.

To achieve the robustness of an autonomous system under
low voltages and improve its processing efficiency and quality-
of-flight, we propose BERRY, using principles of error-aware
training. Fig. 3 highlights the key results of BERRY on the
same UAV navigation system: with a drop in success rate
of <1%, 3.43× processing energy savings, 15.62% single-
mission flight energy savings, and 18.51% more number of
missions are achieved (compared with normal 1V operation),
with simply lowering supply voltage to 0.77Vmin.
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Fig. 4: BERRY with Offline and On-Device Robust Learning
Modes. BERRY offline learning with random bit-flips yields general-
izable robustness and quality-of-flight improvements across voltages
and chips. BERRY on-device learning with specific error patterns
enables even lower voltage with higher robustness and efficiency.

IV. BERRY ROBUST LEARNING FRAMEWORK

This section presents BERRY robust reinforcement learning
framework, supporting both offline and on-device learning
paradigms for robustness and efficiency improvements (Fig. 4).
For systems without on-device learning capabilities, BERRY
conducts learning offline with injected bit-flips at nominal
voltage, and then deploys the robust policy on low-voltage
SWaP-constrained UAV systems. For systems with on-device
learning capabilities [1], BERRY enables the UAV to learn
a robust policy directly on the low-voltage device incurring
errors, and then perform the navigation task on the same
hardware. Combining learning and navigation on the same
device ensures improved success rates and higher flight energy
savings tailored to the specific chip. In both cases, we perform
a round of offline learning with injected bit errors, which
provides generalized robustness across devices.

Algo. 1 describes the main component of BERRY, the
robust learning methodology for RL-based autonomous sys-
tems. The objective is to learn a robust state action-value
function of policy Q(θ). In standard Deep-Q-Learning, an
evaluation network predicts the Q-value at each step, and
the target network computes the Bellman temporal difference
(Eq. 1), with both having the same architectures. Lines 2-3
initialize both these networks. For each step t of an episode,
a minibatch of state-action-reward inputs is chosen from the
experience replay buffer (line 10), and the evaluation and target
networks compute the predicted Q-value and the temporal
difference target yj (line 12), respectively. The loss function is
the expected squared difference between the two, and gradient
∆(t) with respect to parameters θ is computed (line 13). While
the Q function network parameters θ are updated every step,
the target network parameters θ− are updated every C steps
to keep the training stable by copying over θ to θ− (line 21).

Fault injection: In BERRY, both the Q-function and target
networks are injected with bit errors. A random distribution of
bit error locations is generated using Voltage-BER curves from
existing memory characterization (Sec. II-B). Bit flips from 1-
to-0 and 0-to-1 are both injected at a given voltage/bit error
rate, affecting both weights and activations that are stored in
the on-chip SRAM. Line 15 refers to error injection following
per-layer 8-bit quantization with rounding in θ and θ−, to
obtain perturbed θ̃ and θ̃−, respectively.



Algorithm 1 BERRY Robust Error-Aware Training Frame-
work for Reinforcement Learning-Based Autonomous Systems

1: procedure BERRY(p)
2: Initialize action-value function Q with weight θ
3: Initialize target action-value function Q̂ with weight θ− = θ
4: for episode e = 1 to E do
5: for time step t = 1 to T do
6: Given state st, take action at based on Q (ϵ-greedy)
7: Obtain reward rt and reach new state st+1

8: Store transition (st, at, rt, st+1) in D
9: // Experience replay

10: Sample a mini-batch {(sj , aj , rj , sj+1)}Bb=1 from D
11: // Clean training pass
12: Set yj = rj + γmaxa′ Q(sj+1, a

′; θ−(t))
13: ∆(t) = ∇θ

∑B
b=1(Q(sj , aj ; θ

(t))− yj)
2

14: // Perturbed training pass, inject bit errors at rate p
15: θ̃(t) = BErrp(θ

(t))
16: Set ỹj = (rj + γmaxa′ Q(sj+1, a

′; θ̃−(t)))
17: ∆̃(t) = ∇θ

∑B
b=1(Q(sj , aj ; θ̃

(t))− ỹj)
2

18: // Average gradients and update w.r.t θ
19: θ(t+1) = θ(t) − α(∆(t) + ∆̃(t))
20: // Periodic update of target network
21: Every C steps reset Q̂ = Q, i.e., set θ− = θ

22: Output: Bit-error robust action-value function Q(θ)

Gradient update: Q and yj are computed with perturbed
parameters θ̃ and θ̃− (line 16). The new loss, termed perturbed
loss, is computed along with the gradient ∆̃(t) (line 17).
Robust learning in BERRY is designed to work in both error-
free and faulty hardware with voltage scaling without having
to retrain the model. Therefore, the parameter update (line 19)
uses an average of the perturbed and unperturbed gradients in
stochastic gradient descent.

V. BERRY EVALUATION

This section evaluates BERRY on UAV autonomous nav-
igation systems with 72 different scenarios. We demonstrate
that BERRY consistently improves task robustness, process-
ing and mission-level efficiency for both offline and on-device
learning, and generalize well across various environments,
UAVs, models, and error patterns measured from real chips.

A. Experimental Setup

Simulation Platform. We use open-source UAV simulation
infrastructures [1], [2] to evaluate BERRY framework. The
infrastructure is powered by Unreal Engine to simulate the
environments, AirSim to capture UAV’s dynamics and kine-
matics, and RL algorithms to generate flight commands in real
time.

Task and Policy Model. We adopt the autonomous naviga-
tion task (e.g., package delivery), where the UAV is initialized
at a start location and navigates across the environment to
reach the destination without colliding with obstacles. We
use a perception-based probabilistic action space A with 25
actions, and C3F2 neural network policy [22] with 1.1MB
parameters. We assume the underlying systolic array-based
architecture with on-chip SRAM, and integrate the SCALE-
Sim [28] and Accelergy [29] simulators with our energy plugin
(Fig. 2) to evaluate processing performance and energy. Along

TABLE I: Robustness Improvement. Average success rates under
various bit error rates p. BERRY improves autonomous navigation
task robustness under bit failures compared to classical RL policy.

Autonomy
Schemes

Error-Free
SuccRate (%)

Bit-Error SuccRate (%)
p=0.01% p=0.05% p=0.1% p=0.5% p=1%

Classical 88.4 84.0 78.2 69.2 48.6 33
BERRY 88.8 88.6 86.6 84.4 79.2 74.8

with voltage, we also scale the frequency based on measured
results on a deep-learning accelerator reported in [30].

UAV platforms. We use a Crazyflie nano UAV [31], with
27g takeoff weight, 15g max payload, 250mAh battery ca-
pacity, and 7min max flight time. In Sec. V-D, we configure
another micro UAV DJI Tello [32] with 80g takeoff weight,
1100mAh battery and 13min max flight time for evaluation.

Evaluation Metrics. We evaluate both compute-level effi-
ciency (processing energy) and mission-level metrics (success
rate, flight time, flight energy, number of missions). Success
rate is the percentage of successful trials, flight time and flight
energy are the single-mission time and energy that are required
for UAV to reach its goal, and the number of missions denotes
the total missions that the UAV can complete on a battery
charge. For each case, we evaluate 500 different fault maps
and report the average quantity for all metrics.

B. Robustness and Efficiency Improvements

Robustness Improvement. Tab. I shows the navigation task
success rate with different bit error rates p under different
voltages (Fig. 2). Both classical DQN training policy and
BERRY can reach >88% success rate in error-free missions.
However, on lowering supply voltage, the classical trained
policy is vulnerable to induced bit failures, while BERRY can
still achieve ∼80% success rate under p = 0.5% (∼0.72Vmin).
The success rate is comparable to other reported autonomous
navigation task success rates for similar difficulty levels [2].

Processing Efficiency Improvement and System Impli-
cation. Lower voltage brings quadratic energy-saving benefits.
As in Tab. II, compared with 1V normal operation [33], lower-
ing voltage to 0.77Vmin achieves 3.43× energy efficiency. As
validated on real UAVs, the processing efficiency improvement
further brings benefits to the cyber-physical UAV system [34],
[35]. The lower energy with lower TDP (thermal design
power) requires a smaller heatsink with its reduced weight [36]
(Fig. 6a), which then yields increased motion acceleration
(Fig. 6b). With higher acceleration, the UAV becomes more
agile when facing obstacles and can have higher safe flight
velocity [34], [35] (Fig. 6c). When we lower the voltage from
1.28Vmin to 0.79Vmin, the operating energy reduces 2.67×,
with the required heatsink weight reducing from 3.26g to
1.22g, making the UAV achieve higher acceleration (6.37m/s2

to 7.56m/s2) and safe flight velocity (4.91m/s to 5.43m/s),
further benefiting autonomous system mission-level efficiency.

Mission Efficiency Improvement. Tab. II shows the au-
tonomous system mission-level performance (i.e., flight dis-
tance, time, energy, and the number of missions) with BERRY
under low voltages. The improved robustness benefits the
mission success rate maintained at ∼88% and the path distance



TABLE II: Operating and System Efficiency Improvement. Operating energy, task success rate, and system-level quality-of-flight under
low voltages. BERRY improves operating energy efficiency due to quadratic effect of lowering voltage. BERRY improves system mission-
level efficiency with reduced flight time, flight energy and more number of missions owning to low-voltage operation and improved robustness.

Low-Voltage Operation Processing Robustness Autonomous System Mission-Level Quality-of-Flight
Voltage

(V)
Bit Error

Rate p (%)
Energy

Savings (%)
Success

Rate (%)
Flight

Distance (m)
Flight

Time (s)
Flight Energy
Eflight (J)

Eflight

Savings
Num. of Missions

Nmission

Nmission

Improvements
1 0 - 88.4 14.89 6.81 53.19 - 55.35 -

0.86Vmin 1.96×10−6 2.77× 88.0 14.93 6.51 47.23 -11.21% 62.05 +12.12%
0.84Vmin 1.38×10−5 2.87× 89.2 14.86 6.48 46.66 -12.28% 63.66 +15.03%
0.83Vmin 8.23×10−5 2.97× 89.0 14.91 6.46 46.41 -12.73% 63.85 +15.37%
0.81Vmin 4.22×10−4 3.07× 88.8 14.96 6.45 46.22 -13.11% 63.98 +15.61%
0.80Vmin 1.87×10−3 3.18× 88.6 14.94 6.42 45.80 -13.90% 64.42 +16.40%
0.79Vmin 7.25×10−3 3.30× 88.6 14.94 6.39 45.38 -14.67% 65.01 +17.46%
0.77Vmin 2.47×10−2 3.43× 88.4 14.91 6.35 44.88 -15.62% 65.59 +18.51%
0.76Vmin 7.49×10−2 3.55× 86.2 15.71 6.67 46.90 -11.82% 61.20 +10.58%
0.74Vmin 2.03×10−1 3.69× 83.4 16.58 7.03 49.14 -7.61% 56.52 +2.12%
0.73Vmin 4.98×10−1 3.84× 79.0 18.03 7.61 52.98 -0.39% 49.66 -10.27%
0.71Vmin 1.11 3.99× 74.4 19.46 8.18 56.62 -6.45% 43.75 -20.95%
0.68Vmin 5.80 4.42× 63.2 21.84 9.09 61.96 +16.49% 33.96 -38.64%
0.64Vmin 20.36 4.93× 50.4 24.52 10.11 67.83 +27.53% 24.74 -55.30%
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Fig. 5: Effectiveness across Different Environments. BERRY is evaluated in three environments with different obstacle densities. BERRY
consistently improves task robustness and mission efficiency (reduced single-mission flight energy and increased number of missions). BERRY
is adaptive to various environments, and enables lower-voltage operations in sparse (0.76Vmin) than complex environments (0.80Vmin).
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Fig. 6: Low Operating Voltage Brings System Benefits. (a) Lower
operating voltage → lower energy and thermal design power (TDP)
→ require smaller heatsink size with reduced weight. (b) Lower
payload weight → higher motion acceleration. (c) Higher acceleration
→ more agile when facing obstacle → higher safe flight velocity.
With higher velocity, the UAV can finish a mission faster (lower
flight time), thus consuming less flight energy for a single mission.
This enables more missions under a single battery charge.

at ∼15m under 0.77Vmin. The flight distance then increases
due to path detours induced by sub-optimal actions. The flight
time drops to 6.35s when lowering voltage to 0.77Vmin due
to higher flight velocity (Fig. 6) for the same flight distance.
Similarly, the flight energy reduces from 53.19J to 44.88J
owing to the shortened flight time and the reduced power. The
number of completed missions (N ) under a battery charge (E)
closely correlates to the success rate (SR) and single-mission

energy (E
′
) as N = SR × E/E

′
. The number of missions

increases from 55 to 65 owing to the reduced flight energy and
increased success rate. Overall, BERRY enables lower voltage
operation for robust and efficient autonomous systems. At
0.77Vmin with 0.025% p, BERRY achieves 15.62% (10.95%)
less flight energy, 18.51% (11.99%) more missions with 3.43×
(2.04×) operating energy savings compared to 1V (Vmin).

C. Environment Evaluation

Effectiveness across Different Environments. Fig. 5 eval-
uates BERRY on three environments with different obstacle
densities, namely sparse (outdoor), medium (indoor) and dense
(indoor) obstacle environments. Compared with classical DQN
policy, it is well observed that BERRY improves the success
rate and mission efficiency, with 3.55×, 3.43×, 3.18× operat-
ing energy savings, 15.6%, 15.6%, 14.0% single-mission flight
energy reduction, and 17.9%, 18.6%, 17.0% more number of
missions for sparse, medium, dense obstacle environments,
respectively (numbers underlined in Fig. 5). Compared within
three environments, BERRY enables lower operating voltage
in sparse obstacle (0.76Vmin) than dense obstacle (0.80Vmin),
this is because a more challenging environment brings more
complex trajectories for UAVs to follow, which is more critical
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Fig. 7: Effectiveness across Different UAVs and Models. BERRY
is evaluated on two UAVs and two models (top: DJI Tello with C3F2),
and consistently improves robustness and efficiency. Higher process-
ing power ratio makes BERRY bring more mission improvements.

TABLE III: Effectiveness across Different Profiled Bit Errors.
BERRY is evaluated on different profiled chips including column-
aligned error distributions. BERRY generalizes well across chips and
voltages, with robustness and efficiency improvements.

Chips and Error Rates p (%) SuccRate SR (%) Flight Energy E (J)
Chip 1 (random pattern) p=0.16 p=0.74 p=0.16 p=0.74
BERRY p=0.5 SR=84.0 SR=77.2 E=48.46 E=54.63
Chip 2 (column-aligned) p=0.067 p=0.32 p=0.067 p=0.32
BERRY p=0.5 SR=86.0 SR=81.8 E=46.98 E=51.27
Baseline p=0 @1V SR=88.4 E=53.19

to bit errors. BERRY is adaptive across environments and con-
sistently achieves improved robustness and system efficiency.

D. UAV Platform and Policy Architecture Evaluation

Effectiveness across UAV Platforms. In Fig. 7, we evaluate
BERRY on another UAV platform, DJI Tello (Sec. V-A), with
the same C3F2 autonomy policy. DJI Tello has a larger frame
size and takeoff weight than Crazyflie, thus the rotor power
accounts for a higher ratio of total power (97.2%). Even with a
smaller compute power ratio (2.8%), BERRY still consistently
improves success rate under various low voltage levels, and
achieves 9.91% lower flight energy and 9.96% more missions
at 0.77Vmin with 3.43× processing efficiency.

Effectiveness across Model Architecture. In Fig. 7, we
also evaluate BERRY on another autonomy policy architec-
ture C5F4 (5 Conv and 4 FC layers) on DJI Tello UAV. C5F4
architecture has 1.98× parameters than C3F2 and accounts for
4.1% of total power. BERRY saves up to 13.12% flight energy
usage and increases the number of missions by 14.38%. Higher
compute power attributes enable BERRY to bring more
system-level benefits, and BERRY consistently improves task
robustness and efficiency across various UAVs and models.

E. Bit Error Pattern Evaluation

Effectiveness across Profiled Bit Errors. In Tab. III, we
evaluate BERRY on two different profiled bit error patterns
from test chips in [13], [19] (Fig. 2), one showing a random
spatial error pattern and another showing a column-aligned
pattern with a bias towards 0-to-1 flips. BERRY generalizes

TABLE IV: On-Device Error-Aware Robust Learning. Learning
the bit errors directly on low-voltage device enables lower operating
voltage and improved robustness, resulting in more flight energy sav-
ings, while with the cost of on-the-fly learning energy consumption.

Low-Voltage Operation Operating
Efficiency

Robustness Quality-of-Flight

Num. of
Learning Steps

Operating
Voltage

Learning
Energy (J)

Energy
Savings

Success
Rate (%)

Flight
Energy (J)

Num. of
Missions*

On-Device
BERRY

4000
0.77Vmin 1849 3.43× 84.6 264.2 48.19
0.70Vmin 1807 4.16× 82.4 266.5 46.52

6000
0.77Vmin 2775 3.43× 85.0 260.9 49.03
0.70Vmin 2711 4.16× 84.8 255.1 50.01

Offline
BERRY

0.77Vmin - 3.43× 84.4 265.5 47.84
0.70Vmin - 4.16× 63.8 375.6 25.56

Baseline 1V - 1× 85.2 294.7 43.50
* Does not include on-device learning flight energy, evaluated for missions after learning.

well to both lower and higher bit error rates than trained on,
showing robustness and mission efficiency improvements.

F. On-Device Error-Aware Robust Learning

Effectiveness of On-Device Robust Learning at Lower
Voltage and Better Quality-of-Flight. On-device fine-tuning
is needed in some scenarios for UAV adapting to environ-
ments [1]. BERRY framework supports on-device robust
learning where the UAV can learn the bit errors directly at low-
voltage chips (Sec. IV). While on-device learning consumes
on-the-fly energy, compared to offline BERRY, the UAV can
enable lower operating voltage and improved robustness due to
the same fault pattern in learning and inference. The achieved
lower voltage can save more flight energy usage for further
tasks. As in Tab. IV, with 6k on-device training steps, the
Tello UAV achieves robust fly under 0.70Vmin, resulting in
13.41% less flight energy with 4.16× less operating energy
than 1V operation, and 3.89% less flight energy than offline
BERRY. Since not all UAVs support on-device training, with
the inherent tradeoff between learning-consumed energy and
model efficiency, BERRY framework provides the flexibility
for offline or on-device robust learning based on scenarios.

VI. CONCLUSION

BERRY is a promising robust learning framework unlock-
ing practical low-voltage operation advantages on RL-enabled
autonomous systems. BERRY relies on the systematic discov-
ery of relationship between voltage and mission performance,
and supports both offline and on-device error-aware learning.
We have demonstrated that BERRY consistently improves
task robustness, operating efficiency, and mission performance
and achieves up to 15.62% energy savings, 18.51% increase in
successful missions with 3.43× processing energy reduction
across environments, UAVs, and autonomy policies. We antic-
ipate BERRY framework being useful in exploring robust and
efficient low-voltage operations in other autonomous systems.
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