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An Edge-preserving, Data-dependent Triangulation Scheme for Hierarchical
Rendering

James C. “Fritz" Bames', Bernd Hamann'+, and Kenneth L. Joy!

Center for Image Processing and Integrated Computing (CIPIC)
Department of Computer Science
University of California, Davis

Abstract

In many applications one is concerned with the approx-
imation of functions from a finite set of given data sites
with associated function values. We describe a construc-
tion of a hierarchy of tnangulations which approximare the
given data at varying levels of detail. Intermediate trian-
pulations can be associated with a particular level of the
hierarchy by considering their approximation errors. Thix
paper presents a new data-dependent triangulation scheme
for multi-valued scattered data in the plane. We perform
plecewise limear approximaiion based on dofa-dependent
tricngulations. Our scheme preserves edges (discontinu-
ities) that might exist in a given data zet by placing ver-
tices close to edges. We start with a coarse, data-dependent
triangulation of the convex hull of the given data sites and
subdivide triangles until the error of the piecewise linear
approximation implied by a triangulation is smaller than
some tolerance.

1 Introduction

We present an algorithm for the approximation of bivari-
ate scattered data based on a data-dependent triangulation
scheme., Considering approximation error, a inangulation
can be associsted with a particular level in an approxima-
tion hierarchy. Our iterative algorithm refines an imitial,
coarse triangulation of a subset of the given data sites” by
subdividing triangles. The subdivision process produces a
sequence of piecewise linear functions which improve the
approximation to the given scattered data with each subdi-
vision. The method can be applied 1o general mult-valued
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Figure 1. Triangle mesh approximating given
scattered data

scattered data, fe., one can use it for the approximation of
color images or veclor fields. We assume that a vector of
m function values £; = (i1, ... fi.m) are given at random
locanons x; = (%, %)t = 1,...,n. This is illustrated in
Figure 1.

Duir algorithim is based on subdividing triangles based on
approximation ermor. We start with an initial, coarse trian-
gulation whose convex hull coincides with the convex hull
of all original data sites. Triangles are split into two, three,
or Tour subiriangles, depending on which split leads o the
{locally ) best approximation. Since the process of subdivid-
ing triangles is based on inserting new vertices along tran-
gle edges, vertices of an intermediate triangulation do not
generally coincide with original data sites.

We use the differences between function valoes at the
onginal data sites and the function values implied by a
particular riangulation, i.e., its associated plecewise linear
function, as an error measore. Subdivision terminates when
the error associated with the entire triangulation is smaller
than a specified tolerance. Usually, one uses the term data-
dependent in the context of mangulations when it is the
goal to approximate some function well by a piecewise lin-
ear function. Thus, o achieve a good approximation, tn-
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Figure 2. A multiresolution pyramid

angles do not necessarily have good aspect ratios, see e.g.,
[5. 6, 24].

In the context of approximation over triangulated do-
mains, a data-dependent triangulation scheme adaptively
generates a domain trangulation leading to a “small™ ap-
proximation error.  The technigues described in [12, 13,
14, 15, 25), deal with the problem of decimating triangu-
lar surface meshes and adaptive refinement of tetrashedral
volume meshes, These approaches are aimed at the concen-
tration of points in regions of high curvature, This paradigm
can be used 1o either eliminate points in nearly lincarly
varying regions (decimation) or to insent points in highly
curved regions (refinement). The data-dependent triangula-
tion scheme that we describe in this paper is baged on the
principle of refinement: our algorithm inserts points in areas
with large approximation errors,

In principle, our technique is related 1o the idea of con-
structing a multiresolution pyramid, i.e., a data representa-
tion hierarchy of triangulations with increasing precision,
sez [9]. Figure 2 shows a multiresolution hicrarchy of trian-
gles where the fop level contains a coarse tnangulation and
as we descend the hicrarchy finer triangulations are visible.
The pyramid concept has also been extended to the adap-
tive construction of tetrahedral meshes for scattered scalar-
valued data, see (2, 3], Multiresolution methads have been
applied to polygonal approximations of surfaces. Such ap-
proaches are described in [4, 7, 18]. Our data-dependent
technigue can be viewed as a hierarchical method for rep-
resenting scattered data by multiple levels of triangulations,
yet our approach is not based on the construction and appli-
cation of wavelet bases.

Edges, or discontinuities, are common in many of the
data scts that we have considered, These discontinuities
may be ridge lines in terrain data, bone boundaries in med-
ical imaging data, or object edges in digital images. Previ-
ous techniques such as [23] discuss decimation of & trian-
gle mesh utilizing the dihedral angle between triangles as a
measure of whether an edge exisis. Another approach is io
recognize the linear “coherence” of discontinuities [22]; in
this refinement scheme, when a mangle is subdivided, one

altempts to place a triangle edge along the discontinuity in
the data set. While the approach discussed in [22] extracts
the set of points lying on discontinuities from the initially
given datn and uses these points as vertices in each triangu-
lation level, we compute points on the boundaries as part of
eiach refinement step.

In [17], an elegant triangle decimation scheme is de-
scribed for general surface triangulations. Our scheme is, in
contrast, a refinement scheme: we start with a coarse repre-
sentation and iteratively refine tiangulations. Furthermore,
our approach is tailored o the domain triangulation of bi-
variale funclions.

A survey paper of scattered data approximation for bi-
variate and trivariate data is [19]. In [20], various scattered
data interpolation technigues (scalar-valued, trivariate case)
are discussed and compared. The method that we describe
in the following relies to a high degree on geometric mod-
eling and computational geometry concepts; they can be
found in [8, 21).

2 Adaptive triangle refinement

The adaptive refinement process is started by creating an
mitial triangulation. Knowing this initial triangulation, we
iteratively refine intermediate triangulations until a triangu-
lation is obtained whose global approximation error ( Eg g s
of Exr 4 x - root-mean-square error or maximal absolute er-
ror) is smaller than some wlerance.

Refining an intermediate triangulation consisis of four
basic steps: (i) additional vertices are generated along the
edges of an existing triangle; (ii) function values are ap-
proximated for each of the new vertices (and certain exist-
ing vertices in the neighborhood); (iii) 2 new triangulation
is constructed for the set of “old” and inserted vertices: and
{iv) an error estimate is computed for the new trizngula-
tion. These steps are iterated until a certain approximation
error condition is satisfied. The adaptive placement of new
vertices along the edges of existing triangles is crucial. The
algorithm is adaptive in a twofold sense: (a) an intermediate
triangulation is refined locally in regions with large ermors:
and (b) the location of new vertices is chosen in order 1o
MINIMIZEE ETor,

We consider error estimates measuring the deviation of
a triangular approximation and the original data. To do this
we compulte the absolute differences between the function
values given at the original daia sites and the piccewise lin-
ear approximation implied by a triangulation, Denoting the
set of k original data sites lying inside a particular triangle
of on its boundary by x;, 1 = 1, ..., k, with associated func-
tion values £, the local roat-mean-square (LRMS) error) is
defined as
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where || || denotes the Euclidean norm and L the linear
polynomial implied by the wriangle 7. We have also con-
sidered using the maximum érror but have discovered that
the results clearly favor the root-mean-square error mea-
sure. {We ensure that the ranges of the components of a
vecior-valued function are always normalized.)

In each refincment step, we identify the triangle with
maximal local approximation error and subdivide it in a lo-
cally optimal way. More precisely, we store the triangles as
an ordered list by considering their associated errors. From
this list we select a certain percentage of trinngles that we
consider for the next refinement step. Provided that at least
two original sites are inside a selected triangle, we can sub-
divide it. In the case that there 15 only one original sile in-
side a selected triangle we connect this site with the trian-
gle's vertices. A single subdivision step increases the num-
ber of triangles by no more than six: the triangle selected
for subdivision will be split into no more than four trian-
gles, and the subdivision process generates new vertices on
triangle edges which causes implied splits with neighboring
triangles. The split point along the triangle edges are con-
nected to the opposite veriex of the (up to) three neighbor
iriangles. We must compulte function value estimates for all
new vertices and must update the function value estimales
for all old vertices whose files have changed as a result of
the re-triangulation process.

In the following subsections, we discuss how to obiain
the initial triangulation, how to refine a triangle, how 1o es-
timate function values for new vertices, and how to preserve
edges that might exist in an original data set.

2.1 Initial triangulation

We consider the convex hull of the set of given data sites
as the matwrl boundary of a data set. 'We use the Jarvis®
march algorithm 1o compuie the convex hull. This may
result in multiple collinear points on the interior of edges
defining the convex hull. We remove these collinear points,
see [21]. After applying the above technique we have a min-
imal K points which define the convex hull.

Using the convex hull, we compute a data-dependent tri-
angulation for the minimal point set defining the convex
hull. In general, one has to consider all possible inangula-
tions of this point set and select the one that minimizes one's
error measure. A possible initial triangulation is shown in
Figure 3. Computing all possible initial triangulations can-
not be done efficiently when the convex hull is defined by
a relatively large number of points. In this case we propose

Figure 3. Coarse initial triangulation of do-
main

(o construct any triangulation of the K points and then ap-
ply simulated annealing in order to obtain a beller, possibly
optimal, data-dependent triangulation [ 16, 24].

Remark. For many practical applications, it might be
sufficient to simply usc the four vertices defining the cor-
ners of the bounding box containing all original sites. After
all, many real-world data sets are defined on a uniform, rec-
tilinear grid whose convex hull coincides with 18 hounding
box.

2.2 Subdividing a triangle

Whenever we subdivide a triangle with vertices ¥y, Vg,
and V3 we split it, topologically, into four subtriangles, us-
ing variable split points 8y ;, 83, and 53 & on the edges
g = \rg\'rj. y = ;I]E;l. E.I'Id.ﬂa — V|V?. We consider
combinations of (N+1) candidate split points per edge. The
candidate split points are spaced uniformly on the triangle
edges, unless one has to consider discontinuities in the orig-
inal data set. Thus, the sets of candidate split points are

8= EEVo 4+ AVyi=0,.., N},
8y = X Va+ Vi li=0,..,N}, el
B = %V: - -IE-'V] | ey Y
Figure 4 shows the possible split poimts for NV = 3.
As shown in Figure 5, we consider four possibilites
when subdividing a triangle. The vertex triples defining the
four subtriangles for each of the four possibilities are

o (V1,534,525) (V2,80:.85), (V3,8:5,8:4),
(S1,i2 82,4 53 )

. {vlisklllsz.J::ll {hr]!'s'].*lsl-lnl:l! [vl-st.usﬁ.k]-
{?3151..11 5l.|:||

o (V1,532,52;), (V2,515.854), (V2,814 82;),
[vJIEjJIEl.F.:II md
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Figure 4. Uniformly spaced split points for
N=3

o (V1,834,825) (Va,5816,854), (Va,830.514)
(V3,52,5,81.)

Certain vertex triples imply degenerate triangles, ie., tni-
angles with zero area. This is the case when a point 5y ;.
Sz, 0r 83 coincides with a comer of the trinngle being
refined. We eliminate such degenerate subtriangles from
the mesh, leading to the possible triangulations shown in
Figure 6.

We have 1o approximate function values for each of the
candidate split points. These estimates depend on the future
local re-triangulation itself. Therefore, one has to compute
the resulting emmors - we use Epprg (the maximum of all
local Epgas values) - for each possible re-triangulation.
There will be certain re-triangulations which minimize the
maximum of the local approximation errors (min-max er-
ror criterion). We select one of these ermor-minimizing re-
triangulations: I there is only one re-triangulation mini-
mizing the maximum of the local error estimates, we select
that one; if there are multiple ones to choose from (each
one minimizing the maximam of the local errors), we se-
lect the one that maximizes the minimum angle in the local
re-triangulation (max-min angle criterion).

When inserting a new veriex along an edge of a partic-
ular triangle, we must split the neighbor triangle sharing
this edge into two subtriangles as well (knot-ro-knot con-
dition). When applying the subdivision siep to a particular
triangle, we consider all possible re-triangulations of this
triangle and its neighbor triangles. We determine the effect
on the resulting errors associated with all triangles resuli-
ing from refinement, the ones replacing existing ones, and
choose that re-triangulation that locally minimizes Ep pass-

Figure 5. Four possible re-triangulations
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Figure 6. Degenerate subdivision



It i our experience that one should also consider the
geometrical quality of triangles being generated and avoid
triangles whose geometrical quality is below an acceptable
nlerance. To evaluate the geometric quality of a trinagle we
consider the trangle’s minimum angle. Although we wish
to use long, skinny triangles that model datasets in a dota-
dependent fashion, we wish to avoid long, skinny tHangles
that do not conlain & certain minimum number of original
data sites, It is our experience that skinny triangles contain-
ing few onginal data sites result in visual “spikes” that we
would like 1o avoid. When considering the different 5p1:|s of
a triangle we group the pu-mhl: splits into two categorics:
those that exceed the minimum angle threshold and those
that do not, When refining an intermediate triangulation,
we consider the set of all possible re-triangulations that do
not lead to skinny triangles. From this set we choose the
onc that locally minimizes the approximatino error. Should
all possible re-triangulations introduce skinny triangles, we
choose the one that maximizes the resulting minimum an-
gle.

2.3 [Estimating function values

The lunction value for a vertex in the triangulation is es-
timated using a neighborhood of nearby data sites, When-
ever triangles are subdivided as a resull of inserting addi-
tional vertices we must estimate new function values for all
vertices in the triangulation whose associated rile, see Fig-
ure 7, change as a result of the subdivision process. This sei
of vertices is given by the set of inserted split points and ad-
ditional "neighboring vertices™ whose tiles have changed as
aresult of refinement. The tiles are needed 1o compute func-
uon valee estimates based on a local approximation pro-
cedure. The local approximation procedure only considers
original data lying inside a tile. The tile associated with a
vertex is constructed in two sieps:

» Platelet construction, The plareler associated with a
veriex is the set of riangles sharing this vertex. The
platelet is determined in a first siep.

» Tile construction. The nle associated with 3 veriex
V is compuied in a second step. The tile is the region
bounded by the polygon obtained by connecting the
centroids of the iriangles defining V's platelet with the
midpoinis of those edges in Vs platelet that have V
as an end poinl. When an edge of a platelet triangle
lies on the boundary of the domain, 1.e., on the convex
hull, we connect this edge’s midpoint and V 1o obtain
a closed polygon as tile boundary. Figure 7 illustrates
the tile construction.

We use an inside/outside test for simple, closed polygons
1o determine the set of original data inside a tile, see [10].

Figure 7. Tile construction

We consider this set of original data for a localized, gen-
eralized version of Shepard's method, considering gradient
estimates (g7, o) at the original data sites x;, to estimate a
function value fypp for a veriex v = (z,y), see [11], The
function valve fop,(z, v} is defined as

forigs  if v coincides with an original
Jupplz,y) = data site with valve f,
farvg, oOtherwise.

(3
wherne

L
> (B o (x = 2i) + a¥ly = ) / (&)
fuvg = - L )

2 1/d?

=l

Here, L is the number of original sites inside the tle, f; is
the function value associated with an original data site x;,
and d; is the Euclidean distance between the new veriex
V¥ and x,. The same approach can be used when dealing
with multi-valued data by applying it 1o each of the mul-
liple function values. The gradient estimates (g7, g') are
computed in a pre-processing step as described in the nexi
SECLon.

2.4 Preserving edges and gradient approximation

In many practical applications, data sets contain edges
or discontinuities, manifested by very large gradient mag-
nitugdes along these edges. In order to capture edges it is
crucial to place vertices very close 1o the edges themselves.
Otherwise, a piecewise lincar approximation can not reflect
sharp changes in function values. In order 1o preserve edges,
we compute gradient estimates for each oniginal data poini
and consider these estimates in the process of placing cer-
tain vertices close to discontinuities. In particular, images
often contain sharp edges that are 10 be preserved.

When subdividing a particular triangle, we determine
whether there are large gradients along an edge that is 1w



Figure 8. Computing gradient estimates

be split. If this is the case, we place the veriex to be inserted
along this edge close to the discontinuity. We estimate the
gradient values and use these for adaptive splitting in the
presence of edges as follows:

s Gradient estimation. We estimate gradients at origi-
nal data sites in a pre-processing step, using a linear
polynomial computed as a least squares approxima-
tion. For each original data site x;, we consider it and
ils six closest neighbor sites to obtain a local linear ap.-
proximation f;(x, y) of the form g7 x + gl'y + o

» Splitting triangles containing edges. Having gradi-
ent estimates available at the onginal data sites, we can
determine where edges occur. We assume that a par-
ticular site is close to an edge if its associated gradi-
ent magnitude is larger than some threshold, “Critical
siles™ are the data sites whose gradient magnitude ex-
ceeds the threshold. We use an adhoc principle that we
have found to work well: We inlerpret an original data
sile as being close to an edge if its associsted gradi-
ent magnitude is in the top five percent of all gradicnt
magnitudes.

When splitting a triangle that contains critical sites, we
identify the critical sites closest to the mnangle's edges
and project the critical sites onto the edges. These pro-
jections are used as the final split points. This principle
15 illustrated in Figure 9. In more detail, the splitling
algorithm follows these steps:

— ldentify the critical sites by, by, and by — points
in the original data set = that are closest to the
triangle edges e, es, and e3, respectively.

= Project by, be, and by onto &;, &3, and &5, re-
spectively, and use the projections as split points.

3 Resulis and examples

We have applied our method o data sets with and with-
out discontinuities. We have compared our data-dependent
scheme with a simple bisection algorithm that bisects the
trisngle with largest approximation error, bul produces only

Figure 9. Preserving edges; solid disks rep-
resent edge points

tnangles that are geometrically similar to the original ones,
see [1].

We provide four examples demonsirating the strengths
of our method:

& g contimuous “cliff function,” defined as
flz,y) = tanh(9 « y — D« 1) + 1)/90,

where x,y € [~1,1], is shown in Figures 10 and 11,
sampled on a 80 = B0 uniform rectilinear grid,

o a discontinuwous “disk function,” defined as

_J1 #2+¥=rtrenl
Iz} = [ 0 Otherwise *

where x,y € [~1, 1], is shown in Figure 12, sampled
on a B0 x B0 uniform rectilinear grid,

& 8 conlinuous trigonometnic vector-valued function, de-
fined as

red(z,y) = (cosdwez) e (cosdzy),
green(z,y) = (cosdw(zr + .25)) = (cosdn{y - .25)),
blue(z,y) = (cosdw(z+ .33)) s (cosdm(y - .33)),

where r,y € [~1,1], is shown in Figure 13, sampled
on a B0 » 80 uniform rectilinear grid,

o a discrete San Francisco bay digital-elevation Model
({DEM) data set, given as o 60 = 60 uniform reciilinear
grid, shown in Figure 14, This data set consists of con-
toured color levels, each representing height above sea
level. Blue represents sea level; red, green, and purple
indicate increasing height,

The “chiff function™ demonstrates the usefulness of data-
dependent triangulations for approximating sampled data




with long narrow “cliff regions,” For this data set, the sim-
ple bisection scheme introduces artifacts in the Gouraud-
shaded images. These antifacts consist of shading from high
to low that does not reflect the orientation of the “cliff” The
“disk function™ is discontinuous. Our algorithm manages to
represent this data set with fewer triangles than the bisection
scheme due 1o its ability to preserve discontinuities.

When considering the trigonometric function we note
that the bisection scheme performs slightly betier than our
scheme. In images from the bisection scheme (B) and (D)
of Figure 13 we see artifacts due to the underlying trinngu-
lation.

4 Conclusions and future work

We have discussed a new technique for the construction
of data-dependent triangulations for multi-valued, bivariate
scattered data. Our scheme identifies and preserves discon-
tinuities that might exist in a given data set. We have tested
our method for various data sets and can conclude that one
can achieve data approximations within some specified tol-
erance with much fewer tnangles, in comparison to a simple
bisection scheme.

Owr algorithm has potential applications in scattered data
approximation, visualization, and image compression. We
plan to extend our method o scattered data in three dimen-
sions and apply it to Ume-varying multi-valued data seis,
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Figure 14. San francisco bay example, (a-c) data dependent method, (d-f) bisection method
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