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Abstract

In previous reports, the concept of solid fitting has been presented as a new indirect approach to volume
visualization. Solid fitting relies on a simple, but powerful geometric data model, termed interval
volume, that allows one to represent a three-dimensional subvolume for which the associated scalar
values lie within a specified closed interval. This paper combines the latest results obtained through
the course of the solid fitting project. After reviewing the salient features of interval volume and the
fundamentals of solid fitting in the first two sections, Section 3 discusses improvements to the original
solid fitting algorithm so as to extract interval volumes in a topologically-consistent manner. Also, the
octree-based acceleration mechanism incorporated into the algorithm is analyzed further with a complex,
time-evolving, volumetric data set. Section 4 is devoted to the presentation of several representative
operations related to interval volume, including focusing and measurement-coupled visualization. In
addition, a candidate for the volumetric coherence measure is introduced for adaptive solid fitting and
its application to multi-scalar visualization. Lastly, the paper is summarized with some remarks on a
hybrid volume exploration environment, in which solid fitting plays various roles.

1 Introduction

In previous reports{4, 5], the concept of solid fitting has been proposed to present a new indirect approach
to volume visualization[11]. Solid fitting relies on a simple, but powerful geometric data model, termed
interval volume, that allows one to represent a three-dimensional(3D) subvolume for which the associated
scalar values lie within a specified closed interval. Geometric modeling of field interval-based volumetric
regions of interest(ROIs) has recently begun to attract much attention from visualization researchers.
For instance, Udupa. proposes a cuberille model, called shell, for the compact representation and fast
manipulation of regular volumetric data sets containing fuzzy boundaries between adjacent material[23].
Guo presents interval sets with the aim of unifying surface fitting(SF) and direct volume rendering(DVR)
approaches[9]. Crawfis exploits the concept of data space slicing in the context of realtime interaction
with volumetric objects in a virtual environment[3].

Interval volume can be viewed as a more effective tool for exploring volumetric ROIs, compared with
the traditional SF approach, which uses isosurfaces with specified field values. Consider, for example,
a 64 x 64 x 64 theoretical volume data set for the 3D electron density distribution around an H,
molecule[26]. As clearly seen from Fig.1, introducing the interval-based specification of ROIs leads to not
only the producibility of more intuitive and informative images through boundary surface transparency
and orthogonal slicing, but also the computability of quantities such as the surface area, total volume,
and field average over the ROIs. DVR algorithms can generate a semi-transparent image of the entire
volumetric data set for one to peer inside to, without the aid of intermediate geometrical representations.
However, DVR algorithms are inherently computationally-expensive, in spite of many efforts to reduce
calculation time by algorithmic optimization, usage of parallel computation, and development of special
hardware architectures. On the other hand, for the case of a spatially-coherent data set just as in Fig.1,
the solid representation of volumetric ROIs is more spatially-efficient than the original lattice structure,
hence promising economical data storage and transmission. As in the SF approach, well-tuned surface
rendering software and graphics engines can also be utilized for interactive display and manipulation of
interval volumes.

Furthermore, in practical situations, structural ambiguity inherent to natural objects, or error due
to measurement, mathematical modeling or numerical computation is frequently expected to exist in a
target volumetric data set. If these error sources are not fully taken into account, extracted isosurfaces
may convey little meaningful information for exploratory purposes. Thus, geometric structures to be



54 I. Fujishiro & Y. Takeshima NSR. 0. U,, Vol. 49

Suglate aren
wlid weaayre »

Figure 1: Three volume visualization approaches for visualizing the 3D electron density distribution
around an Hy molecule. (a) Surface fitting; (b) solid fitting; and (c) direct volume rendering.

extracted from practical volumetric data sets are required to tolerate some variation in field values.
For instance, consider an analytical volumetric function defined by:
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(I, 9, 21 < 2).
Indeed, this function is a 3D version of Folium of Descartes, whose implicit surface defined by the
equation f(z, y, z) = 127.5 = (28 —1)/2 has the origin of the volume as its singular point. Fig.2(a) shows
five isosurfaces extracted from the volume. Notice that due to digitization error, the third isosurface
whose field value is 127.5 splits into two parts, and does not pass the center(origin) of the volume. This
may give a misleading interpretation about the topological feature of the volumetric function. On the
other hand, Fig.2(b) shows that interval volume, having a very thin interval around 127.5, retains the
correct topology of the target isosurface, from which the existence of the singular point can be easily
imagined. This suggests another attractive use of interval volume as a generalized isosurface.

Figure 2: Visualization of 3D Folium of Descartes. (a) Surface fitting (five isosurfaces whose target
fields are 102.5, 115, 127.5, 140, and 152.5); and (b) solid fitting (interval volume whose field interval
is [127.0, 128.0]).

This paper combines the latest results obtained through the course of the solid fitting project[6, 7,
20, 22]. After reviewing the fundamentals of solid fitting in the next section, Sect.3 discusses improve-
ments to the original solid fitting algorithm so as to extract a high-resolution, polyhedral solid data
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structure of interval volume in a topologically-consistent manner{20]. Also, the octree-based accelera-
tion mechanism[5] incorporated into the algorithm is analyzed further with a complex, time-evolving,
volumetric data set[6]. Sect.4 is devoted to the presentation of several representative operations related
to interval volume, including focusing and measurement-coupled visualization[5]. In addition, a can-
didate for the volumetric coherence measure is introduced for adaptive interval volume extraction and
its application to multi-scalar visualization. Lastly, the paper is summarized with some remarks on a
hybrid volume exploration environment, in which solid fitting plays various roles.

2 Fundamentals of Interval Volume

2.1 Interval volume definition

Consider that a continuous source volume space V = (S, f) is discretized and quantized into a regular
voxel data set Vp?, where S denotes a rectangular 3D region in R3, and f denotes a scalar field
function(field hereafter), which maps S into a finite closed interval [fmin, fmaz](C R). In the remainder
of this paper, the term wvozel is defined as a sample point which is located at a grid coordinate, and has
a single value for associated field f. Eight adjacent voxels constitute an axis-aligned rectangular prism,
called a cube(Fig.3). Note that the total number of cubes, N, is given by:

N =ng; xny Xn,. (1)

Unless explicitly noted, the trilinear interpolation scheme is used to reconstruct a field value f (p) at an
arbitrary point p € S from the field values at the vertex voxels of the cube to which p belongs.

[0, ny,n,] [nx, ny, n:]

[0, ny, 0]

Figure 3: Definitions in source volume Vp.

Interval volume IV (a, 8) is defined as a subset of the given volume space V' such that for any p € S,
the field value f(p) belongs to a single finite closed interval [, 8]. Specifically,

IV(a,B) = {(p, f(P)Ip € S, < f(p) < B} (fmin < B < fmac)-

The main aim here is to extract from the source volume data set Vp, a high-resolution, discrete interval
volume IVp. Here, the word “high-resolution” means that IVp retains certain geometric structures at
the subcube level[12]. Under the trilinear field assumption, IVp can become a polyhedral solid, which
is represented by a set of directed polygonal patches, retaining the original field values at voxels located
inside the I'Vp. The polygonal information can be managed systematically using a simple vertex-based
boundary representation[13].

Since interval volume is a subvolume, it does not suffer from the SF constraint that ROIs are limited
to lie on 3D surfaces. Therefore, interval volume IV (e, 8) has different interpretations according to
how its interval [a, §] is specified. For more detailed discussions, see [4, 5], which describe a useful
application of interval volume having a thin interval to visualization of a 3D Gaussian field containing
a virtual noise assumed to arise during the phase of volumetric data acquisition.

OThe results shown below can be extended to structured(curvilinear) data sets in a straight-forward manner. Recently,
furthér extension to the unstructured case has been achieved by the invention of an interval volume tetrahedrization
algorithm[15].
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2.2 Solid fitting with interval volume

In order to extract an interval volume I'Vp(a, 8) from a source volume Vp, the Marching Cubes(MC)
isosurfacing algorithm(12] is extended[4, 5]. The extended MC algorithm is designed so as to determine
a proper polyhedral block pattern for each cube containing a target interval volume. The actual approach
taken in this paper is to perform a set operation on two special kinds of interval volumes in a cubewise
manner.

The algorithm can be summarized with the following two primary steps:

For each cube 1,

Stepl: Refer to the modified look-up table to generate polyhedral block regions a-cube Cj (@)
and B-cube Ciizigh(ﬁ)? representing IVp(Q, fmaz) and IVp(fmin, B), respectively.

Step2: Evaluate the intersection of these blocks to yield IVp(a, B) in each cube, and take the
union of them over the entire volume:

N

IVp(a, B) = | J (Clru(@) N Chipn(®) 2)

1=1
where N denotes the total number of cubesEq.(1).

The number of polyhedral block pattern entries for both special kinds of cubes is clearly the same as
that of polygonal patch pattern entries used in the original MC algorithm. Therefore, the temporal
complexity of the MC-based solid fitting algorithm is expected to be on the same order O(N) as that
of the original MC algorithm.

For brevity, a two-dimensional(2D) example! is first used to describe how to construct polyhedral
blocks for interval volume within a single cube. Consider the case that I Vp(25,28) is to be extracted
from the cube shown in Fig.4. Note that the number beside each voxel represents its associated field
value. The intermediate-value theorem guarantees that two points with field values 25 and 28 appear on
the bottom and right edges. Clearly, a-cube corresponds to the lower-right triangle region, while S-cube
to the upper-left trapezoid. The intersection of these regions turns out to be the hatched quadrilateral,
which is equivalent to the target IVp(25,28) block. The quadrilateral has parts of two cubes’ boundaries
as its sides, as depicted with solid line segments.

18, ____________________ ':23 18 23
? 125 25
a-cube
28 " 28 =

[ 3 -
19 2528 32 19 2528 32

Figure 4: Interval volume extraction in a single cube(2D).

It should be noted here that an analysis of the nature of the trilinear interpolation scheme reveals
that, whenever a cube has a face-connected neighbor, all patches on the shared boundary of the cubes
can be omitted(Fig.5). If such a boundary patch is not removed, the total number of patches becomes
O(N) in the worst case. This offsets the benefit of relatively low spatial/temporal complexities in the
indirect volume visualization. The topic of topological consistency of polyhedral blocks for interval
volume in adjacent cubes will be discussed in Subsect.3.1.

Lastly, Fig.6 shows the complementary a-cubes and f-cubes for fifteen, common, polyhedral block
patterns[5]. These fifteen patterns correspond to those for isosurfaces used in the original MC algorithm[12].
Note that for each pattern, the two complementary cases are required to be distinguished according to
whether vertex field values are above (or below) either of the specified interval limit values.

1Related 3D terms such as cube and isosurface are used in 2D examples.
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Figure 5: Interval volume extraction in adjacent cubes(2D). The number beside a vertex v shows the
result of voxel classification in terms of order relationship between a target interval [a, §] and the voxel
field value f(v). -1: f(v) < ;0: a < f(v) < B; and 1: < f(v).
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Figure 6: Polyhedral block configuration for a-cube and $-cube (a-cube: o < o < o; B-cube: @ < § < o).
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2.3 Interval volume module

A module called interval volume, executable on a widely used commercial visualization software called
AVS5%(1, 2] has been developed. This module creates an interval volume of a given field interval
specification. Fig.7(a) shows a network editor’s window, which displays the control panel of the latest
version of the module on the left, a typical solid fitting network including the module in the middle
workspace, and an output image window of the HIPIP testbed volumetric data set[16] on the right.
Fig.7(b) lists hierarchically all control pages and widgets appearing in the module control panel in
Fig.7(a). As for the details on the fundamental operability of the control panel, and the dataflow
mechanism of the solid fitting network, see [4]. Other new features of the interval volume module will
also be described in subsequent subsections.
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Figure 7: Solid fitting network. (a) A typical AVS module network and a resultant HIPIP image; and
(b) interval volume control pages and widgets.

3 Sophisticated Extraction of Interval Volume

3.1 Disambiguation
3.1.1 Ambiguous cube face

Topological consistency is crucial for geometric structures to be extracted from a given volumetric data
set, because incorrect topological features might lead to a misunderstanding of the target data set.

As in the case of isosurfaces, erroneous connection of interval volume polyhedral blocks may occur
when the common face of adjacent cubes is ambiguous. Ambiguity occurs when the two diagonal pairs
of vertex voxels have field values of the same sign with respect to local target interval limit values, and
the signs of the vertex pairs are different from each other. Under the trilinear field assumption, there
are two possible patterns for the boundary patches of a-cube and 3-cube (Fig.8).

A polyhedral block pattern for a-cube and B-cube depicted in Fig.6 is called ambiguous if the cor-
responding cube has one or more ambiguous face. Cases 3, 6, 7, 10, 12, and 13 are such examples.
Consider the examples shown in Fig.9, where for both cases 6 and 3, two possible polyhedral block
patterns for a-cube are depicted. Note that 6B and 3B are the original patterns, and a rotation is
needed to obtain 3B. Clearly, a-cube in 6A(B) and a-cube in 3A(B) can be connected correctly in
a topological sense, while connection of a-cube in 6A(B) and a-cube in 3B(A) yields an erroneously
connected interval volume.

2AVS is a trademark of Advanced Visual Systems, Inc.
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Figure 8: Possible a(3)-cube patch patterns of interval volume boundary on ambiguous face (o < a <

B <o)

o<o<ge

Figure 9: Four possible connections of polyhedral block patterns for ambiguous cases 6(left) and 3(right).

3.1.2 Disambiguation schemes

Herein, the following four known auxiliary algorithms, which alleviate the topological ambiguities of
isosurfaces extracted by the MC algorithm, are extended so as to connect polyhedral blocks for interval
volume in adjacent cubes in a topologically-consistent manner. The common extension for disambiguat-
ing the connection of interval volume polyhedral blocks is to consistently choose either of the two cases
for solid region of a-cube and 3-cube, based on a specific threshold derived from local field values:

o Facial Average Values(FAV)[28]: This algorithm evaluates the center value of a bilinear interpo-
lation across the ambiguous face, and compares it with a target interval to locate the solid region
at the proper position.

o Asymptotic Decider(AD)[14]: Under the bilinear interpolation assumption, interval volume bound-
ary forms a hyperbolic curve on a cube face. This algorithm improves the quality of the FAV’s
disambiguation by evaluating the sign at the saddle point of the hyperbolic curve.

o Gradient Consistency Heuristics(GCH)[25]: This method utilizes not only vertex field values but
also their gradients for more precise field reconstruction based on the biquadratic interpolation as-
sumption. Proposed in [25] are two particular algorithms categorized into this method, i.e., Center
Pointing Gradient(CPG) and Quadratic Fit(QF), which are regarded as quadratic extensions to
the FAV and AD algorithms, respectively.
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One of these disambiguation algorithms should be performed prior to the calculation of cubewise block
intersection in Eq.(2). In the control page disambiguation of the interval volume module in Fig.7(b), one
of the present disambiguation algorithms can be manually chosen according to the volumetric coherence
of a given data set (see Subsect.4.3).

3.1.3 Experiments

First, a 4 x 4 x 4 volumetric data set representing the following: two analytical volumetric functions
(0 < z,y,2z < 3) are used to verify to what degree the four algorithms select proper polyhedral block
patterns for interval volume.

filz,y,2) = 4y—-12+2@@-2)?2-2x+2-3)+1
fo(z,y,2) = dy+4(z—-2)%-5

Fig.10 extracts IVp(25,30)® for each function using the present auxiliary algorithms. In both functions,
topologically-consistent interval volumes are extracted as control cases using a recursive subdivision
algorithm. It is seen from the figures that, as for f;, all four disambiguation algorithms and even the
original solid fitting algorithm without any disambiguation yield the common and correct polyhedral
blocks, but that, as for f,, only the two GCH algorithms do.

Figure 10: Comparison of disambiguation schemes for analytic functions f; (upper) and fa(lower). (From
left to right) Control case(ideal); calculation without disambiguation; FAV & AD:; GCH(CPG & QF).

Based on the above results, the most computationally-expensive QF algorithm is adopted herein
as the reference disambiguation scheme for practical data sets, when the real field distribution is not
available with any reconstruction scheme. Here, the HIPIP data set(64 x 64 x 64) shown in Fig.7(a)
is reused to empirically analyze the topological consistency vs. temporal complexity trade-offs among
the present auxiliary algorithms. The platform used for the experiment is an SGI Onyx system (CPU:
R4400 x 2, Clock: 100MHz, RAM: 128MB, 2-way interleaved).

Table 1 compares the performance of four disambiguated MC solid fitting algorithms to extract
IVp(127.5,130.0) from the HIPIP data set in terms of the topological correctness and extraction time.
The topological correctness is measured by counting the number of cubes where each disambiguation
algorithm selects the same polyhedral block patterns as QF. Since the population of ambiguous cubes
in the data set is very low(0.093%), there is little increase in overhead times to alleviate the topolog-
ical ambiguity as the present auxiliary algorithms become more complex. As clearly seen from the
table, however, the rate of correct block pattern selection is the lowest with the original MC with no
disambiguation, and increases from FAV to QF.

3In the data sets, the field values are normalized onto one byte unsigned integer (0-255).
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Table 1: Topological correctness/times in extracting HIPIP interval volume with disambiguated MC

solid fitting algorithms.

3.171
3.171
3.176
3.179
3.183

Aux algorithm | Correctness | Extraction time
none 0.432
FAV 0.782
AD 0.799
CPG 0.910
QF 1.000

[Time: in CPU seconds]

3.2 Acceleration with BONO
3.2.1 BONO definition and acceleration algorithm

Next, acceleration of the above-mentioned MC solid fitting algorithms is attempted using an existing

hierarchical spatial index structure called Branch-on-Need Octree(BONO)[27].

BONO is a spatially-efficient octree for volumes whose resolutions are not of a power of two, and each
node of which holds a min-max pair of field values of voxels in the corresponding subvolume. Fig.11
shows a 2D example of 5 x 6 volume data and the corresponding BONO structure.

10 12 13 14 14 15 .15

15 14 18 |23 o2 lis l1s
o lis |10/ e s |16 7. 35)

9 14 217 130 21 {17

==
7

8 113 [16 120 [22 120 17

7 19 110 l1y [13 115 [17 1
IVp (25, 28) 0] 2

(10, 23)

(14, 22)

(7,21)
(9, 21)

(10, 30) — A
(18,35) «— B
(10, 18)

(13, 23)

(13,28) «— C
(15,35) <— D

Figure 11: Volume data example and its BONO structure(2D).

BONO was originally devised for making the MC isosurfacing algorithm faster. Once a target field
value has been given, the recursive traversal of BONO with the value makes it possible to avoid relatively
large regions not intersecting the desired isosurface. Even if the target field values are changed during
interactive exploration, the original BONO can be used for the volume. Hence, the overhead of BONO

creation prior to repeated isosurfacing is generally acceptable.

The acceleration principle can be extended to the extraction of a and S-cubes in a straight-forward
manner. Fig.12 is the outline of an accelerated version of the solid fitting algorithm/[6].
For the 2D example in Fig.11, a test is performed for the accelerated solid fitting algorithm in
Fig.12 to extract IVp(25,28) from the volumetric data set. The procedure is started simply by calling

~ BONO_traverse(root), and the BONO is recursively traversed in the depth-first way with the min-max
test at each node. Since the root has the node value (7, 35), case 5 is first selected to traverse the
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procedure BONO_traverse(node)
begin
Lz + node.max; Inin < node.min;
cube_case + check_cube(Imin, Imaz);
switch (cube_case)
begin
case 1 : break;
case 2 : if bound(node) then
if not leaf(node) then
for each child ¢ of node do BONO_traverse(c);
else eztract IV from subvolume(node);
else break;
case 3 : if not leaf(node) then ,
for each child ¢ of node do BONO_traverse(c);
else eztract a block from subvolume(node);
break;
case 4 : if not leaf(node) then
for each child ¢ of node do BONO_traverse(c);
else eztract B8 block from subvolume(node);
break;
case § : if not leaf(node) then
for each child ¢ of node do BONO_traverse(c);
else extract IV from subvolume(node);
break
end
end;

cube_case:

case | Order relationship among «, 3, Imin, Imaz | Interpretation of subvolume

1 Loz < @ or B < Inin outside interval volume
2 @ < Imin < Imaz < inside interval volume

3 Imin K@ < I <8 equivalent to IVp(fmin, 8)
4 & < Inmin €08 < Imae equivalent to IVp(a, fmaz)
5 Inin < a < 8 < Inas otherwise

Figure 12: A BONO-based accelerated algorithm for solid fitting.

subtree whose root is the child node 0 representing the lowerleft 4 x 4 quadrant, and so on. Finally, only
the 16 cubes(53%) covering I'Vp(25,28) corresponding to the four leaves from A to D are processed by
the algorithm(Fig.11).

The interval volume module’s control panel has the BONO creation toggle at the bottom(Fig.7(a)).
If the toggle is turned on, the corresponding BONQ is created only when a data set is input to the
module for the first time, and the BONO continues to be referred to through subsequent execution of
the network with the same data set.

3.2.2 Experiments

As a more practical case, the 3D electron density distribution around an Hy molecule in Fig.1 is chosen.
The original 3D continuous density distribution was sampled to produce five volumetric data sets with
different resolutions(from 323 to 128%). The experiments were run using an SGI Indy system (CPU:
R4000, Clock: 100MHz; RAM: 64MByte).

Table 2 summarizes the times/spaces related to the interval volume extraction, where cube hit rate rep-
resents the percentage of cubes with intersecting interval volume boundaries(patterns 1-14 in Fig.6). The
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Table 2: Comparison of times/spaces of MC solid fitting with/without BONO in extracting Hy interval
volume in Fig.1. In the formatting phase, internal structure of polyhedral data is converted into AVS
geometry type.

Without
With BONO
#cubes Phase BONO

A B I B/A | # nodes | Cube hit rate

BONO Creation —1 0.10 —

N IV extraction 0.76 | 0.371 48.68%
32 : 4,681 8.62%

Formatting 0.16 | 0.16 | 100.00%

Total 0.92| 0.63| 68.48%

BONO Creation —1 0.35 —

5 IV extraction 2.30| 0.79| 34.35%
48 15,777 5.57%

Formatting 0.29 | 0.29 100%

Total 259 | 1.43| 55.21%

BONO Creation — | 0.80 -

s IV extraction 4991 1.60| 32.06%
64 - 37,449 4.15%

Formatting 0.51| 0.51 [ 100.00%

Total 5.50 | 2.91| 52.91%

BONO Creation — | 2.86 —

3 IV extraction 15.79 | 3.54| 22.42%
96 126,369 2.73%

Formatting 1.03 | 1.03 | 100.00%

Total 16.82 | 7.43| 44.17%

BONO Creation — 1 6.50 —

s IV extraction 36.15| 7.64| 21.13%
128 299,593 2.03%

Formatting 172 1.72 100%

Total 37.87 | 15.86 | 41.88%

[A, B: in CPU Seconds]

MC solid fitting algorithm used in the experiments is disambiguated with the AD scheme(Subsect.3.1).
Note that no cacheing mechanism suggested in [27] for further acceleration is employed here. As the
data sets get bigger, the cube hit rates decrease, and thus making the times for finding intersecting
cubes in BONO smaller. Also, in all the cases, BONO creation times are insignificant. If those times
are neglected, interval volumes can be extracted roughly three or four times faster with BONO than
without BONO.

From other experiments in [6], it was revealed that the same degree of acceleration is realized with
the sorted cube list-based algorithms[8] as well. However, from the viewpoint of spatial/temporal
complexities to create additional index structures(BONO/sorted cube list), the present BONO-based
algorithm is judged to be more efficient. For more detailed discussions, see [6].

Next, a time-evolving volumetric data set(100 frames of 60 x 60 x 60 voxels) representing the process
of a simulated H*—H collision shown in Fig.15[5] is used to investigate the sensitivity of the BONO-
based acceleration to the spatial coherence of the 4D volumetric data sets. Fig.13 plots accumulatively
as a function of frame IDs, the transition of computation times for several processing phases, including
BONO creation, polyhedral block extraction, and calculation of statistics of interval volume[6]. The left
graph is for the case without BONO, and the right one for the case with BONO. Vertical dotted lines
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Figure 13: Sensitivity of the solid fitting algorithms with/without BONO to the spatial coherence of
the volume data sets shown in Fig.15.

appearing in the both graphs denote the timings corresponding to the snapshots shown in Fig.15.

With the benefit from BONO, the extraction times are reduced to about one-fourth on average as the
times without BONO. In fact, BONOs created through the frame sequence diminish the number ratio
of the cubes processed by the modified MC solid fitting algorithm to 0.310 on average(SD = 0.156).
Note that although the relative overhead is heavier than the other processing phases, the averaged time
for interval volume measurement of 4.26 seconds(SD = 5.53) without BONO is also reduced to 2.90
seconds(SD = 5.57) with BONO. It is concluded that BONO can serve as an effective spatial index
structure that has the potential to realize high and uniform frame rates when extracting a time series
of interval volumes. '

4 Interval Volume Operations

4.1 Focusing

One of useful interval volume-related operations is focusing, which controls the location and length
of the interval to investigate properties such as the magnitude of errors hidden in a given volumetric
data set, and to search for a target isosurface from the volume. When errors in the field value of a
given volume are relatively large, it suffices to obtain an interval volume with an appropriate length of

interval (Recall the example in Fig.2). Fig.14 illustrates an example of the focusing process on the H,
~ volume of Fig.1, where the characteristic electron density value which splits the single isosurface into
two parts around the hydrogen nuclei is sought. Focusing is expected to provide a powerful navigation
mechanism for the topological analysis of interval volume. If several statistics over the ROI are derived
from the surface area, total volume, and field integral during the focusing process(see Subsect.4.2), they
can provide useful information for making the focusing process faster. ~

4.2 Measurement-coupled visualization

IVp is a geometric model which is also suitable for measurement-coupled visualization of volumetric
ROIs[5]. In addition to the capability of the surface area, total volume (displayed as solid measure in the
measurement page), and field integral of interval volumes(Fig.7(b)), the interval volume module can solve
- a reverse problem of the conventional style of visualization. That is, it employs the bisection method
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Figure 14: Example of focusing process.

to automatically find an interval limit value a (3) to meet the following integral equations for a given

pair of By (o) and Iy:
[[[ ey = 5 )
IV(a,B0)

///Iv(aoﬂ)f(x,y,z)dwdydz = I 4)

The interval volume module provides this calculation function through the auto-integration page(Fig.7(b)).

Consider, for example, the visualization of HT~H(proton to hydrogen atom) collision simulation(4, 5].
In order to understand the collision dynamics, it is necessary to illustrate how the so-called “electron
cloud” becomes distorted as the incident proton gets close to the target hydrogen atom. To do this, for
each simulated time-step, a solid region with a constant existence probability of an electron has to be
identified through the derivation from a simulated 4D data set for the time-evolving, electron density
distribution.

Fortunately, the existence probability of an electron is given as the integration P(a, pmaz) of electron
density p over the subvolume specified with IV (o, pmaz):

" P(a) Prmas) / / / o(z,y, 2)dzdydz, (5)
IV{a,pmaz)

Since Eq.(5) is a special case of Eq.(3), if P is given, the lower limit o such that P(a, pmas) = Po can
be automatically found.
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Figure 15: Snapshots excerpted from H*-H collision animation using interval volume with constant
electron existence probability.

Fig.15 shows nine snapshots excerpted from an animation of a time-evolving electron cloud, depicted
with interval volumes of a constant Py. Cutting away the upper-front quadrant of the visualization
domain allows for direct observation of the color-coded change in existence probability of an electron
within the electron cloud, as well as the relative position of the hydrogen nucleus(blue) and trajectories
of the marching proton(red). For more detailed discussions, see [5].

4.3 Spatial coherence of volumetric data sets

Spatial coherence of a volumetric data set is the state in which associated field values do not drastically
change in adjacent voxels[5]. The coherence of a volumetric data set is expected to have a strong
influence on the spatial and temporal complexities of geometric structures to be extracted from the
data set. Therefore, estimating the degree of coherence of a given data set prior to geometric feature
extraction plays a key role in realizing a time-critical environment for indirect volume visualization.
Herein, in order to measure the volumetric coherence, well-known, second-order grey-level statistics to
measure 2D textures[19] are extended to 3D[22].

An estimate of the degree of volumetric coherence can be obtained by examining how often the
possible pairs of field values in a given, regular, volumetric data set occur in the set of relative positions.

Let 6 = (6,¢,7) be a 3D displacement defined in Fig.16(a). Let Ps be a co-occurrence matriz whose
(,7) element represents the frequency that a voxel (zo, o, 20) having field value ¢ occurs in position 4,
relative to a voxel (21,y1,21) having field value j (fmin < 1,5 < fmaz)- Then, let P be the average
of Ps’s for a set of displacement d’s of a given size r in various direction. Here, 26 neighbors around
a voxel(the Hamming distance r = 1) are examined for P to obtain isotropic information about the
spatial distribution of field values in a volumetric data set (Fig.16(b)).
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Figure 16: Settings for volumetric coherence analysis. (a) Definitions of displacement §; and (b) possible
directions for volume statistics.

As a candidate for the Volumetric Coherence Measure, the following statistic is derived from the
averaged co-occurrence matrix P[22]:

ni—1n—1 (’L _j)2
VCM = — Z Z o
i=0 j=0

where n; denotes the number of possible integer field values (= fmaz — fmin + 1)

The statistic VCM can indicate the degree of volumetric coherence from the viewpoint of gray-scale
uniformity of field values, since the two types of spatial distribution expressiveness of Haralick’s 2D
statistics for textures, that is, contrast and entropy[19], are retained. Obviously, the more coherent
a given data set becomes, the smaller the VCM value becomes. For comparison, the current interval
volume module provides the user with the measurement capability with 3D versions of contrast and
entropy as well as VO M (see the coherence page in Fig.7(b)).

In [22], the feasibility of the coherence measure VCM is illustrated with a collection of the Chapel
Hill’s testbed volumetric data sets[16). It is clarified from thorough examination that VC'M is correlated
strongly to:

P(laj) ]'OglO P(Zﬂj)

o Averaged cube hit rate (percentage of cubes minimally covering the location of interval volumes),
e Averaged number of interval volume boundary patches per cube,
e Percentage of ambiguous cube faces, and

o Percentage of the topological correctness of interval volume polyhedral block selections with the
disambiguation schemes of Subsect.3.1.

This result may be used as a useful guideline to resolve the topological consistency vs. temporal
complexity trade-offs among the disambiguation schemes.

Hereafter, another effectiveness of the VCM in a sort of multi-scalar visualization is focused on.
In general, through the course of R&D, scientists and engineers often investigate mutual relationships
among different sources of information by combining multiple sets of the related data into a single
image, which exposes regions that are either positively or negatively correlated|[24]. A commonly used
visualization technique to accomplish this is extraction of geometric structures from one scalar field,
which are colorized with another field. It is well known that little correlation information can be obtained
from disordered geometric structures which are extracted from a scalar field with high complexity (low
coherence). Thus, one idea is to use the VCM to measure the coherence in advance for each scalar field
in a given pair, and to automatically choose a more coherent field for geometric structure extraction and
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(a) - (b)

Figure 17: Coherence-dependent colored isosurfacing of two volumes. (a) Mapping Gaussian and noise
volumes to shape and color, respectively; and (b) mapping Gaussian and noise volumes to color and
shape, respectively.

to use the other field for the structure colorization. This function is available from the current interval
volume module via the shape and color page(Fig.7(b)).

First, a pair of concentrically distributed density volume with a Gaussian function and a 3D white
noise volume with the Perlin’s solid texturing function[17] is assumed to be given. The size of the
two volumetric data sets is commonly 32 x 32 x 32. Fig.17 shows two possible mappings for colored
isosurface*. Clearly, the mapping (a) conveys more intuitive and comprehensible information to the
viewers when the actual characteristics of the volumetric fields are unavailable a priori. In fact, the
VCM values for the Gaussian volume and the noise volume are 4.71 x 10~3 and 2.00 x 10°, respectively.
From these results, the mapping (a) is judged to be more desirable.

Next, as a more practical example, bioconvection data visualization|[7] is adopted. Bioconvection,
named by Platt[18], forms characteristic aggregation patterns, like fingers, beneath the surface of cul-
tures of aquatic microorganisms(Fig.18). In the two decades, several researchers have attempted to
simulate the phenomena numerically to investigate the underlying mechanisms[10]. Since the interac-
tion of microorganisms with surrounding water is to be considered, the main goal of the bioconvection
simulation is to correlate distribution of microorganisms with the structure of the fluid flow field. Sup-
pose that a given multi-scalar data set available here represents the density of microorganisms and the
magnitude of velocity of water in which microorganisms are present.

The interval volume module has two import ports for volumetric data sets, and calculates the VCM
for each of the imported data sets to automatically alternate the shape&color mappings with each
other(Fig.7(b)). Fig.19 shows the visualization result of the data set using an interval volume-centered
module network. Since the microorganism density filed is more coherent than the velocity magnitude
field in terms of VCM (6.42 x 1072 to 3.56 x 10™1), the module network automatically produces an iso-
microorganism density surface (degenerated interval volume) on which color-coded velocity magnitude
is displayed. The visualization result reveals a certain number of cyclic convective flow patterns that
quantitatively resemble the real ones in Fig.18.

4Isosurface TS(a) is nothing less than the degenerated interval volume I'V{(q, @).
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Figure 18: Real bioconvective patterns. Side view of finger-like aggregation patterns of a flagellate
Heterosigma Akashiwo. Courtesy of Akira Harashima, The National Institute of Environmental Studies,
Japan.

e

Figure 19: A module network for adaptive colored solid fitting and visualization results.
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5 Conclusions

This paper demonstrates the solid fitting concept embodied with a geometric data model, called interval
volume, as an effective tool for volumetric field interval analysis. As described in Sect.1, solid fitting
inherits several advantages from both SF and DVR. However, these traditional volume visualization
approaches still have their own merits to be used in practical situations. Rather, it is a challenging
theme to incorporate the concept of solid fitting into a hybrid volume visualization environment, where
each approach continues to play a complementary role with one another(Fig.20).

The advance use of interval volume is viewed as a significant step towards effectively inducing the
exploration capability of the traditional approaches. For example, interval focusing can search for a set
of critical target field values for isosurfaces to manifest themselves as an efficient interface for volumetric
data comprehension. On the other hand, efficient field interval analysis with interval volume also makes
it possible for one to decide the optimal color/opacity transfer functions and viewing-related parameter
values for DVR, to produce final high-quality images and convey the most meaningful aspects of the
target object. Interval volume can also be used as a bounding data structure for selective and fast
DVR as well. Furthermore, the measurement capability, including the coherence estimation, leads to
more sophisticated visualization methodologies that are indispensable for a deeper understanding of the
target objects.

The present interval volume module serves as a versatile module used in a new generation modular
visualization environment, called GADGET®[7]. GADGET provides a knowledge base-assisted guidance
mechanism so as to allow one to specify visualization goals and accuracy/complexity requirements, and
to interactively design necessary application module networks.

Extensions of all the discussions on solid fitting techniques to unstructured case are being undertaken
for visualizing large-scale finite element analysis problems[21].

Field interval analysis
Measurement

Coherence estimation

Transfer function design

Surface

Figure 20: A hybrid volume exploration environment.
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