
An Active Networking Approach to
Service Customization

Peter Steenkiste��, Prashant Chandra�, Jun Gao�, Umair Shah�
�School of Computer Science

�Department of Electrical and Computer Engineering
Carnegie Mellon University
Pittsburgh, PA 15213, USA

fprs,prashant,jungao,umairg@cs.cmu.edu

Abstract

Active networking is a powerful technology to insert new
functionality into the networking. In this paper we look at
how active networking technology can be used to customize
network services. We observe that users often want slightly
different versions of network services such as multicast and
network quality of service. We propose to implement these
services as a base service that provides the basic service
functionality and a customization code modules that allows
users to customize the service. The customization module
uses a service-specific API to modify service behavior. We
compare this architecture with the traditional active net-
working architecture based on execution environments and
active applications. We also present several examples of
customizable network services.

1 Introduction

Active networking has been proposed as a powerful
mechanism for opening up networks [36, 35, 12]. The mo-
tivation is that traditional network devices, such as routers,
are typically closed systems that implement a fixed set of
functions. Software that runs on a router is supplied by the
router vendor and the customer’s control over router func-
tions is limited to managing built-in functions. This type of
router design slows down the deployment of new services
since all changes or extensions to the router functionality
have to be implemented by the vendors. Active networking
opens up the router architecture by supporting the execution
of software from a wide range of sources, thus allowing
more rapid innovation. For example, third-party software
vendors can implement diverse network Quality of Service
(QoS) packages for service providers with different require-
ments. Similarly, active routers allow the deployment of

VPN service that supports customized per-VPN QoS and
network management [28].

Different active networking architectures have been ex-
plored. They range from active capsules [37], where the
code to process a packet is included in the packet, to ac-
tive extensions, where active code is either downloaded as
needed or installed in the routers using a signaling proto-
col [15, 17]. However, all these architectures need very
similar support on the active router, as described in [10]
and [30]. Roughly speaking, the active router has to provide
a runtime environment for the execution of the active code,
plus a mechanism to control what packets are processed by
the active code. Following the terminology of [10], we will
call this runtime environment the Execution Environment
(or EE) and the active code the Active Application (or AA).
In the last few years, a wide range of EEs have been devel-
oped [37, 18, 4, 1, 5].

The Libra project is developing network support for hi-
erarchical network services. The goal is to be able to
build sophisticated network services such as distance learn-
ing, virtual reality, and distributed interactive simulation
through composition of more primitive services, such as
video streaming, multicast, and transcoding. Active net-
working is a key technology in realizing this goal since
service components can be deployed on-the-fly when and
where they are needed. The Libra project is developing both
a set of service components that can be used to build richer
services, and a runtime infrastructure that deploys and exe-
cutes composite services.

While building a set of Libra service components, we
observed that different users often need different versions
of the component. For example, many users need QoS sup-
port, but the details of how bandwidth is managed are user-
specific. Similarly, many applications need multicast, but
their specific requirements in terms of for example conges-
tion control and reliability are different. We decided that

Proceedings of the DARPA Active Networks Conference and Exposition (DANCE�02)
0-7695-1564-9/02 $17.00 © 2002 IEEE

an elegant way of supporting this diversity was to break the
service component into two modules: a base service that
implements shared functionality, and a customization mod-
ule that allows users to “fine tune” the service to meet their
specific needs. Note that the base service provides a use-
ful service in its own right. For example, in the case of a
QoS service, it may support simple bandwidth management
based on the Differentiated Services Expedited Forwarding
model. Customization is based on a runtime environment
in which users can insert customization code. In our QoS
example, the customization code could monitor traffic and
dynamically adjust classifier or marker parameters.

The service architecture consisting of a base service
combined with a customization module is very similar to
the EE/AA architecture: the base service combined with a
small runtime environment can be viewed as an EE and the
customization code is the AA. The difference with the more
traditional EE/AA view is that in our case, most of the func-
tionality is provided by the service EE. Note also that while
people often associate traditional EEs with a specific pro-
gramming language and programming model (e.g. ANTs
with Java capsules, ...), in our case the EE is characterized
by its functionality (base service plus supported customiza-
tions) and language is a secondary consideration.

This paper explores the use of active networking as a
way of customizing network services. We first describe
our network model in the next section. We then sketch the
general EE architecture and discuss how service customiza-
tion fits in this framework. We present several examples of
service customization from the Libra project in Sections 4
through 7. Finally, we discuss related work in Section 8 and
summarize in Section 9.

2 Network services model

The Libra project assumes a network model in which
the network services that are delivered to end-users in-
clude elements from multiple service providers. The service
providers fall in two classes. Network service providers
(NSPs) provide the resources necessary to deliver the ser-
vice, i.e. bandwidth on network links, computing cy-
cles and memory on network nodes, and possibly special-
ized devices. This infrastructure is supposed to be pro-
grammable, i.e. new services can be deployed on-the-fly
by downloading code modules into programmable network
elements. Application service providers (ASPs), sometimes
also called value-added service providers [13], deliver more
advanced services such as distance learning or backup ser-
vices to end-users. Value-added services are built by com-
bining a set of service components and by executing them
on a set of resources that is leased from an NSP. Service
components can be developed internally by the ASP or can
be licensed from third-party software developers.

Distance
Learning

Simulation
Servers

Video
Conferencing

M ulticast
Service

Video
M ixing

A

B

FC

ED Archival
Storage

Ga b c
ed

Content
Servers

Distance
Learning

Simulation
Servers

Video
Conferencing

M ulticast
Service

Video
M ixing

A

B

FC

ED Archival
Storage

Ga b c
ed

Content
Servers

Figure 1. Service development through com-
position

This model assumes that network services will be devel-
oped and delivered in a competitive market. ASPs get paid
by its customers (end-users and higher-level ASPs) for the
value-added services they deliver; NSPs get revenue from
the users of their infrastructure (ASPs and possibly end-
users). Note that in practice the distinction between NSPs
and ASPs may not be that clear. ASPs are likely to own
some communication and computational resources, so they
also play the role of NSP. Similarly, NSPs may deliver some
value-added services.

As in any competitive market, service providers will
want to be able to differentiate their products (services)
from those of their competitors and they will want to bring
services to the market quickly. The Libra project is develop-
ing two complementary technologies to meet this goal: the
development of value-added services through composition
of more primitive service components, and the customiza-
tion of service components. Service composition allows the
development of new services by combining existing com-
ponents, as is illustrated for a distance learning service in
Figure 1. It reduces the development effort and should al-
low the deploy of more sophisticated services, for exam-
ple by building on components developed by specialized
providers. Service customization is described in more detail
in this paper.

2

Proceedings of the DARPA Active Networks Conference and Exposition (DANCE�02)
0-7695-1564-9/02 $17.00 © 2002 IEEE

3 Execution environment architectures

In this section we take a closer look at the different types
of EEs that have been developed. We then introduce service
EEs as a new class of EEs and discuss how customizable
services can be deployed.

3.1 Classes of EEs

While there is general EE architecture that defines what
support is needed to host an AA, there are several ways of
deploying an EE in a network. For the purpose of our dis-
cussion, we will distinguish between two classes of EEs.

The first class of EEs is characterized by the fact that its
primary purpose is to process the packets that flow through
AAs hosted by the EE. Examples include ANTs and the
PLAN/Switchlets. Per-packet processing range from rela-
tive simple local operations such as compression or error
correction (e.g. [29]) all the way to complex AAs that in
effect implement virtual routers or bridges [2]. One prop-
erty of such EEs is that the AAs that they host have mimi-
nal interact with the rest of the router infrastructure. Their
primary interaction with the rest of the router is the ex-
change of packets, although they may occasionally also col-
lect status information or negotiate with the Node OS for re-
sources. We will call such EEs overlay EEs since they typ-
ically add network functionality that is quite separate from
that of the hosting network infrastructure.

The second class of EEs is characterized by the fact that
the AAs they host modify the behavior of the router in-
directly. For example, they may update routing tables or
change the parameters of packet schedulers. Any packets
handled directly by such AAs are typically control pack-
ets that may trigger actions by the AA. Examples of such
EEs include the Darwin QoS delegates runtime environ-
ment [23, 34] and ASP [4]. A key design parameter for
such EEs is the API they offer to their AAs [31, 34]. It de-
termines what actions the AAs can take. We will call such
EEs control EEs since their AAs typically control router
functionality.

Figure 2 illustrates the difference between overlay and
control EEs. The thick arrows represent the primary
dataflow while the thin dashed arrows indicate control op-
erations. APIs are represented by horizontal dashed lines.

Not surprisingly, control EEs will typically be imple-
mented in the control plane of the router. Overlay EEs,
on the other hand, are logically part of the data plane, al-
though how they are executed depends on how expensive
the AA processing is and on the architecture of the router.
On high-end active routers, overlay EEs could execute on
dedicated processing resources on the router port cards, e.g.
plugins [18], while on low end platforms, slow path data
processing may share resources with the control plane.

3.2 Customization

While building a set of service components for the Libra
project, we observed that many components share the fol-
lowing property. While most of the service functionality is
generic and is required by all users, some service features
can be supported in many different ways. Users want to
choose how these features are supported, since it has a big
impact on the end-to-end service properties. Let us look at
some examples:

� QoS: Many services can benefit from QoS support, for
example so they can deliver more predictable services
to end-users. However, the details of how, for example,
reserved bandwidth should be managed will be differ-
ent.

� Transcoding: Many users need to be able to translate
video format or reduce video resolution. However, the
precise formats needed or the required video resolution
will differ and may change over time.

� Multicast: Basic multicast support, e.g. delivering a
packet to many receivers, is useful for many applica-
tions. However, properties such as required reliability
of data delivery and practical methods for doing con-
gestion control will be different.

While it is of course possible to implement the service
component as a series of AAs, each implementing a slightly
different version of the service, this is inefficient since EEs
may have to run many copies of very similar code. A more
elegant solution is to break the service into two parts: a
base service that implements shared functionality, and a
customization code module that allows users to “fine tune”
the service. The customization module is often very sim-
ple, since it only has to extend or modify the existing base
functionality. This is a natural solution and this approach
is commonly used on end-nodes. For example, many end-
user applications such as text editors or spreadsheets pro-
vide ways of extending or customizing the capabilities of
the application through programs or macros.

The overall structure of a customizable service compo-
nent is very similar to the EE/AA architecture. The base
service combined with a small runtime environment can be
viewed as an EE and the customization code is the AA.
There are also some significant differences. First, in a cus-
tomizable service component, most of the functionality is
provided by the service EE. In contrast, most traditional
EEs primarily provide support for AA execution, e.g. lan-
guage support, downloading and possibly caching of AA
code modules, and installing of AAs. Another difference
is that the function performed by the customization code is
very focused and specific to the service being customized.

3

Proceedings of the DARPA Active Networks Conference and Exposition (DANCE�02)
0-7695-1564-9/02 $17.00 © 2002 IEEE

AA

EE

Forwarding

AA

EE

Forwarding

(a) (b)

Figure 2. Classes of EEs: (a) overlay EE and (b) control EE

This second difference provides the motivation for includ-
ing the base service functionality as part of the EE. Viewing
just the runtime environment as the EE makes little sense
since it has no useful function without the presence of the
base functionality of the service. Note that customization
applies to both overlay and control EEs, as is illustrated in
Figure 3.

A customizable EE has two APIs (dashed lines in Fig-
ure 3. First, it has the API that it implements for its AAs.
As we discussed above, we expect that API to be fairly nar-
row and highly service specific, and we provide some ex-
amples later in the paper. The second API defines how the
EE interacts with the rest of the router. This API will typi-
cally correspond to the Node OS API and it is much more
flexible and powerful than the first API. This difference in
APIs suggests that installing a new customization AA will
typically be a very lightweight operation, while installing a
new customizable service is more heavy weight. This is not
unlike the difference between installing an AA and an EE
in, for example, the ABone. Installing a new EE requires
special privileges, while any user can install an AA.

While we have introduced the use of customization EEs
as a pragmatic solution to the problem of supporting ser-
vices that differ only in certain features, this approach turns
out to have another significant advantage. The API that
the customization EE offers to its AAs is typically very fo-
cused and simple. This simplifies the security challenges
that come with the flexibility of active networking. Specifi-
cally, checking the correctness of AA calls is typically sim-
ple and very lightweight. We will illustrate this point when
discussing examples later in this paper.

Using our definition of customization EE, a number of
other active networking projects have developed EEs that
are very similar to our customization design. An example

is the Concast effort [11]: the base service is incast (the re-
verse of multicast), while the specific way of merging mes-
sages from the leaves to the root can be customized. We
discuss related work in more detail in Section 8.

3.3 Deploying customizable services

The main characteristic of a customization EE is that it
allows users to extend or control functionality that itself is
active, i.e. it is installed when it is needed. Comparing
Figures 2 and 3 also shows that the distinction between cus-
tomization EEs and more traditional EEs will sometimes be
vague. Specifically, some Node OSes may provide func-
tions that are provided outside the Node OS on other plat-
forms. When extending or controlling this functionality
through AAs, we end up with the architecture of either Fig-
ure 2 or Figure 3.

Figure 3 also raises the issue of how the base service
component is installed. An alternative to deploying the cus-
tomizable service as an EE is to deploy it as an AA in a
more general EE, as is suggested in Figure 4. Deploying
the base service dynamically as an AA is more in the spirit
of active networking. We have however not explored this
option for any of the Libra services because the interactions
between the customizable service and the router are often
complex, making the design of the EE in Figure 4(b) and
its API very difficult. Note that Figure 4(b) corresponds to
a 2-level hierarchy of AAs. It is not clear that hierarchies
deeper than two would ever make sense.

Which of the two options in Figure 4 is more attractive
is a deployment question. The EE option is easier to imple-
ment since there are fewer interfaces and software modules.
However, it will typically require a stronger trust relation-
ship between the entity installing the EE (typically, a service
provider) and the entity owning the router. The AA option

4

Proceedings of the DARPA Active Networks Conference and Exposition (DANCE�02)
0-7695-1564-9/02 $17.00 © 2002 IEEE

Customization
AA

Service
EE

Forwarding

Customization
AA

Service
EE

Forwarding

(a) (b)

Figure 3. Active Service Customization for (a) overlay EEs and (b) control EEs

is more dynamic and flexibly. However, it will be harder to
realize since more general EEs have to be available in the
infrastructure.

3.4 Functionality versus language

The initial research in developing EEs often had a lan-
guage focus. There are probably two reasons for this. First,
opening up routers by executing third-party code raises sig-
nificant security and safety questions, and the programming
language is the first line of defense against malicious or
buggy code. This explains the strong emphasis on using
safe languages, e.g. Java [37], or CAML and PLAN [1]. A
second reason is that initial active networking projects often
explored the use of capsules, where clearly the EE selected
has to match the language used for the capsule code.

However, given a better understanding of the safety and
security issues, and given an extension-based approach to
active networking, we believe that a focus on AA function-
ality is needed. The language is a complementary and in
many cases a secondary concern. In fact, in a successful ap-
plication of active networking, one should expect the same
packet to be handled by AAs written in different language.
Envision an experiment where active networking is used to
do pre-standard testing of a new IP feature. Two groups,
using different EEs may want to do interoperability testing
by having a single flow of packets handled by their respec-
tive AAs implementing the new feature on different routers.
In fact, one can envision AA repositories that store for each
“functional AA” different code modules that different EEs.

In the following four sections, we provide some exam-
ples that illustrate the use of active networking for service
customization. For each example, we will motive the need
for service customization, describe our implementation and
the customization API, and discuss security considerations.

Classifier Scheduler

Local Resource Manager

Beagle Delegates

Route
Lookup

Routing

Router Control Interface

Access Control

Classifier Scheduler

Local Resource Manager

Beagle Delegates

Route
Lookup

Routing

Router Control Interface

Access Control

Figure 5. The Darwin delegate EE

4 QoS delegates

4.1 Motivation

The Darwin system provides router support for
“application-specific” network QoS. Darwin consists of a
set of data plane mechanisms (classifiers, packet sched-
ulers) plus support in the control plane to set up and manage
the data plane. Users (e.g. an ASP) can extend the con-
trol plane using “delegates”, active code segments that can
monitor the QoS of the user’s flows and can change the QoS
behavior if needed by adjusting the classifier and scheduler
parameters. The Darwin architecture is shown in Figure 5.

The motivation for making the management of QoS cus-
tomizable is that the QoS requirements can be very diverse.
Applications such as distance learning, distributed simula-

5

Proceedings of the DARPA Active Networks Conference and Exposition (DANCE�02)
0-7695-1564-9/02 $17.00 © 2002 IEEE

Customization
AA

Forwarding

(a) (b)

Customization
AA

Forwarding

EE

Service
AAService

EE

Figure 4. Deployment of a base overlay service: (a) as a service EE or (b) as an AA in a more general
EE

tion, and visualization are quite different in terms of how
bandwidth, delay, or loss-sensitive their flows are. In Dar-
win, an NSP can allocate a certain amount of bandwidth
to an ASP, which can then manage that bandwidth as it
sees fit using delegates. The delegates can be developed
by the provider of the distributed application, or by third-
party software vendors who specialize in network Quality
of Service packages for service providers with diverse re-
quirements. Another Darwin application is the deployment
of customizable VPN services [28].

The Darwin architecture roughly follows the customiz-
able services architecture of Figure 3. Delegates use an
API called the Router Control Interface (RCI), shown by the
dashed line, to monitor and control the QoS of their flows.
Darwin is implemented in the context of a FreeBSD-based
router and the delegate EE is implemented by a combination
of user level and kernel software.

4.2 API

The RCI consists of a set of methods that support a rich
set of operations on flows, where a flow is defined as a se-
quence of packets that belong together, as defined by a flow
spec [9, 14]. RCI methods fall in three categories [24, 23].
The first category of methods enables delegates to manip-
ulate flows by updating the classifier data structures. For
example, a delegate can identify a new flow by providing
a flow spec that characterizes the packets in the flow. The
delegate can then apply further processing to this flow.

The second category of methods deals with the quality
of service flows receive, i.e., it controls packet scheduling.
Darwin uses a hierarchical scheduler [33], which means that
the bandwidth distribution across flows is controlled using a

resource tree. The RCI methods allow delegates to modify
the resource trees for the output links (e.g., make, modify,
or terminate bandwidth reservations) and to associate flows
with nodes in the tree to provide bandwidth guarantees to a
class of traffic.

The third category of RCI methods deal with more gen-
eral packet processing or monitoring operations. For exam-
ple, delegates can send and receive packets to coordinate
their actions with other delegates or the user. Delegates can
also collect traffic-related information about their flows, e.g.
average bandwidth used, queue sizes, ...

4.3 Security and safety

While the RCI allows ASPs to manage their own traf-
fic, it also opens the door for abuse. An ASP could for ex-
ample steal bandwidth from a competing ASP. To prevent
such abuse, we must limit a delegate’s access to dataplane
resources. Experience with traditional operating systems
shows that access control lists (ACLs) are a simple and light
weight mechanism for controlling access to the resources
manages by an operating system. An ACL consists of three
parts: a principal, an object and a permission string that de-
fines what permission this principal has on this object. The
principals in this context are delegates, the objects represent
the abstract resources to be protected, and the permission
bits define the possible operations on these objects. When a
delegate has a permission bit set for an object, it is allowed
to perform that operation.

In this section, we present the design of an ACL that is
appropriate for the RCI. Given the operations supported by
the RCI, the two resources that must be protected are link
bandwidth and user data traffic.

6

Proceedings of the DARPA Active Networks Conference and Exposition (DANCE�02)
0-7695-1564-9/02 $17.00 © 2002 IEEE

4.3.1 Protecting Bandwidth

Darwin uses a hierarchical packet scheduler since it sup-
ports both link sharing and finer grain bandwidth manage-
ment. In particular, a hierarchical scheduler represents the
division and sharing of bandwidth on a link in the form of
a hierarchical resource tree. Each node in the resource tree
corresponds to a portion of the bandwidth allocation and
the subtree rooted at that node specifies how that bandwidth
slice should be further partitioned. Hierarchical schedul-
ing can for example be used to distribute the bandwidth of a
link across a set of organizations, where within each organi-
zation, bandwidth can be further distributed across depart-
ments or applications. The hierarchical fair service curve
(HFSC) scheduler [33] used in Darwin has the attractive
property that bandwidth allocation decisions made in one
subtree of the resource tree do not affect the QoS properties
of traffic flows using other subtrees, i.e., there is good iso-
lation between the subtrees, allowing them to be managed
independently.

Delegates perform bandwidth management by manip-
ulating the tree structure through RCI methods. For ex-
ample, a delegate can reserve bandwidth by adding a new
node to the tree via the call create node (parent node id,
QoS parameters). It is possible that a malicious delegate
can steal bandwidth by adding nodes to a part of the tree
that belongs to other users. It can also read, change or re-
move reservations made by others through manipulation of
the resource tree.

Given the properties of hierarchical resource manage-
ment, it is very natural to have the access control for band-
width be based on the resource tree (see Figure 6). The node
in the resource tree represents bandwidth so we use it as the
object in the ACL. In order to execute bandwidth manage-
ment decisions, a delegate must have the appropriate per-
mission bit set for the corresponding node in the resource
tree.

By examining the RCI methods related to resource
nodes, we construct the following set of access rights to
control delegate operations on nodes.

� create (c): The (c) permission on a node allows a del-
egate to create new nodes rooted at this node. This
means that the delegate can sub-divide the bandwidth
that this node represents.

� modify (m): The (m) permission on a node allows a
delegate to modify the bandwidth distribution across
its children.

� delete (d): The (d) permission on a node allows a del-
egate to delete child nodes.

� retrieve (r): The (r) permission on a node allows a dele-
gate to retrieve the subtree structure rooted at this node.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

Link

Org1

App1

Flow1

Org2

Delegates

Figure 6. The association of delegates and
resource nodes

� monitor (n): The (n) permission on a node allows a
delegate to monitor bandwidth usage of the node.

� use (u): The (u) permission allows the delegate to use
the resource represented by this node to provide QoS
to traffic, as described below.

For example, when a delegate has the (m) or (d) rights for
a node, but not the (c) rights, the delegate can redistribute
bandwidth among a node’s children, but it cannot add new
child nodes. Also, when a delegate has only (n) rights for
a node, it can monitor the bandwidth utilized by the flows
allocated to that node, but it cannot make any changes to the
bandwidth allocation.

4.3.2 Protecting Traffic

As described above, Darwin provides QoS based on flows,
a stream of packets that match a packet filter. By using the
RCI primitives, delegates in Darwin can add filters to de-
fine flows and can assign flows to resource nodes to receive
bandwidth guarantees. The RCI also supports a number of
non-QoS operations on flows, e.g. flow redirection [23, 34].
Without proper control over which traffic can be accessed
by which delegates, a malicious or faulty delegate can dis-
rupt the traffic of other users. For example, it can define
flow corresponding to the traffic of another user and then
associate with a node in the resource tree that has no band-
width associated with it. That is likely to result in a lot of
packet loss. To prevent such security violations, a router
must (1) constrain what kind of filters a delegate can in-
stall to control what traffic it can control, and (2) control the

7

Proceedings of the DARPA Active Networks Conference and Exposition (DANCE�02)
0-7695-1564-9/02 $17.00 © 2002 IEEE

services that can be applied to the traffic that a delegate is
responsible for.

The ACL that is used to limits access to traffic is based
on a “filter envelop”. The filter envelop restricts what filters
a delegate can install and what operations it can perform on
them. A traffic envelop consists of one or more envelop-
spec entries, where each envelop-spec entry has the follow-
ing format:

[traffic-spec, permission] ,

where traffic-spec specifies a class of filters that can be
defined, and permission lists the permission bits for the traf-
fic defined by those filters.

The traffic-spec consists of the following fields: Source
IP address, Source IP address mask, Destination IP address,
Destination IP address mask, Source port, Destination port,
Protocol ID, and Application ID (IP option). Each of these
fields defines a range of values that are allowed in a packet
filter. For example, the source port could be restricted to the
range [81, 2000]. The IP address and mask together
define the range of possible IP addresses that can be used by
a filter. For example: [128.2.0.0, 255.255.0.0
] defines an IP subnet address.

When a delegate creates a new filter, the router checks
whether this delegate is allowed to install such a filter based
on the filter envelop that is associated with the delegate. A
filter is defined by a filter-spec, which consists of the same
set of fields as in a traffic-spec, except that the port num-
bers, protocol ID and application ID can only be specified
as a single number instead of a set of numbers. A dele-
gate can only create a filter if the filter-spec is within the
scope one of the traffic-spec entries of the delegate’s filter
envelop, which means that all the filter spec’s fields are in-
side the range specified in the traffic spec. For example, the
source/destination IP address of the filter-spec must match
the corresponding address specified in the traffic-spec using
the longest prefix matching algorithm, e.g., [128.2.205.111
255.255.255.255] matches [128.2.0.0 255.255.0.0].

The second component of each envelop-spec in the filter
envelop is the permission field. It specifies what operations
a delegate can perform on a traffic flow defined by a fil-
ter within the envelop-spec’s scope. For QoS-related oper-
ations, the delegate must hold the (q) permission. With the
(q) permission, the delegate can assign the flow correspond-
ing to this filter to a node in the resource tree, i.e. it will get
the bandwidth guarantees associated with that node. Recall
also that in order to use a resource, the delegate must have
the (u) permission on that node in the resource tree, so two
access checks are required to provide QoS, one regarding
the traffic involved and one regarding the bandwidth allo-
cated.

4.4 Design and implementation

The RCI is implemented as a Java library that delegates
can call. This library forwards the RCI call to the LRM
(Figure 5), which is implemented as a user-level process.
The RCI library includes the delegate identifier in the re-
quest it forwards to the LRM. The Access Control Manager
(ACM) is implemented as part of the LRM, and it intercepts
each RCI call made by delegates. The ACM uses the del-
egate ID and the interface that the delegate is operating on
to find the proper policy file for access checking. We also
need a mechanism to manage the ACLs. This is done by the
Router Security Manager, which sets up or modifies ACLs
based on a policy maintained by an external policy manager,
as is described in [22].

5 Temporal sharing in Beagle

5.1 Motivation

Traditional flow-based signaling protocols allocate re-
sources for each flow independently. This is based on the
underlying assumption that each flow in the network is in-
dependent of all other flows in terms of its resource utiliza-
tion. However, most services with multiple flows exhibit
temporal relationships in the way their flows utilize the re-
sources allocated to them. In such cases, these “related”
flows can share the same set of resources over time. We
call this type of behavior temporal sharing and define it as
the sharing of resources among multiple flows with tempo-
rally interleaved resource usage. We will call a group of
flows that share resources a flow group. Temporal sharing
forms a middle ground between independent flow-based al-
location and periodic renegotiation by combining the low
signaling overhead and predictable behavior of independent
flow based allocation, with savings in resource consumption
obtained using periodic renegotiation.

Temporal sharing was first introduced in the original
RSVP design paper [38]. RSVP introduced the notion of re-
source reservation styles that allowed different senders to a
multicast group to share the same set of resources. A subset
of the styles introduced in the original paper is supported
in the RSVP specification [9]. Temporal sharing has also
been studied in the context of other signaling protocols like
Tenet-2 [26] and ST2+ [19]. Although these signaling pro-
tocols represent an important first step in exploiting tempo-
ral sharing, the “one size fits all” approach they take limits
their usefulness. The support they provide is mostly suited
for conference style applications, i.e. applications where
multiple sources can send data but where as a result of the
structure of the application, only one sender can be active at
a time.

8

Proceedings of the DARPA Active Networks Conference and Exposition (DANCE�02)
0-7695-1564-9/02 $17.00 © 2002 IEEE

However, many other temporal sharing models exist.
One example is Virtual Private Networks (VPNs) based on
the hose model [20]. According to the hose-model, in a
VPN with N sites, each site i is connected by an access
link of bandwidth hi called a “hose”. Therefore, a hose
limits the amount of traffic generated or received by the
site to a value less than the traffic received or generated by
the other sites. Another example is broadcast application
with picture-in-picture capabilities. Such an application al-
lows receivers to view one high quality video channel and
optionally a second reduced-quality channel, so the band-
width that has to be allocated to a receiver is limited to one
high quality and one reduced quality flow even though many
channels can potentially be selected. While it is possible
to define a general representation for temporal sharing, it
is complicated and calculating the bandwidth requirements
for a set of flows based on the general representation is NP-
complete [17, 16].

However, practical cases of temporal sharing can typi-
cally be supported much more efficiently. For example, cal-
culating the resource requirements for the above VPN ex-
ample can be done O�n� time. This argues that instead of
building a signaling protocol that handles temporal sharing
in a general but expensive way, or that only handles certain
cases of temporal sharing, instead, temporal sharing support
in signaling protocols must be designed to be extensible.
This will allow service providers to define and implement
new sharing behaviors without having to modify the signal-
ing protocol. This is based on the observation that temporal
sharing is an optimization that closely depends on the be-
havior of the service and is therefore best performed using
service-specific knowledge. In the remainder of this section
we describe how the signaling protocol Beagle provides ex-
tensible support for temporal sharing.

5.2 Design

A flow setup in Beagle is based on the standard three-
way handshake mechanism realized by the exchange of
three messages (SETUP REQUEST, SETUP RESPONSE
and SETUP CONFIRM) between neighboring routers
along the path of the flow. The SETUP REQUEST mes-
sage carries information about the traffic carried by the flow
and the QoS requirements for that flow. The Beagle en-
tity at each router along the path processes this information,
allocates resources required by the flow and forwards it to
the next hop. In addition to this basic flow information, a
SETUP REQUEST message may also carry temporal shar-
ing information if the flow is part of a flow group. This in-
formation is carried in the form of a TemporalSharing
object, and it specifies the type of temporal sharing, the spe-
cific group that the flow belongs to, and parameters that are
specific to the type of temporal sharing.

Control

Data

Classifier Scheduler

Beagle Peers

Core
Beagle

TS Manager

Module
Table

Class
Loader

Temporal Sharing EE

VPNConfPIP

Control

Data

Classifier Scheduler

Beagle Peers

Core
Beagle

TS Manager

Module
Table

Class
Loader

Temporal Sharing EE

VPNConfPIP

Figure 7. Beagle extensible temporal sharing
architecture

The information in the TemporalSharing object is
interpreted by dynamically downloaded AAs that imple-
ment support for a particular style of temporal sharing (such
as conference, VPN, etc.). These code modules execute
inside a temporal sharing execution environment (TSEE)
which is responsible for interacting with the Beagle entity at
that router to setup resources for flows with temporal shar-
ing behavior. Figure 7 shows the design of the temporal
sharing execution environment. The core Beagle module
provides basic signaling support. The Temporal Sharing
(TS) manager supports customizable temporal sharing opti-
mization through the execution of temporal sharing AAs.

Core Beagle uses the TS manager to optimize the band-
width allocated to flow groups. When it receives a request
that includes a temporal sharing object, it passes the request
to the TS manager. It will use the appropriate sharing mod-
ule to calculate the aggregate resource requirements for the
flow group, based on information stored in the request and
its internal state. Let us look at a simple example of confer-
encing application with N sources sending video streams of
bandwidth V . At any given time, any receiver only listens
in to one sender. When a router receives a first request for
a flow from this flow group, the conference sharing mod-
ule will return a bandwidth requirement for the group of V .
Later flow setup requests for this group will not change the
bandwidth requirements for the group, so the conference
sharing module will continue to return a bandwidth require-
ment of V .

5.3 API

The Beagle Temporal Sharing Interface (TSI) defines the
interface between Beagle and the active sharing modules.
Every sharing module must implement this interface. The
primary calls are an “Add Flow” and “Delete Flow” call;
Beagle issues these calls in response to a flow setup or tear

9

Proceedings of the DARPA Active Networks Conference and Exposition (DANCE�02)
0-7695-1564-9/02 $17.00 © 2002 IEEE

down request. In both cases, Beagle passes the temporal
sharing object that is part of the flow setup and tear down
request to the sharing module. Both calls return the aggre-
gate resource requirements for the flow group to which the
flow belongs.

The design of temporal sharing support in Beagle is
driven by the goal of keeping the active sharing modules
as simple as possible. Therefore, most of the functionality
required to implement temporal sharing such as the defini-
tion of group instances, allocation of resources for group
instances and arbitration of the shared resource during run-
time are all implemented in the core non-extensible part
of Beagle. The active sharing modules need only be con-
cerned with calculating the aggregate resources for a par-
ticular group instance. This isolates the active sharing mod-
ules from the details of having to deal with the traffic control
entities and simplifies the implementation of new sharing
behaviors.

5.4 Security and safety

The TSI was designed to provide robust and predictable
behavior in the presence of failures in the temporal shar-
ing execution environment by providing a very simple inter-
face that restricts the scope of actions that can be performed
by the active sharing modules. Specifically, if the tempo-
ral sharing module does not respond or returns an error or
an unacceptable bandwidth value (e.g. higher than the user
is allowed to allocate), Beagle ignores the temporal sharing
option and falls back on independent flow-based allocation.

5.5 Implementation

The active sharing modules are implemented use the Java
programming language based on Java’s support for safe-
execution of downloaded code modules, support for imple-
menting security policies, and wide-spread popularity. The
TSEE is implemented as a Java virtual machine process us-
ing JDK 1.1. The Beagle daemon is itself implemented in
C and allocates resources for a flow using the router control
interface (RCI) at a router.

The main thread of control in the TSEE is the TS man-
ager. The TS manager maintains a module table that has ref-
erences to downloaded sharing modules of a particular type.
The module table can also be used to implement caching
strategies. The TSEE also implements a class loader that
can dynamically load classes that implement a particular
sharing module given the code URL associated with that
module.

The TSI is specified as a Java interface specification.
Each active sharing module must define a class that imple-
ments this interface. Each sharing module can create multi-
ple threads. The TS manager thread can control how much

Ingress Meter

Ingress Meter

Ingress Meter

X

Egress Meter

A

B

C

Figure 8. Multiple ingress domains (A, B, C)
sending to single egress X

CPU is allocated to the sharing module by enforcing thread
priorities. The TS manager acts as an intermediary between
the Beagle daemon and the active sharing modules. It im-
plements a serialization protocol across the TCP connection
to the Beagle daemon that provides support for each TSI
call. Each TSI call by the Beagle daemon causes the TS
manager to invoke the corresponding method of the shar-
ing module of that particular type. The values returned by
the method invocation are serialized and passed back to the
Beagle daemon.

The temporal sharing module of the Beagle daemon im-
plements the other end of the serialization protocol between
the Beagle daemon and the TS manager. It provides an in-
terface for the rest of the Beagle daemon to utilize services
provided by the active sharing modules. Each TSI call is
handled as a request-response transaction over the TCP con-
nection. The temporal sharing module is also responsible
for dealing with all the error conditions that might occur
during any TSI transaction.

6 Dynamic SLAs for differentiated services

6.1 Motivation

The Differentiated Services (DiffServ) framework [8]
supports network quality of service using a simple network
core that treats packets belonging to one of a small num-
ber of service classes in the “same way”. Traffic is po-
liced at the entry points to the network according to service
level agreements (SLAs). The SLA [8, 7, 3] between the
customer (user or another service provider) and the service
provider defines the traffic contract and the guarantees that
the customer should receive from the network based on the
customer’s needs and the provider’s policies.

10

Proceedings of the DARPA Active Networks Conference and Exposition (DANCE�02)
0-7695-1564-9/02 $17.00 © 2002 IEEE

Simple SLAs require only static enforcement of the traf-
fic contract. An example is point-to-point SLA where the
traffic enforcement need only be done at the ingress. The
more interesting case of managing an SLA is when it in-
volves multiple ingress nodes (Figure 8). In such an SLA,
the user (typically an ASP) might want to control the traf-
fic distribution across the ingress points and customize the
distribution dynamically. For example in Figure 8, an ASP
may have multiple customers at sites A, B, and C, and it
may want to change the bandwidth distribution based on
how many customers are active at each site.

When the distribution of traffic across ingress nodes is
dynamic, using a static allocation of bandwidth to each
ingress point would require over-allocation and would lead
to wasted bandwidth. Being able to use an SLA that al-
lows the dynamic assignment of shares across ingress points
based on user’s current needs, is more efficient. This can be
done in a number of ways. One solution is that the user can
specify a set of rules that the NSP should use to determine
the bandwidth distribution. Rules would be of the form: if
condition X holds, then give weight Y to ingress node Z.
This however raises the question of how rich the language
for specifying the rules should be. Also, it is not clear how
easily user-specific factors, e.g. how many customers are
active, can be incorporated. We propose an alternative solu-
tion where users control the bandwidth distribution directly.

6.2 Design

We support traffic sharing across ingress nodes under
user control by allowing users to download active modules
onto the ingress routers. These active modules, which we
will call ingress meters, can monitor the traffic and collect
other statistics, and then decide how the user’s traffic share
should be distributed across the ingress routers. This results
in a set of weights, one for each ingress router. Coordi-
nation across ingress meters can be done in a centralized
or in a distributed fashion. Given that the number of ingress
routers will typically be small, a centralized design will typ-
ically suffice. In a centralized design, ingress meters peri-
odically report relevenant statistics to a meter coordinator,
which calculates ingress shares, and distribute them to the
ingress meters.

In this case, the base service is DiffServ, which has been
extended by an EE that can host ingress meters. There are
many ways of deploying such a service. A first option is
that the router has native DiffServ support, in which case it
should be possible to implement a simple EE that supports
dynamic SLAs. An alternative is that DiffServ is supported
through a service EE (e.g. Figure 4(a)) or a service AA
(e.g. Figure 4(b)). Our implementation uses the service EE
option, using Darwin as a starting point(see below).

6.3 API

The API that ingress meter AAs need from their execu-
tion environment has three types of calls. First, they must
be able to collect traffic statistics. Second, They must be
able to communicate with the meter coordinator (central-
ized design) or other ingress meters (distributed design);
they may also have to be able to communicate with other
control entities, for example to learn about external events
that may affect the traffic distribution. Finally, they must be
able to specify the bandwidth share on for that router in an
SLA. This is a simple call that must specify the SLA and
the bandwidth share.

6.4 Implementation

We have implemented DiffServ and dynamic SLAs in
the context of the Darwin system [14]. We first added Diff-
Serv traffic conditioning support to the input ports in the
dataplane, i.e. token bucket meter, a marker, and a dropper.
Next we extended the RCI so that control plane extensions
can set up traffic conditioning blocks and control their op-
eration.

The DiffServ EE is implemented as a variant of the Dar-
win delegate EE. Ingres meter AAs use the Darwin sup-
port for collecting traffic statistics and for communication.
Detailed traffic statistics can be selected by instructing the
packet classifier to forward certain classes of packets to a
traffic statistics module, which calculates and stores the in-
formation; the ingress router can then periodically retrieve
the traffic statistics information. The call that changes this
router’s share of an SLA’s bandwidth is implemented by a
simple method that translates share into a new set of param-
eters for the data plane traffic conditioning blocks.

6.5 Safety

The safety of calls for collecting traffic statistics and
for communication is inherited from Darwin. It is very
easy for the NSP to verify that the weights specified by the
ingress meters on all the ingress routers satisfy the SLA.
Each ingress router could periodically report all the shares
for all SLAs to a central control station, which could verify
that users are not violating the SLA. Note that compliance
with an SLA can be more complex than just verifying that
the aggregate bandwidth is below the SLA capacity. The
SLA can also include constraints such as ”no ingress router
can use more than 50% of the SLA capacity”.

7 Other examples

Besides the examples discussed in the previous three sec-
tions, we are working on several other examples of cus-

11

Proceedings of the DARPA Active Networks Conference and Exposition (DANCE�02)
0-7695-1564-9/02 $17.00 © 2002 IEEE

tomizable services. One example is End System-based
Multicast (ESM) [27]. ESM provides multicast service
based on a overlay that connects end-points and proxies run-
ning on active routers in the network. One of the advantages
of this approach compared with traditional IP multicast is
that intermediate ESM nodes can perform packet processing
on the multicast flows. We are exploring how this capability
can be used to support reliability and congestion control in
a customizable way. We are also developing customizable
services for video transcoding.

In the customization examples presented in this paper,
the API available to customization AAs ranges from ex-
tremely narrow (Beagle temporal sharing, management of
dynamic SLAs) to fairly broad (Darwin delegates). An in-
teresting question is how powerful the API “should be”.
There is of course no simple anser to this question. For
a particular service, the capabilities exposed by the cus-
tomization API will depend very strongly on how much
flexibility the provider is willing to give its customers; a
related issue is how much leverage the customer has in de-
manding control over the service. On a more technical note,
we found that the more narrow APIs were much easier to
implement and secure. They are also more elegant and it is
easier to justify why they are needed.

8 Related work

There are three areas of related work. The first area con-
sists of research in the architecture of active nodes. Work in
this area was discussed in Section 3. The second area con-
sists of research in customizing network functionality using
active networking. There are a number of projects that have
looked at customization.

The CANES project [5, 6] defines an active networking
architecture in which users can select the set of router func-
tions that can process their packets. Moreover, users can
provides parameters to these packet processing functions.
The CANES functions are in effect (local) service compo-
nents, which users can use to build more complex services.
The parameterization can be viewed as a restricted form of
customization as discussed in this paper. Concast [11] is
a network service allows users to deal in intelligent with
reverse path communication in multicast. User can specify
code that defines how packets that flow back to the multicast
source are combined. One can view this as a customizable
service following the architecture defined in this paper. The
base service is basic Concast with a default merging policy.

A number of groups have looked at using active net-
working to support the monitoring and managing of net-
works. One example is the Smart Packets project [32] at
BBN. Packets can carry diagnostic programs written in a
special-purpose language to diagnose the system. One can
view the smart packets as customizing diagnostics using an

extensible diagnostic service. Alternatively, one can look at
the extensible diagnostic support as being part of the basic
active node infrastructure (Node OS).

The ISI ASP project [4] has similar goals to the Dar-
win delegates discussed in Section 4. It allows users to dy-
namically install new control plane protocols. The equiv-
alent of the Darwin RCI is the PPI. There are also several
differences between ASP and Darwin delegates. The Dar-
win project focused on providing customizable QoS while
ASP focused on more general control plane protocols, e.g.
routing protocols and RSVP. Also, Darwin delegates require
specific data plane support (for example, some of the secu-
rity features require a hierarchical packet scheduler), while
ASP was designed to run on a generic Unix-based router.

A final area of related work is that of using active net-
working to support composable network services. Exam-
ple projects in this area include the Panda project [21] and
the Ninja project [25]. Both projects developed support for
path-based services, where multiple services could operate
on a flow along the path between the sender and the receiver.
We are not aware of any work on service customization in
this context.

9 Conclusions

Active networking a powerful technology that supports
the insertion of new functionality into the networking. In
this paper we looked at how active networking technology
can be used to customize network services.

We observed that users often want slightly different ver-
sions of network services such as multicast and network
quality of service. We propose to implement these services
as a base service that provides the basic service function-
ality and a customization module that allows users to cus-
tomize the function of the service. We compare this archi-
tecture with the traditional active networking architecture
based on execution environments and active applications.
We also present several examples of customizable network
services.

Acknowledgements

This research was sponsored in part by the De-
fense Advanced Research Project Agency an monitored
by AFRL/IFGA, Rome NY 13441-4505, under contract
F30602-99-1-0518.

The authors would like to thank the members of the Li-
bra group, specifically Yang-Hua Chu, An-Cheng Huang,
Sanjay Rao, Srini Seshan, and Hui Zhang, for the many in-
sightful discussions that helped in shaping this paper.

12

Proceedings of the DARPA Active Networks Conference and Exposition (DANCE�02)
0-7695-1564-9/02 $17.00 © 2002 IEEE

References

[1] D. S. Alexander, W. A. Arbaugh, M. W. Hicks, P. Kakkar,
A. D. Keromytis, J. T. Moore, C. A. Gunder, S. M. Nettles,
and J. M. Smith. The SwitchWare active network architec-
ture. IEEE Network, May/June 1998.

[2] S. Alexander, M. Shaw, S. Nettles, and J. Smith. Ac-
tive Bridging. In Proceedings of the SIGCOMM ’97 Sym-
posium on Communications Architectures and Protocols,
pages 101–111. ACM, September 1997.

[3] Y. Bernet, D. Durham, and F. Reichmeyer. Requirements
of Diff-serv Boundary Routers. Internet Draft, November
1998.

[4] S. Berson, R. Braden, T. Faber, and B. Lindell. The ASP EE:
An Active Network Execution Environment. In Paper Col-
lection DARPA Active Networks Conference and Exposition.
IEEE CS Press, 2002.

[5] S. Bhattacharjee, K. L. Calvert, and E. W. Zegura. An Ar-
chitecture for Active Networking. In High Performance Net-
working (HPN’97), White Plains, NY, April 1997.

[6] S. Bhattacharjee, K. L. Calvert, and E. W. Zegura. Conges-
tion Control and Caching in CANES. In Proceedings of ICC
’98, Atlanta, GA, 1998.

[7] M. Biegi, R. Jennings, S. Rao, and D. Verma. Supporting
Service Level Agreements using Differentiated Services. In-
ternet Draft, work-in-progress, November 1998.

[8] D. Black, S. Blake, M. Carlson, E. Davies, Z. Wang, and
W. Weiss. An Architecture for Differentiated Services. Net-
work Working Group, RFC 2475, December 1998.

[9] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin.
Resource Reservation Protocol (RSVP) – Version 1 Func-
tional Specification, Sept. 1997. IETF RFC 2205.

[10] K. Calvert. Architectural Framework for Active Networks,
December 2001. Version 1.1. Available from the web
through URL http://www.dcs.uky.edu/ calvert/arch-1-0.ps.

[11] K. L. Calvert, J. Griffioen, B. Mullins, A. Sehgal, and
S. Wen. Concast: Design and Implementation of an Ac-
tive Network Service. IEEE Journal on Selected Areas in
Communications, 19(3):–, March 2001.

[12] A. T. Campbell, H. G. D. Meer, M. E. Kounavis, K. Miki,
J. Vicente, and D. Villela. A Survey of Programmable Net-
works. ACM SIGCOMM Computer Communication Review,
29(2):7–23, April 1999.

[13] P. Chandra, Y.-H. Chu, A. Fisher, J. Gao, C. Kosak, T. S. E.
Ng, P. Steenkiste, E. Takahashi, and H. Zhang. Darwin:
Customizable Resource Management for Value-Added Net-
work Services. IEEE Network Magazine, 15(1):22–35, Jan-
uary/February 1998.

[14] P. Chandra, A. Fisher, C. Kosak, T. S. E. Ng, P. Steenkiste,
E. Takahashi, and H. Zhang. Darwin: Customizable Re-
source Management for Value-Added Network Services. In
Sixth International Conference on Network Protocols, pages
177–188, Austin, October 1998.

[15] P. Chandra, A. Fisher, and P. Steenkiste. Beagle: A Re-
source Allocation Protocol for an Application-Aware Inter-
net. Technical Report CMU-CS-98-150, Carnegie Mellon
University, August 1998.

[16] P. Chandra, P. Steenkiste, and A. Fisher. Extensible Signal-
ing for Temporal Sharing. IEEE Journal on Selected Areas
in Communications, 19(3):–, March 2001.

[17] P. R. Chandra. A Signaling Protocol for Value-added Net-
work Services. PhD thesis, Department of Electrical and
Computer Engineering, Carnegie Mellon University, 2000.

[18] D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner. Router
Plugins: A Software Architecture for Next Generation
Routers. In Proceedings of the ACM SIGCOMM ’98 con-
ference, pages 229–253. ACM, August/September 1998.

[19] L. Delgrossi and L. Berger. Internet Stream Protocol Ver-
sion 2 Protocol Specification - Version ST2+, August 1995.
Internet RFC 1819.

[20] N. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. Ramakr-
ishnan, and J. van der Merwe. A Flexible Model for Re-
source Management in Virtual Private Networks. In Pro-
ceedings of ACM SIGCOMM ’99 conference, pages 95–108,
Cambridge, September 1999.

[21] V. Ferreria, A. Rudenko, K. Eustice, R. Guy, V. Ramakr-
ishna, and P. Reiher. Panda: Middleware to Provide the Ben-
efits of Active Networks to Legacy Applications. In Paper
Collection DARPA Active Networks Conference and Exposi-
tion. IEEE CS Press, 2002.

[22] J. Gao and P. Steenkiste. An Access Control Architecture for
Programmable Routers. In 2001 IEEE Open Architectures
and Network Programming (OPENARCH’01), pages 15–24,
Anchorage, April 2001.

[23] J. Gao, P. Steenkiste, E. Takahashi, and A. Fisher. A Pro-
grammable Router Architecture Supporting Control Plane
Extensibility. IEEE Communications Magazine, special is-
sue on active and programmable networks, pages 152–159,
March 2000.

[24] J. Gao, P. Steenkiste, E. Takahashi, and A. Fisher. A Pro-
grammable Router Architecture Supporting Control Plane
Extensibility. CMU technical report, CMU-CS-00-109,
March 2000.

[25] S. Gribble, M. Welsh, R. von Behren, E. Brewer, and D. C.
et. al. The ninja architecture for robust internet-scale sys-
tems and services. Computer Networks, 35(4):473–497,
March 2001. Special issue on Pervasive Computing.

[26] A. Gupta, W. Howe, M. Moran, and Q. Nguyen. Resource
Sharing in Multi-Party Realtime Communication. In Pro-
ceedings of INFOCOM 95, pages 1230–1237, Boston, MA,
Apr. 1995.

[27] Y. hua Chu, S. Rao, S. Seshan, and H. Zhang. Enabling
Conferencing Applications on the Internet using an Over-
lay Multicast Architecture. In Proceedings of ACM SIG-
COMM’01 conference, pages –. ACM, August 2001.

[28] L. K. Lim, J. Gao, T. E. Ng, P. Chandra, P. Steenkiste, and
H. Zhang. Customizable Virtual Private Network Service
with QoS. Computer Networks, page to appear, 2000.

[29] W. Marcus, I. Hadzic, A. McAuley, and J. Smith. Protocol
Boosters: Applying Programmability to Network Infrastruc-
tures. IEEE Communications Magazine, 36(10):79–83, Oct.
1998.

[30] L. Peterson. Node OS and Interface Specification, Jan-
uary 2001. Available from the web through URL
http://www.cs.princeton.edu/nsg/papers/nodeos.ps.

13

Proceedings of the DARPA Active Networks Conference and Exposition (DANCE�02)
0-7695-1564-9/02 $17.00 © 2002 IEEE

[31] G. Phillips, B. Braden, J. Kann, and B. Lin-
dell. ASP PPI: An Active Execution Environ-
ment’s Protocol Programming Interface, May
1999. Available at URL http://www.isi.edu/active-
signal/ARP/DOCUMENTS/PPI.ps.

[32] B. Schwartz, A. Jackson, T. Strayer, W. Zhou, D. Rockwell,
and C. Partridge. Smart Packets for Active Networks. In
1999 IEEE Open Architectures and Network Programming
(OPENARCH’99), pages 90–97, New York, March 1999.

[33] I. Stoica, H. Zhang, and T. S. E. Ng. A Hierarchical Fair
Service Curve Algorithm for Link-Sharing, Real-Time and
Priority Service. In Proceedings of the SIGCOMM ’97 Sym-
posium on Communications Architectures and Protocols,
pages 249–262, Cannes, September 1997.

[34] E. Takahashi, P. Steenkiste, J. Gao, and A. Fisher. A Pro-
gramming Interface for Network Resource Management. In
1999 IEEE Open Architectures and Network Programming
(OPENARCH’99), pages 34–44, New York, March 1999.

[35] D. Tennenhouse, J. Smith, D. Sincoskie, D. Wetherall, and
G. Minden. A Survey of Active Networking Research. IEEE
Communications Magazine, 35(1):80–86, January 1997.

[36] D. Tennenhouse and D. Wetherall. Towards an Active
Network Architecture. Computer Communication Review,
26(2):5–18, April 1996.

[37] D. J. Wetherall, J. V. Guttag, and D. L. Tennenhouse. ANTS:
A toolkit for building and dynamically deploying network
protocols. In IEEE OPENARCH ’98, April 1998.

[38] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zap-
pala. RSVP: A New Resource Reservation Protocol. IEEE
Communications Magazine, 31(9):8–18, Sept. 1993.

14

Proceedings of the DARPA Active Networks Conference and Exposition (DANCE�02)
0-7695-1564-9/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

