
 1

Panda: Middleware to Provide the Benefits of Active Networks to
Legacy Applications1

Vincent Ferreria, Alexey Rudenko, Kevin Eustice, Richard Guy, V. Ramakrishna, and
Peter Reiher

UCLA

1 This work was supported under DARPA contract number N66001-98-C-8512.

Abstract

Panda is middleware designed to bring the
benefits of active networks to applications not
written with active networks in mind. This paper
describes the architecture and implementation of
Panda, and provides data on the overheads
incurred and performance benefits achieved. The
paper also discusses some of the key issues of
automatically and transparently intercepting data
streams and converting them into active streams,
including interception mechanisms, automated
planning facilities, and allowing user and
application control of the middleware.

1. Introduction

Computer networks continue to improve in
accessibility, speed, and coverage, leading users
to rely heavily on connectivity for normal
activities. However, the widely varying
characteristics of networks often cause problems
for their use, since applications typically assume
some minimal quality of service from the
network. If the network in its current state cannot
provide that quality, many applications work
poorly or not at all.

In many cases, more intelligent handling of
data in the network could ameliorate these
problems and allow applications to work well
even under difficult network conditions. Active
networks offer this promise by allowing
substantial programmability of the network.
However, most existing active network systems
work on the assumption that new applications are
written so that they explicitly instruct the network
on how to handle their data streams. This
approach offers no benefits to applications that
were written before active networks were created,

nor to later applications that were not written with
the possibilities offered by active networks in
mind. Even applications that were written for
active networks are limited by the creativity and
foresight of the application designer, who must
become not only an expert in his own application
area, but in active networking as well, to make
effective use of the new possibilities. In many
cases, certain sets of operations (such as
cryptographic and authentication operations,
lossless compression, or alternative routing) may
be commonly useful for different applications.
Panda could provide application writers the
benefits of these operation sets when their
applications work in active environments without
requiring the application writers to code them for
active networks.

Panda is a middleware system that provides
the benefits of active networks to unaware
applications. Panda traps data streams from those
applications, converts them to active network
packet streams, determines the network
conditions, makes a plan of which adaptations to
apply to the streams to deal with prevailing
conditions, and deploys the code necessary to
ensure proper handling of the streams. Panda is
transparent to the applications it services, though
of course any permanent alterations it makes in
the data stream will be visible at the destination.

Consider the following scenario. Two users
on portable devices are talking through an
existing video phone program. One user is in his
home, connected by a moderately high-speed
wireless network to a base station in his house.
The other is in a public place, using a telephone
dialup line to connect to his office machine.
Between the base station and the office machine,
the communication goes over the Internet. Since
the application in use may have been written with
the assumption of wired networks with fairly high

 2

and uniform speeds and bandwidths, very likely
the limited bandwidth of the dialup line and the
possible interference on the wireless link will
cause problems for the video and audio. Further,
the users may be concerned about the possible
loss of privacy because their transmissions are
crossing a wireless link and the untrustworthy
Internet.

The audio packets could be given sufficient
priority to ensure their timely delivery, the video
packets could be selectively dropped to ensure
that the most useful frames make use of the
limited bandwidth, and all communications could
be encrypted to provide privacy. However, the
designers of the application did none of these
things. Further, in some situations the remedies to
be applied may be best applied somewhere other
than at the application end points. For example,
the home user’s portable machine may lack the
power to perform strong cryptography, while his
house’s base station is quite capable of doing so.
Active networks could easily handle all of these
problems, but this particular application was also
not written with active networks in mind.

Panda provides a solution for the problems of
matching legacy applications to the new power of
active networks. In the prior example, Panda
would automatically trap the data streams
representing the video and audio. After
examining the conditions of the networks and
machines involved, Panda could choose
adaptations to prioritize the audio, selectively
drop video frames, and suitably encrypt at the
proper place in the network. Doing so essentially
requires that Panda automatically create a plan for
determining which adapters to deploy in which
locations. Panda would deploy those adaptations,
convert the application’s data packets into active
network messages, and ensure that these messages
were delivered to the Panda active network
components at all participating nodes.

The model foreseen for Panda use is that a
wide variety of adapters would be available for
Panda’s use. Some would be highly general,
some quite specific to certain types of data
streams or even certain applications. A general
planning facility would choose the proper set of
adapters to meet the prevailing conditions. If
necessary, application writers or users could write
new adapters to handle previously unforeseen
conditions or special needs of their data streams,
but even without such specialized code Panda
should be able to offer useful services to many
applications. When appropriate, users and
application writers should also be able to offer
Panda advice on how to handle their data streams.

In essence, Panda would offer a useful service to
users who know nothing about Panda or active
networks, while allowing for even greater utility
for those who do understand those technologies.

Panda is intended to run on fairly powerful
nodes, since it does significant processing on
packets. Panda would not be suitable for use on a
core router, for example, but would be suitable for
a router providing access between a subnetwork
and the backbone, or on a gateway to a wireless
network, or perhaps on a server machine attached
to a router, assuming that relatively few of the
packets passing through that router would need to
be diverted to the Panda server. Panda provides
significant benefits to data streams, but it does so
at a cost, and thus its deployment points should be
carefully considered.

This paper describes the basic architecture
and current implementation of the Panda system.
The paper also describes demo nstrations of the
efficacy of Panda and presents performance data
on the system. It discusses the lessons learned
during the Panda project about transparent
adaptation of data streams, composition of
multiple adapters, and automated planning for
active networks.

2. Panda Architecture

To ease implementation, Panda is built on top
of ANTS, an existing active network execution
environment (EE). This EE provides Panda with
basic active networking services, such as
executing code at a node on behalf of a packet,
deploying adaptation code to the required nodes
in the network, etc. The ANTS execution
environment [1] is a Java toolkit that provides a
protocol-based programming model for
customizing packet forwarding through a network
using a data format called capsules. Simple use of
ANTS typically carries the programs to be
executed in the capsule along with the data and
control fields. While ANTS did not perfectly
match the Panda model of active networks, it
required only minor alterations to support Panda.

Panda currently supports UDP-based
application data streams. The underlying ANTS
system makes no guarantees regarding the
delivery of capsules or the order in which
capsules will be received at the destination, much
like UDP. Also, multimedia applications, which
tend to use UDP, are good candidates to benefit
from a distributed adaptation system since they
put heavy demands on the network and often
perform poorly under degraded network

 3

conditions, since random loss of significant
numbers of multimedia packets tends to seriously
degrade the quality of the video and audio. The
Panda approach could be applied to TCP streams,
but would require the addition of a reliable data
delivery model suitable for TCP applications. [2]
demonstrates that a TCP-friendly reliability model
can be built at reasonable cost, but Panda does not
currently include such a model.

Currently, Panda supports unicast
applications only, although it has been used for
simple multicast-like operations like forwarding
incoming data to two different outgoing branches.

Figure 1. The Panda Architecture

The Panda architecture has four modules,
each of which addresses a major task in the
middleware system (Figure 1). The Panda
Interception Component, or PIC, is responsible
for obtaining data from clients. The Panda
Adaptation Component, or PAC, deploys and runs
adapters for multiple client applications. The
Planner chooses a set of adapters that solve the
network limitations to meet the users
requirements and preferences. The Panda
Observation Component, or POC, deals with
gathering and reporting information required for
all other Panda components, including planning.
Figure 1 shows a Panda installation on a source
node, with the arrows indicating the flow of a
packet from the unaware application, through the
PIC to the PAC, which passes it to relevant
adaptors. When the adaptors are finished, they
give the packet to ANTS, which invokes node
operating system services to forward it to its
destination. The shaded boxes are the four Panda
components plus Panda adapters, the part of the
system reasonably definable as Panda.

The Panda Interception Component (PIC)
must intercept all data streams that Panda may
wish to handle. Depending on the facilities

provided by the host operating system, this
interception can be accomplished in different
ways. The current implementation uses a Linux
loadable kernel module (LKM) to intercept socket
calls. Alternatively, the firewalling capabilities
built in the Linux OS could also allow the
necessary redirection and masquerading of
connections, or Linux IPtables could handle this
problem. Systems like the x-kernel [3] and Scout
[4] have built-in capabilities to control handling
of network connections. Regardless of the
interception mechanism used, the PIC must also
have some way to know which data streams to
intercept.

The Panda Adaptation Component (PAC) is
the core of the Panda system. It installs the
necessary adapters for a data stream, delivers
capsules to the proper adapters, and generally
controls the flow of a data stream through Panda
nodes. Because these responsibilities heavily
overlap the typical behavior of an execution
environment, this portion of Panda is tightly
coupled to the underlying EE.

Panda adapters are modules that accept a data
packet and can perform arbitrary modifications on
that packet, including dropping it or converting it
into more than one packet. Panda may deploy
more than one adapter for a single data stream on
a particular node, so the system must allow for the
output of one adapter to serve as the input for the
next. Since a packet can be dropped, Panda must
also allow for situations where not all adapters
deployed on a node are actually invoked to handle
a particular packet.

During execution, an adapter may store data
at several different locations in the Panda
environment. The ANTS node cache and the
POC provide interfaces to store many distinct data
items. The Panda system also provides an
additional interface to dynamically store data
within the capsule, known as the capsule cache.
The content of the capsule cache is maintained as
the capsule traverses the network and is available
to any adapter that runs on this capsule. The
capsule cache allows adapters on different nodes
to add information specific to their operations to
the capsule in a general and commonly known
way.

The Panda Observation Component, or POC
can be viewed as the central service for messaging
between all Panda components (analogous to a
CORBA ORB). A typical Panda node has a POC
running locally. Two types of components
connect to the POC: sensors and clients. Sensors
generate information. Clients obtain the data
generated by the sensor via the POC. In some

PAC

PIC

POC

Node OS

ANTS

Unaware
App

Adaptors

Planner

PAC

PIC

POC

Node OS

ANTS

Unaware
App

Adaptors

Planner

 4

cases a component may be both a client and a
sensor to the POC; for example, a component that
provides hysteresis -type functions on data to a
client could obtain the original data from another
POC sensor.

The Planner is the most important client of
the POC in the Panda system. The Planner uses
the POC to determine the current network
conditions and other information needed to
determine a suitable plan for an application’s data
stream. The Planner also can optionally accept
user preferences to better tailor the plan to suit a
particular user’s needs. User preferences can be
implemented as a POC sensor that interacts with
the user, and this configuration reduces the
complexity of the Planner as it only needs to be a
POC client to obtain this additional information
regarding the user. The Planner is a sophisticated
facility that combines distributed data gathering,
temporary planning at each virtual link between
two Panda nodes on a data path, and a centralized
planning facility that uses the data gathered from
all other nodes.

Panda is capable of supporting multiple
different planners. Initially, Panda used a very
simple template-based planner. This simple
planner has been replaced by a far more powerful
planner based on heuristic search [5]. In brief,
this planner uses information about the data
stream, network and node conditions, and adaptor
availability to search the space of all possible
plans for the best plan. Heuristics based on
constraints of adaptations and observations of
how adaptations should be deployed allow the
planner to create high quality plans in much less
time than an exhaustive search would require.
Despite examining less of the solution space, the
Panda planner typically chooses exactly the same
plan chosen by a full exhaustive search, as
demonstrated by thousands of experiments under
a wide variety of conditions. Planning runs on the
node that initiates the data stream.

Panda, under normal conditions, works
transparently using automated planning; the
application programmer or user need not know
anything about it. Sometimes being less
transparent may be valuable. An application may
be aware of the active network; it may have better
knowledge of critical network and system
conditions. Therefore, an application programmer
can control sockets intercepted by Panda through
a standard socket API. The API allows the
applications to control the planning process. For
example, the application may provide its own
plan, or it could alter Panda’s plan. Panda

provides finer mechanisms to influence planning,
as well.

Panda also provides a user interface so that
users can set preferences for how Panda will
handle their data streams. Users have the option
of selecting which streams and data types to adapt
and with what priority. Voice transmission may
have higher priority than bulk data transfer, for
example. Users can choose data fidelity levels,
such as minimum tolerated image resolution.
Other options include security level desired and
communication delay constraints. All these
preferences are used as input by Panda when it
performs its automated planning.

There are other interface features that are not
directly related to Panda. The application can use
an API to communicate with the system to obtain
the latest information about the system and
network conditions. When appropriate, the
application can use such information to trigger
Panda replanning.

The Panda project concentrated on the
feasibility of the core idea and several issues key
to the notion of application-unaware use of active
networks. Thus, the existing system does not
address all relevant issues for an active network
middleware component. First, Panda uses only
the ANTS mechanism for code transport, which is
not ideal for its purposes. Second, Panda does not
address any security issues involved in providing
a distributed adaptation service, though associated
research [6] has addressed some important
security issues. Third, since Panda works with
UDP streams, it does not provide reliable data
delivery or recovery of failed adaptors or other
Panda components, though again associated
research [2] addresses these issues. Finally,
Panda does nothing with routing, though alternate
routing policies could be beneficial.

3. Panda Implementation

3.1. Basic Implementation Details

The current Panda system has
implementations of the PIC, PAC, and planning
components, in addition to various adapters. The
POC is under development. Panda is written in
Java, with the exception of the PIC, which
contains a Linux LKM (written in C) and a JNI
interface to control its operation. The PIC and
PAC contain approximately nine thousand lines of
code, not including code for adapters. The
planner consists of around five thousand lines of

 5

code, plus some code to interface the other Panda
components to the planner.

Panda is built on top of a modified version of
the ANTS 1.2 distribution. The most significant
change to ANTS was to support larger capsules –
larger in both size of code and size of the data
sent over the network. Additionally, Panda
required changes to the ANTS dynamic code-
loading system to allow capsule code to be loaded
from any node. Also, instead of being a
permanent part of a particular protocol, under
Panda a given adaptor may be used in many
different situations, which requires alteration to
ANTS dynamic code-loading, as well. These
changes break the fundamental principles of how
the ANTS system works, but these changes are
necessary to run Panda.

Panda runs on the Linux operating system
with kernels from the 2.0 or 2.2 series. It requires
a JVM version 1.1 or higher. It has also run on
Janos [7], using a customized version of the Kaffe
VM [8]. The kernel module of the PIC needed to
be reimplemented to work in the Janos
environment, but the Java interface to the PIC
remained the same, only requiring minor Java
code changes to cope with two different
interception implementations.

3.2. PIC Implementation

The current Panda PIC is a LKM stacked on
top of the native networking functions to provide
additional control over the proxy and
masquerading facilities built into Linux. Using a
kernel module for interception allows Panda to
intercept any application’s data stream running on
the node, regardless of how the application is
linked or what libraries it uses. Panda receives an
application’s data at the system-call level before
any network-level transformations have occurred,
such as segmentation or the addition of
checksums. Unfortunately, this approach is
subject to any user-level buffering that may occur
when using standard I/O libraries. Panda also has
no access to any information that is present in a
user-level networking interface, if one is used.

In the case of UDP communications, the
middleware opens a new UDP socket for
interception and performs a LKM sockopt()
informing the LKM that this socket wishes to
intercept certain UDP packets. The LKM diverts
any outgoing datagram that matches the intercept
description from the original destination to the
interception UDP socket opened by the
middleware service by changing the destination
address of the packet before it reaches the normal

kernel networking code. The original destination
address is stored in the module in a per-socket
data structure. After receiving a diverted
datagram on the interception socket, the
middleware service issues an LKM sockopt() to
obtain the packet’s original destination address.
At this point, the middleware is now able to send
the payload over the active network.

The Panda middleware at the destination
node strips the active network components from
the datagram and sends the non-active datagram
to the real destination application, using the LKM
to masquerade as the original source. As in
packet interception, the middleware makes use of
a LKM sockopt() to control the masquerade
address for the packet. The middleware sends the
packet over a socket, and the LKM in turn makes
use of facilities in the standard Linux kernel
networking code to perform masquerading on the
packet.

UDP communication is connectionless, so it
is unnecessary for an application to send a close
signal over the network to another computer. But
without a close signal, the Panda system cannot
reliably determine when to free resources
associated with a data flow. To solve this
problem, the LKM watches for UDP socket closes
and sends a close signal to any interception socket
that has intercepted data from the closing socket.

Interception is initially performed on UDP
packets destined for well-known port numbers.
Since most applications make use of well-known
port numbers to reach standard services on a
server, this has not proved to be a limitation.
While this approach is certainly less flexible than
interception based on signatures that may be
found in the data stream itself, it incurs less
overhead and latency to the applications that
cannot receive benefit from the middleware
service.

Interception can also occur on other packets
or connections that are related to the application,
but not on a well known port number. For
instance, in a TFTP file transfer, only the initial
file request is sent to a well-known port numb er;
the data transfer and acknowledgement packets
are sent to dynamically assigned port numbers
chosen by the operating system. In these cases,
the new port number to intercept can be
determined from the source address or from
information in the payload.

3.3. PAC Implementation

. The PAC is implemented as an ANTS
application that handles data from multiple user

 6

applications and converts the data into capsules
that are sent over the active network. At the
destination, the PAC removes the data from the
capsule and delivers it to the receiving
application. The design of ANTS does not
require a Panda data stream to pass through the
PAC at intermediate nodes, even if adaptations
are performed there, other than during the
planning phase at the start of connection setup.

3.4. Panda Adapter Implementation

Adapters in the Panda system are placed in a
special portion of an ANTS capsule, with one
adapter per capsule type. This placement
provides a number of benefits and also allows
reuse of much existing capsule code with a
minimum of changes. One of these benefits is
that the loading of capsule code to a node is
handled by the ANTS system. Additionally,
Panda benefits from any capsule-code security
mechanisms that are built into ANTS when
loading capsules at a node.

In Panda, adapters have complete control
over the capsule, including routing and
transformation. Panda is designed to provide as
much flexibility as possible in the adapters it can
use. This decision also reduces the size and
complexity of the Panda code resident in the
capsule by delegating routing and forwarding to
an adapter.

Panda creates a plan of which adapters to
deploy to allow the data capsules to reach their
destination and receive the special treatment
required by current network conditions. When a
Panda capsule begins evaluation at a node, it does
not know what adapters need to be run. The plan
access method determines which adapters a
capsule should run. To support different styles of
planning, there are three plan access methods built
into Panda. First, the plan could be embedded
into the capsule. Second, the plan could be in the
ANTS node cache. (This method is used for
Panda’s heuristic-based planner.) Finally, the
capsule can visit the planner on the current node
to determine the set of adapters to run there. A
capsule may try any combination of these plan
access methods, depending on how the capsule
was initialized. Should all of these methods fail
to provide a set of adapters to run, as in the case
where a capsule is forwarded along an unexpected
link, a simple shortest-path forwarding routine
built into the data capsule is run.

Once a set of adapters is found at a node,
control of execution is transferred to the first
adapter, which has complete control over the

capsule. It may choose to transform the payload
or headers (including the planning information),
forward the capsule, or run the next adapter. The
list of adapters to run is kept in memory, and the
currently executing adapter can either call the
next adapter in the list or terminate execution of
the capsule after it has performed its functions.
Most adapters will simply call the next adapter on
the list until the end of the list is reached, where
capsule execution will terminate. This includes
forwarding/routing adapters, which should be
normally placed at the end of the list of adapters
to run. Adapters typically trust each other. Issues
of handling adapters that do not trust each other
are handled by excluding untrustworthy adapters
in the planning phase.

3.5. POC Implementation

The POC must accept sensor information
from various sensors, including ones that do not
reside on the local node. To allow for different
types of POC sensors to be built, the POC
employs a common modular interface to add and
query sensors. This mo dular interface maps
neatly into the Java system. This system can also
integrate with existing monitoring systems, as the
POC sensor module can simply act as a bridge
between the POC and the component that
performs the actual monitoring.

Clients to the POC are typically other Panda
components. POC clients can determine the
available sensors, add and remove sensors, and
obtain information from a sensor attached to the
POC. Adapters can act as either sensors or clients
of the POC, although because adapters are
implemented as capsules, they cannot
communicate with the POC without special
provisions. For operations where the data is not
time-sensitive, the client can get POC information
and store information as a POC sensor in the
ANTS node cache. Periodically, the PAC will
examine the contents of the node cache and act as
a proxy to the POC for the adapters. This method
of communication with the POC lessens the
amount of time the adapter spends performing its
role as a sensor or client. The adapter also has the
ability to communicate with the POC through the
use of an ANTS extension. After finding the POC
extension on a node, an adapter acts as any other
client or sensor to the POC.

POC clients usually run on the same node as
the POC. However, many clients, such as the
Planner, need access to information that resides
on other nodes. Thus, the POC implements a
gateway module to query information that resides

 7

on a remote POC. With the module, a client asks
its local POC for information residing on a remote
POC, and the gateway module obtains the
information from the remote POC and sends it
transparently to the client on the local machine,
using underlying Panda out-of-band
communications facilities. The gateway module
can be implemented as a standard client and
server to the local POC that runs on all nodes.

The POC currently uses very simple sensors,
at the moment. More sophisticated sensors could
be added, at the cost of their development. A
better solution would be a close integration of the
POC with an existing active network sensing and
management facility. In the past, Panda has been
successfully attached to Nestor [9], and
investigating further use of Nestor with Panda
would be valuable.

3.6. Panda Planner Implementation

The Panda planner runs a simp le protocol to
gather all information necessary to build its plan.
This protocol requires essentially one round trip
from source to destination and back before all
information is available to the planner, with slight
extra overhead because some processing is
required at participant nodes during the round trip.
Thus, gathering the data and performing the
heuristic search can take some time. Therefore,
Panda also creates a temporary plan quickly, to
allow data to start flowing before the normal
planning procedure completes. This temporary
plan is built on a per-node basis, with each node
using purely local information from itself and the
next Panda node to determine which adapters to
deploy on those nodes. These temporary plans
can be very far from optimal, but they allow some
data to flow while the full planning procedure
occurs. Because network conditions can change
substantially during the lifetime of a data stream,
the original plan may become ineffective, so
Panda supports replanning. The mechanics of
installing the new plan are essentially the same as
those of switching from the temporary plan to the
full plan at the start of the data stream.

3.7. Sample Panda Applications

 An early application of Panda assisted in
transmitting a video from a server to two
destinations with differing link throughputs.
Without Panda, the server would have to send a
customized version of the video stream to each
client to provide them with the maximum video

fidelity attainable over their respective
connections. With Panda, we used two adapters
to achieve a better effect. The first adapter
duplicated a single, original quality unicast video
stream from the server and forwarded it over
high-quality links to two intermediate nodes. The
second adapter was run at these intermediate
nodes and filtered the video stream to meet the
individual throughput restrictions to the clients,
who thus each received the best possible quality
of service for their connectivity while reducing
the throughput and computation load on the
server.

 A more complex application of Panda
involved multiple components from UC Berkeley,
the University of Utah, ISI, and Columbia
University. In this scenario, a Berkeley Ninja
server [10] sent a video stream accompanying a
presentation to a client connected through an
overloaded link. The video stream contained
multiple versions of the video, each encoded at a
different quality. Panda intercepted the video
stream and performed two actions. First, it set up
a virtual active network (VAN) from the source to
the destination node using software designed by
Columbia [11]. The VAN used an active form of
RSVP [12] built by ISI to guarantee the
throughput over the congested links. At an
intermediate node running Panda and Janos [7],
an adapter only forwarded the highest quality
version of the video stream that the client could
receive.

Another demonstration of Panda also
involved interoperation with UC Berkeley’s
Ninja, Columbia’s Virtual Active Networks and
Nestor, and the University of Utah’s Janos
system. The scenario for the demonstration was a
videoconference, with two different video/audio
sessions being streamed to a third participant, in
an extended Y-configuration, through a
heterogeneous network with a variety of
problems. Network problems included a packet
storm on the wired segment, as well as extensive
wireless competition. In order to deliver
acceptable video and audio, network conditions
had to be analyzed by Nestor [9], and the media
appropriately adapted. Adaptation in this case
was a selective layer-based distillation of the
video, encoded in the WaveVideo wavelet codec
[13], based on prioritization of the streams.
Prioritization was determined by a bandwidth
analysis of the audio traffic, hypothesizing that
more audio traffic would indicate a speaker. Due
to the tremendous number of packets from the
videoconferencing sessions, the final wireless link
was incapable of delivering acceptable video for

 8

both senders. Thus, Panda was required to
selectively drop packets from the less desirable
session, while maximizing the quality of the
“focused” session. The end results were usable
video streams with the higher resolution stream
dynamically switched to the camera showing the
current speaker.

4. Panda Performance

4.1. System Overheads

Panda puts substantial code (itself, ANTS,
and adapter code) in the path of packets it
intercepts. The overheads associated with this
code determine the domains for which use of
Panda will be beneficial.

The figures in this section concentrate
primarily on the latency induced by Panda, though
some data on achievable throughput is also
presented. The data covers minimum possible
latency with Panda, the latency effects of
including multiple participating Panda nodes, and
the latencies induced by adding minimal adaptors

and realistic adaptors. Error bars on all figures
show the value of standard error, unless otherwise
indicated.

One fundamental overhead is the additional
latency of delivering a packet. The following
method was applied to measure one-way packet
latency. The packets were stamped with the local
time on the source machine. Upon the arrival at
the destination machine the stamped time was
subtracted from the destination local time to
obtain measured time delivery. The
synchronization of the source and destination
machines' clocks was done with NTP. The NTP
server was located on the destination node. The
source node synchronized itself to the destination
local time before the first packet was sent to the
destination. Then 20,000 packets were sent to the
destination. After the last packet was delivered,
the source machine measured the skewing value.

It was presumed that skewing grows uniformly by
time. The actual time delivery was calculated
with a formula for each data packet n:

ActualTimeDelivery(n) =

measuredTimeDelivery(n) - n
ueskewingVal

?
000,20

The connection was tested with twisted-pair
sequential connections of up to four computers.
Dell Inspiron 3500 laptops with 333 MHz
processors were used for one set of tests and
Hewlett Packard Omnibook 4150 laptops with
500 MHz processors for another set of tests; all
machines used Linux Red Hat 7.0 with the 2.2.16
kernel. Xircom RealPort2 Ethernet 10/100
PCMCIA cards were used for the network
connection between the machines. The source
and destination machines ran a user application
and the Panda code concurrently. The priority of
the user application was set lower on the source

Figure 2. Packet delivery latency

0

2

4

6

8

1 0

1 2

1 4

1 6

1 8

no
 Pa

nd
a

2 n
od

es,
 0

ad
ap

ter
s

3 n
od

es,
 0

 ad
ap

ter
s

4 n
od

es
, 0

 ad
ap

ter
s

4 n
od

es
, 1

 ad
ap

ter

4 n
od

es,
 2

 ad
ap

ters

4 n
od

es,
 3

 ad
ap

ters

4 n
od

es
, 4

 ad
ap

ter
s

4 n
od

es,
 5

 ad
ap

ter
s

La
te

nc
y

(m
se

c)

 9

machine and higher on the destination machine to
ensure proper allocations of resources.

Throughput of the network links is varied
among 150 Kbps, 800 Kbps, 2000 Kbps, and
5000 Kbps using CBQ.

Figure 2 presents packet delivery latency for
different packet sizes. The packet delivery
latency also contains the adaptation latency.
Figure 2 shows that adding Panda to a data stream
increases its latency 50 to 150%, with longer
packets seeing less effect. Adding more Panda-
enabled nodes or more adapters modestly
increases the delay for each addition.

Figure 3 presents the latency of inserting
adapters that do nothing. All adapters were

deployed on a single node of the connection for
each bar. Without Panda no adapters can be
deployed, so the extra latency for that case is
defined to be zero. Every Panda node always runs
at least one forward adapter, whose only task is to
forward a packet to the next node after all other
adapters are executed. A number of forward
adapters equal to the number of connection nodes
is always present in a Panda connection but this is
not considered in the adapter counts used on these
graphs.

0
10
20
30
40
50
60

1k 2k 4k 8k

Packet size (kilobytes)

L
at

en
cy

 (
m

se
c)

no Panda
2 nodes, 0adapters
3 nodes, 0 adapters
4 nodes, 0 adapters
4 nodes, 1 adapter
4 nodes, 2 adapters
4 nodes, 3 adapters
4 nodes, 4 adapters
4 nodes, 5 adapters

Figure 3. Null adapter latency

0

5

10

15

20

25

Panda Panda & Resolution Drop Panda & Resolution Drop
& Encryption

La
te

nc
y

(m
se

c)

Inspiron (null-adapters)

Inspiron (WaveVideo)

HP (WaveVideo)

Figure 4. Latency of running real adapters

 10

Figure 4 presents the latency of the
adaptation with real adapters. This figure and
figure 5 were obtained by running a WaveVideo
application on the same configuration used
throughout this section, using adapters that
filtered the video and/or performed encryption
and decryption. Since real adaptors are often
CPU-bound, more powerful machines achieved
lower latency, as shown in figure 4.

Figure 6 shows how Panda throughput grows
with packet size. As expected, larger packets
achieve higher throughput. Error bars represent
95% confidence intervals.

The planning procedure consists of planning
data-gathering, plan calculation, and plan

deployment. Planning data-gathering takes one
round trip; the source node forwards the data
gathering message to the destination node and
waits for its return. Planning data-gathering for
the four Panda nodes in the test configuration
takes 108 +/- 2.85 milliseconds.

Figure 6 shows the latency of plan calculation
for a connection that may require no adapters, or
just a Resolution Drop adapter, or both Resolution
Drop and Encryptor/Decryptor adapters. The
bandwidth of the links was varied, but the graph
shows that plan calculation latency does not
depend on the available bandwidth.

0
100
200
300
400
500
600
700
800
900

150 800 2000 5000

Bandwidth (kbps)

La
te

nc
y

(m
se

c)

no adapters

Resolution Drop

Resolution Drop & Encryption

Figure 5. Plan calculation overhead

0
200
400
600
800

1000
1200
1400
1600
1800

1k 2k 4k 8k

Packet size (kilobytes)

T
h

ro
u

g
h

p
u

t
(k

b
p

s)

Figure 6. Panda throughput

 11

The latency for deploying the adapters
selected by the planner depends on adapter size
and the available link bandwidth, as shown in
figure 7. Resolution Drop is a very small adapter
that contains a few lines of code. Encryption is a
heavyweight adapter that processes every
character of user data to perform DES encryption.
The larger the adapter, the longer it takes to
deploy it. The deployment latency does not
depend on bandwidth unless it is less than 150

Kbps.

4.2. Panda Benefits

Panda is worth using only if the benefits it
offers outweigh the overheads. For some
benefits, such as encryption, quantifying the
benefit is hard, particularly for purposes of
comparison to latency overheads. Here we

0
5

10
15
20
25
30
35
40
45
50

1 9 17 25 33 41 49 57 65 73 81 89 97 105

P
S

N
R

Internet

Panda & Resolution Drop

Panda & Resolution Drop & Encryption

WIthout Panda

Figure 7. PSNR for Wavevideo application

0
50

100
150
200
250
300
350
400

150 800 2000 5000

Bandwidth (kpbs)

La
te

nc
y

(m
se

c)

no adapters

Resolution Drop

Resolution Drop & Encryption

Figure 8. Plan deployment latency

 12

present benefit metrics that are more quantifiable
and take the latency overheads into account. In
particular, we present improvements in the Peak
Signal-to-Noise Ratio (PSNR) for the WaveVideo
application discussed earlier. Figure 8 presents
PSNR luminance on Dell Inspiron 3500 machines
with a link bandwidth limited to 150 Kbps.

Without Panda, the PSNR curve declines
when the channel is saturated and more or less
random video packets are dropped. Panda, using
the Resolution Drop adapter, intelligently adjusts
to the limited bandwidth by dropping packets
representing lower resolution video components.
As a result , once Panda has completed its
planning phase and deployed its adapters, its
PSNR curve improves and exceeds the non-Panda
curve. The PSNR performance of Panda with
Resolution Drop and Encryption adaptation in
some areas can be even better than Panda with
Resolution Drop only; this is due to helpful
buffering effects caused by the extra delay of
encryption.

5. Related Work

Panda is the intellectual descendant of
Conductor [14]. Conductor is a TCP-based open
architecture framework providing a distributed,
coordinated adaptation facility. Similar to Panda,
Conductor supports application transparent
interception and distributed, coordinated
adaptation of the network stream. Unlike Panda,
Conductor offers an extensive security model, as
well as a reliability model designed for adaptation
called semantic segmentation. As Conductor is a
TCP-based framework, the adaptation library for
Conductor is substantially different than Panda’s,
focusing on HTTP, POP, and other stream-based
adaptations.

The Protocol Boosters [15] adaptation
framework provides a general approach to
network-level adaptation. The framework allows
either a single adaptation module or a pair of
modules to be transparently deployed, adding new
features to existing protocols, such as forward
error correction or fast retransmission. Boosters
typically provide lossless adaptation, since the
system provides no support for ensuring reliable
delivery if packets intended for delivery are
generated, dropped, or permanently altered by a
booster. Boosters are composable, but the system
does not provide support for selecting a set of
boosters that will perform well together. Panda
substantially differs from Protocol Boosters in its

planning capabilities, as well as in its support for
lossy adaptation.

Transformer Tunnels [16] use IP tunneling to
alter the behavior of a protocol over a
troublesome link. Once created, a transformation
function is applied to all data flowing through
each tunnel. Generally, Transformer Tunnels are
used to provide protocol-independent adaptations,
such as consolidation of packets, scheduling of
transmissions to preserve battery power,
encryption, lossless compression, and buffering.
Transformer Tunnels are transparent to
applications and may be interoperable with
application-level adaptation provided by proxies.
However, no mechanism is provided to compose
transformation functions or to coordinate
transformations with externally provided
adaptations. Panda’s adaptor model allows this
composability; additionally the Panda Planner
coordinates various adaptations across multiple
links.

Proxies are often used to handle single
troublesome links, particularly links close to
client nodes. One of the most advanced proxy
solutions is the Berkeley proxy [10]. This system
uses cluster-computing technology to provide a
shared proxy service for a wide variety of PDAs.
The proxy can provide a variety of application-
level adaptations, including transformation
(changing the data from one format to another),
aggregation (combining several pieces of data into
one), caching, and customization (typically
converting a data format for use by a particular
PDA). The Berkeley researchers have investigated
methods of composing adaptations on a single
machine [17]. They have also examined the use of
a clustered proxy service to provide highly
reliable and scalable services to a large number of
customers. In particular, their proxy technology
has been deployed for large-scale, real-world use,
supporting palm-computer based web browsing in
a metropolitan-area wireless network [18]. The
Berkeley Proxy and other proxy solutions
typically work at a single location in the network,
while Panda is designed for distributed adaptation
at multiple locations.

CANS used a different approach to provide
an early form of automated planning [19]. CANS
performs dynamic deployment of transcoding
components (similar to Panda adapters). These
components use high-level specifications of
component behavior and network routing
characteristics as inputs, ensuring that composed
adaptations are proper through the use of strong
typing of the inputs and outputs of those
adaptations. The CANS algorithm is based on

 13

search in a stream-type graph with a
simplification strategy to reduce the graph’s
complexity.

6. Conclusions

The Panda project has demonstrated that
active network technology can be applied
usefully, even to applications that were not
written with active networks in mind and that are
not altered to work with active networks. This
demonstration substantially increases the potential
audience for the improvements offered by active
networks. Not only are legacy applications
potential users of active networks, but future
programmers can concentrate on the needs of
their applications, rather than the complexities of
programming an active network. Where suitable,
they can provide hints and direction to Panda or a
similar system, but they can still expect that the
active network will perform beneficial actions on
their data streams even without such advice.

Panda achieves reasonable performance
despite being unoptimized and running on an
early version of ANTS, which is known to have
poor performance. Even with these
disadvantages, realistic applications receive
measurable user- and application-visible benefits
from Panda. In a more optimized form, Panda
could provide greater benefits to a wider range of
applications.

Panda’s architecture is well suited for partial
deployment of active networks. Panda must run
on the source and destination node (though further
development could remove even those
restrictions), but otherwise does not require
intermediate nodes to participate in the active
network. Of course, non-participating nodes
cannot perform useful adaptations, but this
approach allows selective deployment of Panda at
nodes that are close to troublesome links, or that
often are overloaded, or that have other
characteristics suggesting that they are a good
spot for adaptation. The more such nodes
deployed, the more options available to Panda.

Panda has also demonstrated that automated
planning of active network adaptations is possible
and efficient. Panda’s automated facility plans
sufficiently quickly to provide a plan early in
most data streams, and the plans provided are
usually as good as those found by exhaustively
testing all possibilities. Without a reasonable
planning facility, the Panda approach could not be
used in the real world, so this demonstration is
key to its future success. Further, this result

suggests that automated planning based on a
heuristic search or other AI techniques might have
a wider applicability in solving many distributed
systems problems.

A final lesson from the Panda project is that
early choices can have long-lasting implications.
The decision to build on an existing execution
environment (rather than creating a new one), and
the choice of ANTS for that EE, had profound
implications for the project. ANTS was not
designed for a model of dynamic composition of
shared adapters, potentially a new set for each
connection. Therefore, much of the Panda
implementation effort was spent making simple
concepts fit into a framework that wasn’t
designed to support them. The choice had other
implications, such as mandating an early
commitment to performing the work in Java. This
choice was not a mistake, since the resulting
system demonstrated all the hypotheses of the
original project, but it did have wide-ranging
effects on the work, many of which were not
foreseen when the decision was made. For
example, the combined performance overheads of
ANTS and Java limited the sorts of adaptations
and applications that we examine for Panda.
Since running any adaptation would be expensive,
only adaptations with major payoffs were worth
considering and only applications with major
problems were candidates.

Performance is a key weak point of Panda, as
it currently stands. Even with rather high
overheads to overcome, Panda is useful for many
applications. However, a re-implementation that
divorces it from ANTS and allows it to use a
much lighter-weight EE would exp and Panda’s
utility.

In summary, Panda demonstrates that
application-unaware use of active networks is
possible and can provide substantial benefits to
applications. The automatic planning capability
implicit in the idea can be realized with
sufficiently low overhead and very high quality in
the resulting plans. Thus, active network
deployment need not be dependent on the creation
of large numbers of active network applications.
A simple piece of middleware like Panda can
provide active network benefits to existing
applications without altering any of their code.

References

[1] D. Wetherall, J. Guttag, and D. Tennenhouse.
“ANTS: A Toolkit for Building and Dynamically
Deploying Network Protocols.” Openarch 98, 1998.

 14

 [2] M. Yarvis, P. Reiher, and G. Popek. “A
Reliability Model for Distributed Adaptation.”
OpenArch 2000, March 2000.

[3] N. Hutchinson and L. Peterson. "The x-kernel:
An Architecture for Implementing Network Protocols."
IEEE Transactions on Software Engineering, vol. 17,
no. 1, January 1991.

[4] D. Mosberger and L. Peterson. "Making Paths
Explicit in the Scout Operating System." Proceedings
of the Symposium on Operating Systems Design and
Implementation, October, 1996.

[5] P. Reiher, R. Guy, M. Yarvis, and A. Rudenko.
“Automated Planning for Open Architectures.”
Openarch00, March 2000.

[6] J. Li, M. Yarvis, and P. Reiher. “Securing
Distributed Adaptation.” Computer Networks, Special
Issue on Programmable Networks, vol. 38, no. 3, 2002.

[7] P. Tullman, M. Hibler, and J. Lepreau. "Janos:
A Java-Oriented OS for Active Networks." IEEE
Journal on Selected Areas of Communications, Vol. 19,
No. 3, March 2001.

[8] G. Back, W. Hsieh, and J. Lepreau. “Processes
in KaffeOS: Isolation, Resource Management, and
Sharing in Java.” Fourth Symposium on Operating
Systems Design and Implementation (OSDI 2000),
October 2000.

[9] Y. Yemini, A.V. Konstantinou, and D. Florissi.
"NESTOR: An Architecture for Self-Management and
Organization." IEEE Journal on Selected Areas of
Communications, Vol. 18, No. 5, May 2000.

 [10] A. Fox, S. Gribble, Y. Chawathe, E. Brewer,
P. Gauthier. “Extensible Cluster-Based Scaleable
Network Services.” Proceedings of the 16th ACM
Symposium on Operating System Principles (SOSP‘97),
Saint-Malo, France, October 1997.

[11] Y. Yemini and S. da Silva. "Towards
Programmable Networks." IFIP/IEEE International
Workshop on Distributed Systems: Operations and
Management, 1996.

[12] B. Braden. ARP project web page,
http://www.isi.edu/div7/ARP/ARP.

[13] G. Fankhauser, M. Dasen, N. Weiler, B.
Plattner, B. Stiller. “WaveVideo — An Integrated
Approach to Adaptive Wireless Video.” Mobile
Networks And Applications (Special Issue on Adaptive
Mobile Networking and Computing), 4(4):255-271,
December 1999.

[14] M. Yarvis, P. Reiher, G. Popek. “Conductor:
A Framework for Distributed Adaptation.” Proceedings
of the Seventh Workshop on Hot Topics in Operating
Systems (HotOS VII), Rio Rico, Arizona, March 1999.

 [15] D. Feldmeier, A. McAuley, J. Smith, D.
Bakin, W. Marcus, T. Raleigh. “Protocol Boosters.”
IEEE Journal on Selected Areas in Communications
(Special Issue on Protocol Architectures for 21st
Century Applications), 16(3):437-444, April 1998.

[16] P. Sudame, B. Badrinath. “Transformer
Tunnels: A Framework for Providing Route-Specific
Adaptations.” Proceedings of the USENIX Annual
Technical Conference, New Orleans, Louisiana, June
1998.

[17] S. D. Gribble, M. Welsh, E. A. Brewer, and
D. Culler. "The MultiSpace: an Evolutionary Platform
for Infrastructural Services." Proceedings of the 1999
USENIX Annual Technical Conference, Monterey,
California, June 1999.

 [18] A. Fox, I. Goldberg, S. Gribble, D. Lee, A.
Polito, E. Brewer. “Experience With Top Gun
Wingman: A Proxy -Based Graphical Web Browser for
the USR PalmPilot.” Proceedings of the IFIP
International Conference on Distributed Systems
Platforms and Open Distributed Processing
(Middleware '98), Lake District, UK, September 1998.

[19] Xiaodong Fu, Weisong Shi, and Vidjay
Karancheti. “Automatic Deployment of Transcoding
Components for Ubiquitous, Network-Aware Access to
Internet Services.” New York University Computer
Science Department Technical Report CS-TR-2001-
814, March 2001.

