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Abstract 
 

Panda is middleware designed to bring the 
benefits of active networks to applications not 
written with active networks in mind.  This paper 
describes the architecture and implementation of 
Panda, and provides data on the overheads 
incurred and performance benefits achieved.  The 
paper also discusses some of the key issues of 
automatically and transparently intercepting data 
streams and converting them into active streams, 
including interception mechanisms, automated 
planning facilities, and allowing user and 
application control of the middleware. 
 
 
1. Introduction 
 

Computer networks continue to improve in 
accessibility, speed, and coverage, leading users 
to rely heavily on connectivity for normal 
activities.  However, the widely varying 
characteristics of networks often cause problems 
for their use, since applications typically assume 
some minimal quality of service from the 
network.  If the network in its current state cannot 
provide that quality, many applications work 
poorly or not at all. 

In many cases, more intelligent handling of 
data in the network could ameliorate these 
problems and allow applications to work well 
even under difficult network conditions.  Active 
networks offer this promise by allowing 
substantial programmability of the network.  
However, most existing active network systems 
work on the assumption that new applications are 
written so that they explicitly instruct the network 
on how to handle their data streams.  This 
approach offers no benefits to applications that 
were written before active networks were created, 

nor to later applications that were not written with 
the possibilities offered by active networks in 
mind.  Even applications that were written for 
active networks are limited by the creativity and 
foresight of the application designer, who must 
become not only an expert in his own application 
area, but in active networking as well, to make 
effective use of the new possibilities.  In many 
cases, certain sets of operations (such as 
cryptographic and authentication operations, 
lossless compression, or alternative routing) may 
be commonly useful for different applications.  
Panda could provide application writers the 
benefits of these operation sets when their 
applications work in active environments without 
requiring the application writers to code them for 
active networks. 

Panda is a middleware system that provides 
the benefits of active networks to unaware 
applications.  Panda traps data streams from those 
applications, converts them to active network 
packet streams, determines the network 
conditions, makes a plan of which adaptations to 
apply to the streams to deal with prevailing 
conditions, and deploys the code necessary to 
ensure proper handling of the streams.  Panda is 
transparent to the applications it services, though 
of course any permanent alterations it makes in 
the data stream will be visible at the destination.   

Consider the following scenario.  Two users 
on portable devices are talking through an 
existing video phone program.  One user is in his 
home, connected by a moderately high-speed 
wireless network to a base station in his house.  
The other is in a public place, using a telephone 
dialup line to connect to his office machine.  
Between the base station and the office machine, 
the communication goes over the Internet.  Since 
the application in use may have been written with 
the assumption of wired networks with fairly high 



 2 

and uniform speeds and bandwidths, very likely 
the limited bandwidth of the dialup line and the 
possible interference on the wireless link will 
cause problems for the video and audio.  Further, 
the users may be concerned about the possible 
loss of privacy because their transmissions are 
crossing a wireless link and the untrustworthy 
Internet. 

The audio packets could be given sufficient 
priority to ensure their timely delivery, the video 
packets could be selectively dropped to ensure 
that the most useful frames make use of the 
limited bandwidth, and all communications could 
be encrypted to provide privacy.  However, the 
designers of the application did none of these 
things.  Further, in some situations the remedies to 
be applied may be best applied somewhere other 
than at the application end points.  For example, 
the home user’s portable machine may lack the 
power to perform strong cryptography, while his 
house’s base station is quite capable of doing so.  
Active networks could easily handle all of these 
problems, but this particular application was also 
not written with active networks in mind. 

Panda provides a solution for the problems of 
matching legacy applications to the new power of 
active networks.  In the prior example, Panda 
would automatically trap the data streams 
representing the video and audio.  After 
examining the conditions of the networks and 
machines involved, Panda could choose 
adaptations to prioritize the audio, selectively 
drop video frames, and suitably encrypt at the 
proper place in the network. Doing so essentially 
requires that Panda automatically create a plan for 
determining which adapters to deploy in which 
locations. Panda would deploy those adaptations, 
convert the application’s data packets into active 
network messages, and ensure that these messages 
were delivered to the Panda active network 
components at all participating nodes.   

The model foreseen for Panda use is that a 
wide variety of adapters would be available for 
Panda’s use.  Some would be highly general, 
some quite specific to certain types of data 
streams or even certain applications.  A general 
planning facility would choose the proper set of 
adapters to meet the prevailing conditions.  If 
necessary, application writers or users could write 
new adapters to handle previously unforeseen 
conditions or special needs of their data streams, 
but even without such specialized code Panda 
should be able to offer useful services to many 
applications.  When appropriate, users and 
application writers should also be able to offer 
Panda advice on how to handle their data streams.  

In essence, Panda would offer a useful service to 
users who know nothing about Panda or active 
networks, while allowing for even greater utility 
for those who do understand those technologies. 

Panda is intended to run on fairly powerful 
nodes, since it does significant processing on 
packets.  Panda would not be suitable for use on a 
core router, for example, but would be suitable for 
a router providing access between a subnetwork 
and the backbone, or on a gateway to a wireless 
network, or perhaps on a server machine attached 
to a router, assuming that relatively few of the 
packets passing through that router would need to 
be diverted to the Panda server.  Panda provides 
significant benefits to data streams, but it does so 
at a cost, and thus its deployment points should be 
carefully considered. 

This paper describes the basic architecture 
and current implementation of the Panda system.  
The paper also describes demo nstrations of the 
efficacy of Panda and presents performance data 
on the system.  It discusses the lessons learned 
during the Panda project about transparent 
adaptation of data streams, composition of 
multiple adapters, and automated planning for 
active networks. 

 
2. Panda Architecture  
 

To ease implementation, Panda is built on top 
of ANTS, an existing active network execution 
environment (EE).  This EE provides Panda with 
basic active networking services, such as 
executing code at a node on behalf of a packet, 
deploying adaptation code to the required nodes 
in the network, etc.  The ANTS execution 
environment [1] is a Java toolkit that provides a 
protocol-based programming model for 
customizing packet forwarding through a network 
using a data format called capsules.  Simple use of 
ANTS typically carries the programs to be 
executed in the capsule along with the data and 
control fields.  While ANTS did not perfectly 
match the Panda model of active networks, it 
required only minor alterations to support Panda. 

Panda currently supports UDP-based 
application data streams.  The underlying ANTS 
system makes no guarantees regarding the 
delivery of capsules or the order in which 
capsules will be received at the destination, much 
like UDP.  Also, multimedia applications, which 
tend to use UDP, are good candidates to benefit 
from a distributed adaptation system since they 
put heavy demands on the network and often 
perform poorly under degraded network 
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conditions, since random loss of significant 
numbers of multimedia packets tends to seriously 
degrade the quality of the video and audio.  The 
Panda approach could be applied to TCP streams, 
but would require the addition of a reliable data 
delivery model suitable for TCP applications.  [2] 
demonstrates that a TCP-friendly reliability model 
can be built at reasonable cost, but Panda does not 
currently include such a model. 

Currently, Panda supports unicast 
applications only, although it has been used for 
simple multicast-like operations like forwarding 
incoming data to two different outgoing branches. 

 

 
Figure 1.  The Panda Architecture 

The Panda architecture has four modules, 
each of which addresses a major task in the 
middleware system (Figure 1).  The Panda 
Interception Component, or PIC, is responsible 
for obtaining data from clients.  The Panda 
Adaptation Component, or PAC, deploys and runs 
adapters for multiple client applications.  The 
Planner chooses a set of adapters that solve the 
network limitations to meet the users 
requirements and preferences.  The Panda 
Observation Component, or POC, deals with 
gathering and reporting information required for 
all other Panda components, including planning.  
Figure 1 shows a Panda installation on a source 
node, with the arrows indicating the flow of a 
packet from the unaware application, through the 
PIC to the PAC, which passes it to relevant 
adaptors.  When the adaptors are finished, they 
give the packet to ANTS, which invokes node 
operating system services to forward it to its 
destination.  The shaded boxes are the four Panda 
components plus Panda adapters, the part of the 
system reasonably definable as Panda. 

The Panda Interception Component (PIC) 
must intercept all data streams that Panda may 
wish to handle.  Depending on the facilities 

provided by the host operating system, this 
interception can be accomplished in different 
ways.    The current implementation uses a Linux 
loadable kernel module (LKM) to intercept socket 
calls.  Alternatively, the firewalling capabilities 
built in the Linux OS could also allow the 
necessary redirection and masquerading of 
connections, or Linux IPtables could handle this 
problem.  Systems like the x-kernel [3] and Scout 
[4] have built-in capabilities to control handling 
of network connections.  Regardless of the 
interception mechanism used, the PIC must also 
have some way to know which data streams to 
intercept.  

The Panda Adaptation Component (PAC) is 
the core of the Panda system.  It installs the 
necessary adapters for a data stream, delivers 
capsules to the proper adapters, and generally 
controls the flow of a data stream through Panda 
nodes.  Because these responsibilities heavily 
overlap the typical behavior of an execution 
environment, this portion of Panda is tightly 
coupled to the underlying EE.   

Panda adapters are modules that accept a data 
packet and can perform arbitrary modifications on 
that packet, including dropping it or converting it 
into more than one packet.  Panda may deploy 
more than one adapter for a single data stream on 
a particular node, so the system must allow for the 
output of one adapter to serve as the input for the 
next.  Since a packet can be dropped, Panda must 
also allow for situations where not all adapters 
deployed on a node are actually invoked to handle 
a particular packet. 

During execution, an adapter may store data 
at several different locations in the Panda 
environment.  The ANTS node cache and the 
POC provide interfaces to store many distinct data 
items.  The Panda system also provides an 
additional interface to dynamically store data 
within the capsule, known as the capsule cache.  
The content of the capsule cache is maintained as 
the capsule traverses the network and is available 
to any adapter that runs on this capsule.  The 
capsule cache allows adapters on different nodes 
to add information specific to their operations to 
the capsule in a general and commonly known 
way. 

The Panda Observation Component, or POC 
can be viewed as the central service for messaging 
between all Panda components (analogous to a 
CORBA ORB).  A typical Panda node has a POC 
running locally.  Two types of components 
connect to the POC: sensors and clients.  Sensors 
generate information.  Clients obtain the data 
generated by the sensor via the POC.  In some 
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cases a component may be both a client and a 
sensor to the POC; for example, a component that 
provides hysteresis -type functions on data to a 
client could obtain the original data from another 
POC sensor. 

The Planner is the most important client of 
the POC in the Panda system.  The Planner uses 
the POC to determine the current network 
conditions and other information needed to 
determine a suitable plan for an application’s data 
stream.  The Planner also can optionally accept 
user preferences to better tailor the plan to suit a 
particular user’s needs.  User preferences can be 
implemented as a POC sensor that interacts with 
the user, and this configuration reduces the 
complexity of the Planner as it only needs to be a 
POC client to obtain this additional information 
regarding the user.  The Planner is a sophisticated 
facility that combines distributed data gathering, 
temporary planning at each virtual link between 
two Panda nodes on a data path, and a centralized 
planning facility that uses the data gathered from 
all other nodes. 

Panda is capable of supporting multiple 
different planners.  Initially, Panda used a very 
simple template-based planner.  This simple 
planner has been replaced by a far more powerful 
planner based on heuristic search [5].  In brief, 
this planner uses information about the data 
stream, network and node conditions, and adaptor 
availability to search the space of all possible 
plans for the best plan.  Heuristics based on 
constraints of adaptations and observations of 
how adaptations should be deployed allow the 
planner to create high quality plans in much less 
time than an exhaustive search would require.  
Despite examining less of the solution space, the 
Panda planner typically chooses exactly the same 
plan chosen by a full exhaustive search, as 
demonstrated by thousands of experiments under 
a wide variety of conditions.  Planning runs on the 
node that initiates the data stream. 

Panda, under normal conditions, works 
transparently using automated planning; the 
application programmer or user need not know 
anything about it. Sometimes being less 
transparent may be valuable. An application may 
be aware of the active network; it may have better 
knowledge of critical network and system 
conditions. Therefore, an application programmer 
can control sockets intercepted by Panda through 
a standard socket API.  The API allows the 
applications to control the planning process. For 
example, the application may provide its own 
plan, or it could alter Panda’s plan.  Panda 

provides finer mechanisms to influence planning, 
as well.  

Panda also provides a user interface so that 
users can set preferences for how Panda will 
handle their data streams. Users have the option 
of selecting which streams and data types to adapt 
and with what priority.  Voice transmission may 
have higher priority than bulk data transfer, for 
example. Users can choose data fidelity levels, 
such as minimum tolerated image resolution.   
Other options include security level desired and 
communication delay constraints. All these 
preferences are used as input by Panda when it 
performs its automated planning.  

There are other interface features that are not 
directly related to Panda. The application can use 
an API to communicate with the system to obtain 
the latest information about the system and 
network conditions. When appropriate, the 
application can use such information to trigger 
Panda replanning. 

The Panda project concentrated on the 
feasibility of the core idea and several issues key 
to the notion of application-unaware use of active 
networks.  Thus, the existing system does not 
address all relevant issues for an active network 
middleware component.  First, Panda uses only 
the ANTS mechanism for code transport, which is 
not ideal for its purposes.  Second, Panda does not 
address any security issues involved in providing 
a distributed adaptation service, though associated 
research [6] has addressed some important 
security issues.  Third, since Panda works with 
UDP streams, it does not provide reliable data 
delivery or recovery of failed adaptors or other 
Panda components, though again associated 
research [2] addresses these issues.  Finally, 
Panda does nothing with routing, though alternate 
routing policies could be beneficial. 

 
3. Panda Implementation 
 
3.1. Basic Implementation Details  
 

The current Panda system has 
implementations of the PIC, PAC, and planning 
components, in addition to various adapters.  The 
POC is under development.  Panda is written in 
Java, with the exception of the PIC, which 
contains a Linux LKM (written in C) and a JNI 
interface to control its operation.  The PIC and 
PAC contain approximately nine thousand lines of 
code, not including code for adapters.  The 
planner consists of around five thousand lines of 
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code, plus some code to interface the other Panda 
components to the planner. 

Panda is built on top of a modified version of 
the ANTS 1.2 distribution.  The most significant 
change to ANTS was to support larger capsules – 
larger in both size of code and size of the data 
sent over the network.  Additionally, Panda 
required changes to the ANTS dynamic code-
loading system to allow capsule code to be loaded 
from any node.  Also, instead of being a 
permanent part of a particular protocol, under 
Panda a given adaptor may be used in many 
different situations, which requires alteration to 
ANTS dynamic code-loading, as well.  These 
changes break the fundamental principles of how 
the ANTS system works, but these changes are 
necessary to run Panda. 

Panda runs on the Linux operating system 
with kernels from the 2.0 or 2.2 series.  It requires 
a JVM version 1.1 or higher.  It has also run on 
Janos [7], using a customized version of the Kaffe 
VM [8].  The kernel module of the PIC needed to 
be reimplemented to work in the Janos 
environment, but the Java interface to the PIC 
remained the same, only requiring minor Java 
code changes to cope with two different 
interception implementations. 

 
3.2. PIC Implementation 
 

The current Panda PIC is a LKM stacked on 
top of the native networking functions to provide 
additional control over the proxy and 
masquerading facilities built into Linux.  Using a 
kernel module for interception allows Panda to 
intercept any application’s data stream running on 
the node, regardless of how the application is 
linked or what libraries it uses. Panda receives an 
application’s data at the system-call level before 
any network-level transformations have occurred, 
such as segmentation or the addition of 
checksums.  Unfortunately, this approach is 
subject to any user-level buffering that may occur 
when using standard I/O libraries.  Panda also has 
no access to any information that is present in a 
user-level networking interface, if one is used. 

In the case of UDP communications, the 
middleware opens a new UDP socket for 
interception and performs a LKM sockopt() 
informing the LKM that this socket wishes to 
intercept certain UDP packets.  The LKM diverts 
any outgoing datagram that matches the intercept 
description from the original destination to the 
interception UDP socket opened by the 
middleware service by changing the destination 
address of the packet before it reaches the normal 

kernel networking code.  The original destination 
address is stored in the module in a per-socket 
data structure.  After receiving a diverted 
datagram on the interception socket, the 
middleware service issues an LKM sockopt() to 
obtain the packet’s original destination address.  
At this point, the middleware is now able to send 
the payload over the active network. 

The Panda middleware at the destination 
node strips the active network components from 
the datagram and sends the non-active datagram 
to the real destination application, using the LKM 
to masquerade as the original source.  As in 
packet interception, the middleware makes use of 
a LKM sockopt() to control the masquerade 
address for the packet.  The middleware sends the 
packet over a socket, and the LKM in turn makes 
use of facilities in the standard Linux kernel 
networking code to perform masquerading on the 
packet. 

UDP communication is connectionless, so it 
is unnecessary for an application to send a close 
signal over the network to another computer.  But 
without a close signal, the Panda system cannot 
reliably determine when to free resources 
associated with a data flow.  To solve this 
problem, the LKM watches for UDP socket closes 
and sends a close signal to any interception socket 
that has intercepted data from the closing socket. 

Interception is initially performed on UDP 
packets destined for well-known port numbers.  
Since most applications make use of well-known 
port numbers to reach standard services on a 
server, this has not proved to be a limitation.  
While this approach is certainly less flexible than 
interception based on signatures that may be 
found in the data stream itself, it incurs less 
overhead and latency to the applications that 
cannot receive benefit from the middleware 
service. 

Interception can also occur on other packets 
or connections that are related to the application, 
but not on a well known port number.  For 
instance, in a TFTP file transfer, only the initial 
file request is sent to a well-known port numb er; 
the data transfer and acknowledgement packets 
are sent to dynamically assigned port numbers 
chosen by the operating system.  In these cases, 
the new port number to intercept can be 
determined from the source address or from 
information in the payload. 

 
3.3. PAC Implementation 
 

.  The PAC is implemented as an ANTS 
application that handles data from multiple user 
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applications and converts the data into capsules 
that are sent over the active network.  At the 
destination, the PAC removes the data from the 
capsule and delivers it to the receiving 
application.  The design of ANTS does not 
require a Panda data stream to pass through the 
PAC at intermediate nodes, even if adaptations 
are performed there, other than during the 
planning phase at the start of connection setup. 

 
3.4. Panda Adapter Implementation 
 

Adapters in the Panda system are placed in a 
special portion of an ANTS capsule, with one 
adapter per capsule type.  This placement 
provides a number of benefits and also allows 
reuse of much existing capsule code with a 
minimum of changes.  One of these benefits is 
that the loading of capsule code to a node is 
handled by the ANTS system.  Additionally, 
Panda benefits from any capsule-code security 
mechanisms that are built into ANTS when 
loading capsules at a node. 

In Panda, adapters have complete control 
over the capsule, including routing and 
transformation.  Panda is designed to provide as 
much flexibility as possible in the adapters it can 
use.  This decision also reduces the size and 
complexity of the Panda code resident in the 
capsule by delegating routing and forwarding to 
an adapter. 

Panda creates a plan of which adapters to 
deploy to allow the data capsules to reach their 
destination and receive the special treatment 
required by current network conditions.  When a 
Panda capsule begins evaluation at a node, it does 
not know what adapters need to be run.  The plan 
access method determines which adapters a 
capsule should run.  To support different styles of 
planning, there are three plan access methods built 
into Panda.  First, the plan could be embedded 
into the capsule.  Second, the plan could be in the 
ANTS node cache.  (This method is used for 
Panda’s heuristic-based planner.)  Finally, the 
capsule can visit the planner on the current node 
to determine the set of adapters to run there.  A 
capsule may try any combination of these plan 
access methods, depending on how the capsule 
was initialized.  Should all of these methods fail 
to provide a set of adapters to run, as in the case 
where a capsule is forwarded along an unexpected 
link, a simple shortest-path forwarding routine 
built into the data capsule is run. 

Once a set of adapters is found at a node, 
control of execution is transferred to the first 
adapter, which has complete control over the 

capsule.  It may choose to transform the payload 
or headers (including the planning information), 
forward the capsule, or run the next adapter.  The 
list of adapters to run is kept in memory, and the 
currently executing adapter can either call the 
next adapter in the list or terminate execution of 
the capsule after it has performed its functions.  
Most adapters will simply call the next adapter on 
the list until the end of the list is reached, where 
capsule execution will terminate.  This includes 
forwarding/routing adapters, which should be 
normally placed at the end of the list of adapters 
to run.  Adapters typically trust each other.  Issues 
of handling adapters that do not trust each other 
are handled by excluding untrustworthy adapters 
in the planning phase. 

 
3.5. POC Implementation 
 

The POC must accept sensor information 
from various sensors, including ones that do not 
reside on the local node.  To allow for different 
types of POC sensors to be built, the POC 
employs a common modular interface to add and 
query sensors.  This mo dular interface maps 
neatly into the Java system.  This system can also 
integrate with existing monitoring systems, as the 
POC sensor module can simply act as a bridge 
between the POC and the component that 
performs the actual monitoring. 

Clients to the POC are typically other Panda 
components.  POC clients can determine the 
available sensors, add and remove sensors, and 
obtain information from a sensor attached to the 
POC.  Adapters can act as either sensors or clients 
of the POC, although because adapters are 
implemented as capsules, they cannot 
communicate with the POC without special 
provisions.  For operations where the data is not 
time-sensitive, the client can get POC information 
and store information as a POC sensor in the 
ANTS node cache.  Periodically, the PAC will 
examine the contents of the node cache and act as 
a proxy to the POC for the adapters.  This method 
of communication with the POC lessens the 
amount of time the adapter spends performing its 
role as a sensor or client.  The adapter also has the 
ability to communicate with the POC through the 
use of an ANTS extension.  After finding the POC 
extension on a node, an adapter acts as any other 
client or sensor to the POC. 

POC clients usually run on the same node as 
the POC.  However, many clients, such as the 
Planner, need access to information that resides 
on other nodes.  Thus, the POC implements a 
gateway module to query information that resides 
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on a remote POC.  With the module, a client asks 
its local POC for information residing on a remote 
POC, and the gateway module obtains the 
information from the remote POC and sends it 
transparently to the client on the local machine, 
using underlying Panda out-of-band 
communications facilities.  The gateway module 
can be implemented as a standard client and 
server to the local POC that runs on all nodes. 

The POC currently uses very simple sensors, 
at the moment.  More sophisticated sensors could 
be added, at the cost of their development.  A 
better solution would be a close integration of the 
POC with an existing active network sensing and 
management facility.  In the past, Panda has been 
successfully attached to Nestor [9], and 
investigating further use of Nestor with Panda 
would be valuable. 

 
3.6. Panda Planner Implementation 
 

The Panda planner runs a simp le protocol to 
gather all information necessary to build its plan.  
This protocol requires essentially one round trip 
from source to destination and back before all 
information is available to the planner, with slight 
extra overhead because some processing is 
required at participant nodes during the round trip.  
Thus, gathering the data and performing the 
heuristic search can take some time.  Therefore, 
Panda also creates a temporary plan quickly, to 
allow data to start flowing before the normal 
planning procedure completes.  This temporary 
plan is built on a per-node basis, with each node 
using purely local information from itself and the 
next Panda node to determine which adapters to 
deploy on those nodes.  These temporary plans 
can be very far from optimal, but they allow some 
data to flow while the full planning procedure 
occurs.  Because network conditions can change 
substantially during the lifetime of a data stream, 
the original plan may become ineffective, so 
Panda supports replanning.  The mechanics of 
installing the new plan are essentially the same as 
those of switching from the temporary plan to the 
full plan at the start of the data stream. 

 
3.7. Sample Panda Applications  
 

 An early application of Panda assisted in 
transmitting a video from a server to two 
destinations with differing link throughputs.  
Without Panda, the server would have to send a 
customized version of the video stream to each 
client to provide them with the maximum video 

fidelity attainable over their respective 
connections.  With Panda, we used two adapters 
to achieve a better effect.  The first adapter 
duplicated a single, original quality unicast video 
stream from the server and forwarded it over 
high-quality links to two intermediate nodes.  The 
second adapter was run at these intermediate 
nodes and filtered the video stream to meet the 
individual throughput restrictions to the clients, 
who thus each received the best possible quality 
of service for their connectivity while reducing 
the throughput and computation load on the 
server. 

 A more complex application of Panda 
involved multiple components from UC Berkeley, 
the University of Utah, ISI, and Columbia 
University.  In this scenario, a Berkeley Ninja 
server [10] sent a video stream accompanying a 
presentation to a client connected through an 
overloaded link.  The video stream contained 
multiple versions of the video, each encoded at a 
different quality.  Panda intercepted the video 
stream and performed two actions.  First, it set up 
a virtual active network (VAN) from the source to 
the destination node using software designed by 
Columbia [11].  The VAN used an active form of 
RSVP [12] built by ISI to guarantee the 
throughput over the congested links.  At an 
intermediate node running Panda and Janos [7], 
an adapter only forwarded the highest quality 
version of the video stream that the client could 
receive. 

Another demonstration of Panda also 
involved interoperation with UC Berkeley’s 
Ninja, Columbia’s Virtual Active Networks and 
Nestor, and the University of Utah’s Janos 
system.  The scenario for the demonstration was a 
videoconference, with two different video/audio 
sessions being streamed to a third participant, in 
an extended Y-configuration, through a 
heterogeneous network with a variety of 
problems.  Network problems included a packet 
storm on the wired segment, as well as extensive 
wireless competition.  In order to deliver 
acceptable video and audio, network conditions 
had to be analyzed by Nestor [9], and the media 
appropriately adapted.  Adaptation in this case 
was a selective layer-based distillation of the 
video, encoded in the WaveVideo wavelet codec 
[13], based on prioritization of the streams.  
Prioritization was determined by a bandwidth 
analysis of the audio traffic, hypothesizing that 
more audio traffic would indicate a speaker.  Due 
to the tremendous number of packets from the 
videoconferencing sessions, the final wireless link 
was incapable of delivering acceptable video for 
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both senders.  Thus, Panda was required to 
selectively drop packets from the less desirable 
session, while maximizing the quality of the 
“focused” session.  The end results were usable 
video streams with the higher resolution stream 
dynamically switched to the camera showing the 
current speaker. 

 
4. Panda Performance 
 
4.1. System Overheads  
 

Panda puts substantial code (itself, ANTS, 
and adapter code) in the path of packets it 
intercepts.  The overheads associated with this 
code determine the domains for which use of 
Panda will be beneficial.   

The figures in this section concentrate 
primarily on the latency induced by Panda, though 
some data on achievable throughput is also 
presented.  The data covers minimum possible 
latency with Panda, the latency effects of 
including multiple participating Panda nodes, and 
the latencies induced by adding minimal adaptors 

and realistic adaptors.  Error bars on all figures 
show the value of standard error, unless otherwise 
indicated. 

One fundamental overhead is the additional 
latency of delivering a packet.  The following 
method was applied to measure one-way packet 
latency.  The packets were stamped with the local 
time on the source machine.  Upon the arrival at 
the destination machine the stamped time was 
subtracted from the destination local time to 
obtain measured time delivery.  The 
synchronization of the source and destination 
machines' clocks was done with NTP.  The NTP 
server was located on the destination node.  The 
source node synchronized itself to the destination 
local time before the first packet was sent to the 
destination.  Then 20,000 packets were sent to the 
destination.  After the last packet was delivered, 
the source machine measured the skewing value.  

It was presumed that skewing grows uniformly by 
time.  The actual time delivery was calculated 
with a formula for each data packet n: 

ActualTimeDelivery(n) = 

measuredTimeDelivery(n) - n
ueskewingVal

?
000,20

 

The connection was tested with twisted-pair 
sequential connections of up to four computers.  
Dell Inspiron 3500 laptops with 333 MHz 
processors were used for one set of tests and 
Hewlett Packard Omnibook 4150 laptops with 
500 MHz processors for another set of tests; all 
machines used Linux Red Hat 7.0 with the 2.2.16 
kernel.  Xircom RealPort2 Ethernet 10/100 
PCMCIA cards were used for the network 
connection between the machines.  The source 
and destination machines ran a user application 
and the Panda code concurrently.  The priority of 
the user application was set lower on the source 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Packet delivery latency 

0

2

4

6

8

1 0

1 2

1 4

1 6

1 8

no
 Pa

nd
a

2 n
od

es,
  0

ad
ap

ter
s

3 n
od

es,
  0

 ad
ap

ter
s

4 n
od

es
,  0

 ad
ap

ter
s

4 n
od

es
,  1

 ad
ap

ter

4 n
od

es,
  2

 ad
ap

ters

4 n
od

es,
  3

 ad
ap

ters

4 n
od

es
,  4

 ad
ap

ter
s

4 n
od

es,
  5

 ad
ap

ter
s

La
te

nc
y 

(m
se

c)



 9 

machine and higher on the destination machine to 
ensure proper allocations of resources. 

Throughput of the network links is varied 
among 150 Kbps, 800 Kbps, 2000 Kbps, and 
5000 Kbps using CBQ.  

Figure 2 presents packet delivery latency for 
different packet sizes.  The packet delivery 
latency also contains the adaptation latency.  
Figure 2 shows that adding Panda to a data stream 
increases its latency 50 to 150%, with longer 
packets seeing less effect.  Adding more Panda-
enabled nodes or more adapters modestly 
increases the delay for each addition.   

Figure 3 presents the latency of inserting 
adapters that do nothing.  All adapters were 

deployed on a single node of the connection for 
each bar.  Without Panda no adapters can be 
deployed, so the extra latency for that case is 
defined to be zero.  Every Panda node always runs 
at least one forward  adapter, whose only task is to 
forward a packet to the next node after all other 
adapters are executed.  A number of forward 
adapters equal to the number of connection nodes 
is always present in a Panda connection but this is 
not considered in the adapter counts used on these 
graphs.   
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Figure 3.  Null adapter latency 
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Figure 4 presents the latency of the 
adaptation with real adapters.  This figure and 
figure 5 were obtained by running a WaveVideo 
application on the same configuration used 
throughout this section, using adapters that 
filtered the video and/or performed encryption 
and decryption.  Since real adaptors are often 
CPU-bound, more powerful machines achieved 
lower latency, as shown in figure 4.   

Figure 6 shows how Panda throughput grows 
with packet size.  As expected, larger packets 
achieve higher throughput.  Error bars represent 
95% confidence intervals. 

The planning procedure consists of planning 
data-gathering, plan calculation, and plan 

deployment.  Planning data-gathering takes one 
round trip; the source node forwards the data 
gathering message to the destination node and 
waits for its return.  Planning data-gathering for 
the four Panda nodes in the test configuration 
takes 108 +/- 2.85 milliseconds.   

Figure 6 shows the latency of plan calculation 
for a connection that may require no adapters, or 
just a Resolution Drop adapter, or both Resolution 
Drop and Encryptor/Decryptor adapters.  The 
bandwidth of the links was varied, but the graph 
shows that plan calculation latency does not 
depend on the available bandwidth.  
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Figure 6.  Panda throughput 
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The latency for deploying the adapters 
selected by the planner depends on adapter size 
and the available link bandwidth, as shown in 
figure 7.  Resolution Drop is a very small adapter 
that contains a few lines of code.  Encryption is a 
heavyweight adapter that processes every 
character of user data to perform DES encryption.  
The larger the adapter, the longer it takes to 
deploy it.  The deployment latency does not 
depend on bandwidth unless it is less than 150 

Kbps.  
 

 
4.2. Panda Benefits  
 

Panda is worth using only if the benefits it 
offers outweigh the overheads.  For some 
benefits, such as encryption, quantifying the 
benefit is hard, particularly for purposes of 
comparison to latency overheads.  Here we 
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Figure 7. PSNR for Wavevideo application 
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present benefit metrics that are more quantifiable 
and take the latency overheads into account.  In 
particular, we present improvements in the Peak 
Signal-to-Noise Ratio (PSNR) for the WaveVideo 
application discussed earlier.  Figure 8 presents 
PSNR luminance on Dell Inspiron 3500 machines 
with a link bandwidth limited to 150 Kbps. 

Without Panda, the PSNR curve declines 
when the channel is saturated and more or less 
random video packets are dropped.  Panda, using 
the Resolution Drop adapter, intelligently adjusts 
to the limited bandwidth by dropping packets 
representing lower  resolution video components.  
As a result , once Panda has completed its 
planning phase and deployed its adapters, its 
PSNR curve improves and exceeds the non-Panda 
curve.  The PSNR performance of Panda with 
Resolution Drop and Encryption adaptation in 
some areas can be even better than Panda with 
Resolution Drop only; this is due to helpful 
buffering effects caused by the extra delay of 
encryption. 

 
5. Related Work 
 

Panda is the intellectual descendant of 
Conductor [14].  Conductor is a TCP-based open 
architecture framework providing a distributed, 
coordinated adaptation facility.  Similar to Panda, 
Conductor supports application transparent 
interception and distributed, coordinated 
adaptation of the network stream.  Unlike Panda, 
Conductor offers an extensive security model, as 
well as a reliability model designed for adaptation 
called semantic segmentation.  As Conductor is a 
TCP-based framework, the adaptation library for 
Conductor is substantially different than Panda’s, 
focusing on HTTP, POP, and other stream-based 
adaptations. 

The Protocol Boosters [15] adaptation 
framework provides a general approach to 
network-level adaptation.  The framework allows 
either a single adaptation module or a pair of 
modules to be transparently deployed, adding new 
features to existing protocols, such as forward 
error correction or fast retransmission.  Boosters 
typically provide lossless adaptation, since the 
system provides no support for ensuring reliable 
delivery if packets intended for delivery are 
generated, dropped, or permanently altered by a 
booster.  Boosters are composable, but the system 
does not provide support for selecting a set of 
boosters that will perform well together.  Panda 
substantially differs from Protocol Boosters in its 

planning capabilities, as well as in its support for 
lossy adaptation. 

Transformer Tunnels [16] use IP tunneling to 
alter the behavior of a protocol over a 
troublesome link. Once created, a transformation 
function is applied to all data flowing through 
each tunnel. Generally, Transformer Tunnels are 
used to provide protocol-independent adaptations, 
such as consolidation of packets, scheduling of 
transmissions to preserve battery power, 
encryption, lossless compression, and buffering.  
Transformer Tunnels are transparent to 
applications and may be interoperable with 
application-level adaptation provided by proxies. 
However, no mechanism is provided to compose 
transformation functions or to coordinate 
transformations with externally provided 
adaptations.  Panda’s adaptor model allows this 
composability; additionally the Panda Planner 
coordinates various adaptations across multiple 
links. 

Proxies are often used to handle single 
troublesome links, particularly links close to 
client nodes.  One of the most advanced proxy 
solutions is the Berkeley proxy [10].  This system 
uses cluster-computing technology to provide a 
shared proxy service for a wide variety of PDAs. 
The proxy can provide a variety of application-
level adaptations, including transformation 
(changing the data from one format to another), 
aggregation (combining several pieces of data into 
one), caching, and customization (typically 
converting a data format for use by a particular 
PDA). The Berkeley researchers have investigated 
methods of composing adaptations on a single 
machine [17]. They have also examined the use of 
a clustered proxy service to provide highly 
reliable and scalable services to a large number of 
customers. In particular, their proxy technology 
has been deployed for large-scale, real-world use, 
supporting palm-computer based web browsing in 
a metropolitan-area wireless network [18].  The 
Berkeley Proxy and other proxy solutions 
typically work at a single location in the network, 
while Panda is designed for distributed adaptation 
at multiple locations. 

CANS used a different approach to provide 
an early form of automated planning [19].  CANS 
performs dynamic deployment of transcoding 
components (similar to Panda adapters).  These 
components use high-level specifications of 
component behavior and network routing 
characteristics as inputs, ensuring that composed 
adaptations are proper through the use of strong 
typing of the inputs and outputs of those 
adaptations.  The CANS algorithm is based on 
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search in a stream-type graph with a 
simplification strategy to reduce the graph’s 
complexity.  

 
6. Conclusions  
 

The Panda project has demonstrated that 
active network technology can be applied 
usefully, even to applications that were not 
written with active networks in mind and that are 
not altered to work with active networks.  This 
demonstration substantially increases the potential 
audience for the improvements offered by active 
networks.  Not only are legacy applications 
potential users of active networks, but future 
programmers can concentrate on the needs of 
their applications, rather than the complexities of 
programming an active network.  Where suitable, 
they can provide hints and direction to Panda or a 
similar system, but they can still expect that the 
active network will perform beneficial actions on 
their data streams even without such advice. 

Panda achieves reasonable performance 
despite being unoptimized and running on an 
early version of ANTS, which is known to have 
poor performance.  Even with these 
disadvantages, realistic applications receive 
measurable user- and application-visible benefits 
from Panda.  In a more optimized form, Panda 
could provide greater benefits to a wider range of 
applications. 

Panda’s architecture is well suited for partial 
deployment of active networks.  Panda must run 
on the source and destination node (though further 
development could remove even those 
restrictions), but otherwise does not require 
intermediate nodes to participate in the active 
network.  Of course, non-participating nodes 
cannot perform useful adaptations, but this 
approach allows selective deployment of Panda at 
nodes that are close to troublesome links, or that 
often are overloaded, or that have other 
characteristics suggesting that they are a good 
spot for adaptation.  The more such nodes 
deployed, the more options available to Panda. 

Panda has also demonstrated that automated 
planning of active network adaptations is possible 
and efficient.  Panda’s automated facility plans 
sufficiently quickly to provide a plan early in 
most data streams, and the plans provided are 
usually as good as those found by exhaustively 
testing all possibilities.  Without a reasonable 
planning facility, the Panda approach could not be 
used in the real world, so this demonstration is 
key to its future success.  Further, this result 

suggests that automated planning based on a 
heuristic search or other AI techniques might have 
a wider applicability in solving many distributed 
systems problems. 

A final lesson from the Panda project is that 
early choices can have long-lasting implications.  
The decision to build on an existing execution 
environment (rather than creating a new one), and 
the choice of ANTS for that EE, had profound 
implications for the project.  ANTS was not 
designed for a model of dynamic composition of 
shared adapters, potentially a new set for each 
connection.  Therefore, much of the Panda 
implementation effort was spent making simple 
concepts fit into a framework that wasn’t 
designed to support them.  The choice had other 
implications, such as mandating an early 
commitment to performing the work in Java.  This 
choice was not a mistake, since the resulting 
system demonstrated all the hypotheses of the 
original project, but it did have wide-ranging 
effects on the work, many of which were not 
foreseen when the decision was made. For 
example, the combined performance overheads of 
ANTS and Java limited the sorts of adaptations 
and applications that we examine for Panda.  
Since running any adaptation would be expensive, 
only adaptations with major payoffs were worth 
considering and only applications with major 
problems were candidates. 

Performance is a key weak point of Panda, as 
it currently stands.  Even with rather high 
overheads to overcome, Panda is useful for many 
applications.  However, a re-implementation that 
divorces it from ANTS and allows it to use a 
much lighter-weight EE would exp and Panda’s 
utility.  

In summary, Panda demonstrates that 
application-unaware use of active networks is 
possible and can provide substantial benefits to 
applications.  The automatic planning capability 
implicit in the idea can be realized with 
sufficiently low overhead and very high quality in 
the resulting plans.  Thus, active network 
deployment need not be dependent on the creation 
of large numbers of active network applications.  
A simple piece of middleware like Panda can 
provide active network benefits to existing 
applications without altering any of their code. 
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