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Abstract 

Active applications can add value to 
communication. Yet it involves sophisticated 
domain knowledge and complex development 
process. In this paper we discuss a framework for 
the construction of complex active network 
applications. Its design motivation is to enable an 
expert to develop complex active applications as a 
value added communication service and make it 
available for repeated use by the end-applications. 
As a test case we select a self-organizing adaptive 
video transcoding channel. This multi-component 
multi-tier novel active application enables video to 
propagate over extreme network with highly 
asymmetric link and node capacity. At the same 
time it offers a unified channel abstraction to its 
service subscriber. In this paper we focus how this 
channel abstraction can be composed within the 
proposed active service composition framework. 

Key Words: Adaptive Video, Netcentric 
Applications, Active Network.  

1. Introduction  

In conventional packet network a network junction 
node (such as a switch or router) only forwards 
(and occasionally drops) packets [2,9,10].  Active 
Network extends their classical role to a new 
dimension. Here nodes are also capable of 
transforming packets in transit through active 
processing. Active network paradigm can 
potentially spark a new generation of smart 
networked applications—which otherwise are not 
easily realizable on traditional networks. 

Network embedded logic can provide unique 
advantage in communication. For example, a 
system can adapt with respect to local network 
states (such as bandwidth or congestion) inside 
network. Embedded components can also provide 
high-level localization services (such as language, 
weather localization, etc). It can also improve the 
performance of traditional communication service 
with novel application level knowledge and 
techniques. For example an active prefetch proxy 
can dramatically accelerate web surfing.  An 
embedded cache/mirror can help in creating the 
abstraction of normal communication over time-
lapse links. It can add scalabili ty to group 
communication (by performing application 
knowledge enhanced data merging and filtering). 
None is easily attainable from end-to-end 
paradigm.   

In last two years, we have developed and 
experimented with a number of active applications. 
Though in this paper we present the case with the 
transcoder channel, but this framework is the result 
of our experience with a number of complex active 
applications (active prefetch-proxy [17], daisy-
chain forwarder [14], harness group 
communicationware [16], etc). To succeed, the 
active network paradigm must provide an overall 
application development framework that can 
deliver software engineering advantages to active 
applications with network embedded components.  

At the lowest level of computing engine an active 
network requires OS extension where a 
programmable module is run on router hardware. 
However, building cost effective and efficient 
active application on top of it uniquely calls for 
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research in multi-party development formalism 
with complex specification interfacing mechanisms 
and unique system level requirements. Indeed 
many of the unresolved issues in active networking 
concerning security, fault-tolerance, and 
performance cannot be addressed without the 
overall consideration of the active application and 
service development framework. 

1.1 Background and Related Work 
It will be interesting to look into the current 
research in network centric applications and 
systems area. Any network-based system is a 
composition of two types of elementary constructs-
- the process and the channel. A number of 
research areas-- including parallel processing and 
middleware, have explored system building 
formalisms with distributed processing 
components (from PVM, to DCE, RPC [18,19], 
DCOM/COM, CORBA [20,21], Java/RMI) 
[22,23].  

More recently, active networking is exploring the 
means for adding programmabili ty into network 
data path. Traditional network elements that have 
been deployed until now perform only a limited set 
of basic operations on the packets (such as 
forwarding and routing, fragmentation, packet 
dropping). Among the techniques for network 
programmabili ty, Active Network proposes the 
generalization of the concept by incorporating 
almost unlimited programmable packet processing 
abili ty into the network elements. Here not only the 
header elements but also the contents of transiting 
packets may be revised, augmented, compressed, 
combined, or otherwise processed in transit. At 
least eight systems have been explored.  Examples 
include Smart Packet [31], ANTS [10], PLAN 
[32], NetScript [30], and our Virtual Switch 
Machine [6,14].  The first generation systems have 
addressed the issues such as execution 
environment of a foreign code, remote installation 
and capsule deployment, programming language, 
router level intercept of active packets [26,27,28].  
Pioneering active network platform research now 
provides valuable insight into the base 
requirement-- executability of code on routers. 

In this paper we discuss a framework called Active 
Channel Framework (ACF) formalism, which 
will address some of the issues of complex system 
development. A number of issues from the overall 

system development framework have remained 
relatively untouched. These include reusable 
communicating component based development, 
dynamic pathway planning, adaptive deployment, 
dynamic module relocation, and interfacing with 
service subscriber application and network. 
Whereas active network presents a powerful but 
bare-bone architecture to insert and execute 
programs at junction points, the Active Channel 
Framework provides the mechanism to build 
reusable service on it.  

In this paper we will explain the proposed 
formalism by example construction of a novel 
system – the nomadic self-organizing transcoding 
channel. The nomadic self-organizing transcoder 
represents a new generation of network aware 
reactive system. This is a full l ogic MPEG-2 
ISO/IEC 13818-2 video stream rate adaptation 
system developed at Kent Medianet Lab [4,5]. As a 
reactive system, it requires different network 
service model for automatic launching, 
management, and seamless operation, which is not 
present to-date. The proposed active channel 
framework provides the development formalism 
for this concept system with support for advanced 
composition features.  

The next section begins with the discussion of the 
specific challenges of complex systems 
engineering. We then also briefly explain the 
features of the complex adaptive features of the 
transcoding channel. In Section 3 and 4 then we 
explain the ACF formalism and how this specific 
system can be constructed and operated within 
ACF.  

2. Framework Issues in Complex 
Netcentric Systems 

Systems Engineering: If we look into the 
development of the current systems research 
(middle ware technology), we will see most of the 
previous formalisms for building complex 
networked systems have eventually focused on 
building more complex process construct and used 
standard elementary transport channels for 
connectivity even at the highest level of process 
abstractions. What is missing is the polymorphic 
abstraction of the channel construct. A software 
system construction framework imposes a set of 
ontological and epistemological constrained on the 
components or process and a set of protocol and 
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lexical constraints on their rules of interaction 
[25]. A well-defined language for constraint 
specification also provides a means to express 
properties flexible enough to be felt as 
programmable yet disciplined enough to ensure 
inheritance and polymorphism. Most of the 
recent research initiatives in middleware 
technology build on the impressive advances in 
component abstraction of Object Technology [18-
23]. Ironically all approaches focus on providing 
ingenious domain specific variants-- but still non-
polymorphic instances of channel constructs.  
While, conceptually active network provides a 
platform for building complex communicating 
systems yet a polymorphic framework with 
inheritance property which includes both process 
and interaction construct is missing.  

Planning: In conventional channels the network 
embedded components are standard based and 
preinstalled.  On the other hand almost by 
definition in active service composition the 
components have to be deployed dynamically in 
the pathway between the source(s) and sink(s). 
Consequently, a unique stage in active application 
construction is pathway planning. Besides the 
actual mechanism for installation, this would 
require topology discovery, node selection process, 
node and pathway query. A key challenge here is 
the provisioning of a mechanism for application 
knowledge induced and yet deployment time 
mapping. The planning specifications are expected 
to come from dynamic network states at the time of 
instantiation. On the other hand, the constraints are 
to be specified by the service designer at design 
time. Consequently, a key requirement here is the 
appropriate specification language. The planning 
process itself may require additional system level 
network embedded meta-components. These meta-
components however, may not be all generic as 
they too can require application specific scouting. 

Network State Accessibility: A service with 
network embedded components is meaningful if 
the embedded components can dynamically react 
with respect to network local states. This imposes 
several new requirements, which are not so acute 
in classical end-to-end paradigm. There is a 
historical irony in the design of network software 
stack. In classical design each layer in the network 
software stack has been strongly isolated from its 
upper layer. For simplicity the interlayer 
interfacing mechanisms were designed as 

interaction free service transaction pathway. This 
model simplified development of first generation 
applications. The flip side of this design choice is 
that now therefore network states are very difficult 
to access.  For building efficient active applications 
system level re-provisioning will be required so 
that embedded service components can be 
mutually secured and trusted, and yet will allow 
open standard-based access to network local states. 
A generalization of the requirement also calls for 
an inter services state-interfacing. Here a trusted 
component from one service should be able to pass 
on vital local states to a collocated component of 
another service.  

Dynamic Service Configuration: As a part of a 
large scale dynamically deployable network 
service, it will be more prone to dynamic 
component relocation. The issue of run time 
service recomposition is not a simple extension of 
the first time service installation. In service 
reconfiguration additional constraints are placed by 
the requirement of minimum interruption of the 
ongoing service sessions. For example, while 
intermediate components are relocated it must be 
ensured that an ongoing service does not suffer 
from loss or duplication of packets, or loss of 
duplication of processing cycle etc. We must 
reduce the impact on overall processing and 
communication delay. The signaling sequence to 
install/ uninstall components within a running 
service requires application specific sequencing 
and deadlock avoidance.  

Separation of Service Development and Service 
Subscription Interface: Another critical 
component that arises in active service 
composition is the creation of a powerful middle-
layer abstraction.  This is related to the remarkation 
of the conventional boundary between end-to-end 
applications and network. While, the active service 
itself can be a complex system, however, the 
subscription and use of the composed service (once 
designed) should be easy and intuitive. This 
required provisioning on a middle-layer 
abstraction, where third-party developers can 
develop the components required for active 
service, while the end-point users and applications 
can take advantage of these services with an easy 
to use interface. This will require two distinct 
programming interface design- one for the service 
designer another for the service subscriber. 
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With these requirements in mind we have proposed 
the Active Channel Framework (ACF) for 
developing active applications. In this paper, we 
ill ustrate the ACF formalism with a concept 
application that concentrates on creative 
adaptation.  

3. Nomadic Video Transcoding 

3.1 Adaptive Transcoding 
As a test application, we present the nomadic 
MPEG-2 [4] rate transcoding mechanism. The 
application system has a number of complexities to 
offer substantial challenge to the framework.  

First of all it addresses the issue of adaptation from 
two levels. It adapts with respect to the local 
constraints of two critical network resources—
bandwidth and the processing resource at the 
junction nodes. As opposed to classical server-
client model for building network applications 
under current network software architecture, this 
application has three parts-- server, transcoder and 
the client. The middle component is the channel 
and is reusable. It can be launched as a set of active 
capsules in a suitable active junction point in the 
stream pathway and downscale it if needed.  The 
resulting system has two adaptive features. It 
performs an adaptation function for its subscriber. 
Secondly, its can evolve its own architecture based 
on the network resource.  

3.1.1 Functional Adaptation  

The transcoder senses local asymmetry in link 
capacities at various junction points of a network. 
Accordingly it auto-converts the video stream rate.  
For example, it can be dynamically deployed at 
nodes splicing a fiber and a wireless network, and 
thus it enables an incoming high-bandwidth video 
multicast stream to be re-encoded for the outgoing 
low-capacity wireless links.   

This particular type of adaptation demonstrates 
advantage of active application paradigm and does 
not have easy solution in end-to-end-paradigm. In 
comparison, today’s media servers are fixed rate 
based. They store multiple copies of the same 
media one for each supported rate class (LAN, 
DSL/Cable, 56K, 28.8K etc.) [13,1,3,4]. The end-
user is required to specify its rate. Although there 
have been few attempts to automate such 

specification, but the difficulty seems to lie 
fundamentally with the end-to-end network 
programming paradigm. Neither in a live video 
multicast, nor in stored video cache, the end-to-end 
solutions seems satisfactory. Classical solutions 
such as, sending the high-speed stream cuts off the 
low speed clients. Sending the lowest speed stream 
penalizes others by forcing the lowest quali ty to 
all . Sending multiple streams, burdens the network. 
In contrast the in-stream rate adaptation by a 
nomadic active transcoder can solve this riddle 
and offer optimality even at the level of individual 
links.  

3.1.2 Architectural Adaptation 

The system also has been designed to adapt with 
respect to node computation power. This is also a 
unique problem specific to active applications. 
Video stream rate adaptation is a challenging task. 
Because of complex inter packet data dependency, 
packet level rate adaptation—which is almost 
blind, offers very limited down-scalability. 
Dropping only 20-25% of the UDP packets can 
render an entire stream useless [12,2,24].  Content 
unaware, just packet slicing backed rate control 
seems to very wasteful and limited in their 
efficacy. Smarter content aware transcoding, in 
contrast can offer much broader range of rate 
adaptation with much graceful loss of video 
quali ty.  

However, MPEG-2 transcoding is also quite 
complex and computation intensive task. A number 
of techniques have been investigated for 
accelerated transcoding by us and other 
researchers, such as motion vector reuse, fast DCT 
domain transcoding, parameter bussing [11,7,8,24] 
These models provide a three-way tradeoff 
between the computational complexity, video 
quali ty degradation and second stage compression. 
It seems that in near future with the rapid 
advancement of the VLSI technology some nodes 
may be able to garner enough processing power for 
real-time high fidelity video transcoding. However, 
on any given large scale network the fact of the 
matter is that there will be always inequality of 
processing capabili ty just like the asymmetry in 
bandwidths. Consequently, this nomadic 
transcoder also demonstrates self-organization 
behavior and choose the right operating state in 
this three-way trade-off based on the available 
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network resource of processing power at the 
junction points1.  

3.1.3 Service Interface 

Also, the overall system creates a service 
abstraction of an MPEG-2 video communication 
channel where instream rate adaptation is 
automatically available between a video source and 
sink groups, and is reusable by any high-level 
video application, without interfering with its 
functionali ty or without reengineering of the 
transcoding system’s code base. Also, the system 
components should automatically be deployable in 
the correct nodes as per service designer’s 
specification in the network without active 
intervention from the user application.  

3.2 Nomadic Transcoder 

3.2.1 Components 

The model we are investigating has three service 
modules (a) application server (b) transcoder 
                                                           
1 Node capacity adaptation has been littl e 
addressed until now, though it is particularly 
important for active networking.   

channel and (d) the client.  The transcoding 
channels has two types of functional 
components—a splitter and a transcoder.  A splitter 
duplicates a stream in a junction.  A transcoder 
downscales incoming video rate. 

Fig-1 shows a sample video distribution network 
with asymmetric link capacities and a typical 
deployment of the modules that builds a 
distribution tree. The server is attached to the 
server end-point (SEP). There are various client 
classes (regular, mobile and high definition), which 
are attached to the network via client-end points 
(CEP), mobile client-end-points (m-CEP), and high 
definition client-end-points (h-CEP). Each end-
point can in turn act as a local distribution/ 
concentration center. The network connecting 
these end-points has unequal link and node 
capacities2. Each link is labeled using two 
quantities R:B where and B is the link bandwidth, 

                                                           
2 Bandwidth is increasing with the rapid 
advancement of technology [29]. However the 
effect seems to be limited at the core.  Effectively 
what is increasing dramatically is the 
heterogeneity and asymmetry in the Internet. The 
augmentation of non-traditional devices [33] in 
the Internet will further intensify the situation. 
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Fig-1 An adaptive video distribution scenario in a network with asymmetric capacities. There are 
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(mCEP) delivery. These are also connected with links of different capacities. An distribution network 
with embedded rate transcoders (X) and stream splitters (S) at correct network points can facilit ate the 
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R is the requested video rate at the leaf links or 
final flow rate at the internal links.   

3.2.2 Module Mapping 

The first application issue is the optimized module 
placement. The video rate in the links should be 
calculated bottom up based on the requests from 
the CEPs downstream and the available link 
bandwidths. At each junction point, the 
downstream requests are aggregated and the 
maximum of these are propagated upstream as a 
new request. The requested rate either increases or 
stays the same as it propagates upstream. The 
number of required transcoders is equal to the 
number of rate steps inside the distribution 
network. However, instead of catering to each 
requested rate, the number of transcoders can be 
minimized by using rate classes. A possible 
placement of the transcoders seems to be at the 
junction nodes. This requires each m-way junction 
node to have m-1 step down transcoders.  
However, each step down requires significant 
computation. Therefore, to distribute the 
computational load the step-down transcoders are 
not placed at the junctions, but one node down 
along each of the downstream paths.    

3.2.3 Dynamic State Information Exchange 

The placement optimization depends on local 
network states. These include link bandwidth, 
congestion, switching speed, processor speed, and 
available computational power of the nodes. The 
link capacity allocated to the video distribution can 
also vary with time such as due to congestion. 
Similarly, the computation cycles available to the 
adaptation mechanism such as the transcoder can 
also vary based on the multiprocessing load at the 
nodes. The transcoders must be able to optimize its 
rate conversion factor in response to the change in 
link and node states up and downstream. Similarly, 
the transcoding operation can be performed at 
several quality/computational effort choice levels. 
The particular level should be chosen based on the 
available computation power at the node.  Thus a 
prerequisite to any adaptive system is dynamic and 
efficient monitoring of various local network state 
information.3.  

                                                           
3 We have developed a group state communication 
ware (another active service) [16] and this ware 

3.2.4 Dynamic Module Relocation 

Initial module mapping is not final. Any change 
in the local state not only can spark change in 
step-down rate, but it can effectively require 
activation of new and deactivation of existing 
transcoder modules. Dynamic departure of clients 
can similarly trigger activation/deactivation of 
splitters and transcoders. Congestion, reduction in 
CPU cycle allocation may necessitate migration 
of transcoding operations to neighboring nodes. 
Thus, ideally, in a large adaptive system these 
modules should be occasionally able to relocate, 
however, without apparent disruption of the basic 
stream. Relocation should not cause loss or 
duplication of data. The information order should 
also be preserved. Additionally it is desirable that 
it should not impose significant delay.  System 
stability should also be maintained avoiding 
excessive reorganization. 

4. ACF System Architecture 

4.1 Overview 
While the above explains the target that we would 
like to achieve, however in a large network our 
principal interest is not a single smart application 
but a formalism that can automate the entire 
placement, deployment and running process of the 
above system. Consequently, we first identify the 
critical network layer services needed for adaptive 
systems. We then present the proposed 
organization for the entire system.  

First we envision the rate adaptive service to be a 
special and generalized form of abstract 
communication. While, traditional networking 
provides only two types of communication channel 
constructs TCP and UDP, we generalize the 
concept and consider that the automatic rate 
adaptive communication service indeed is a higher 
level of communication service to the applications. 
The channel construct provides two important 
benefits. First it provides a separation between the 
network related and the network independent tasks.  
Secondly, it allows the entire design and modules 
to be reused by various actual server and player 

                                                                                 
can be invoked by the transcoder channel manager 
if needed. There are other management tools such 
as NESTOR, which can be potentially used [34]. 
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applications. For example, while, in actual server 
application VCR operations (such as fast forward, 
rewind, pause, etc) can be supported, the network 
layer modules are only concerned about the 
transport aspect of the service. We will call it rate 
adaptive transcoding video (ATV) channel.  

Based on this channel abstraction we propose a 
three-tier system architecture. Fig-2 il lustrates the 
tiers.  

First is the subscriber application itself. More 
specifically, the network independent part of the 
domain routines resides in this tier.  The 
application advanced auto-rate adaptive transport 
service connecting the end-points, however, it does 
not want to be concerned about the implementation 
details.  

Second is the channel layer.  This is the layer that 
houses the reactive components that bridge 
between the network and the application (shown in 
the bottom box). The modules in this layer are 
programmable however; they execute strictly under 
the control of the network and help in the local 
state dependent adaptation.  

The third is the enhanced network layer, which acts 
as a “glue” layer connecting the application layer, 
channel layer and the actual network and performs 
automation and facilit ation. It is placed on top of 
the traditional network and the OS in the individual 

machines. We will refer to this glue layer as the 
network operating system NOS. This indeed has 
three parties. Besides network, this has a converted 
active router called Virtual Switch Machine [6] and 
the active system building and execution 
environment (BEE).  The BEE provides the added 
extensions and utiliti es to realize the development 
formalism. We denote this combined system as the 
network operating system NOS (NET/VSM/BEE).  

The adaptive transcoding video (ATV) channel is 
built with four primary types of capsules (a) 
actuator capsule (server-end-point SEP) (b) splitter 
(S) (c) transcoder (X), and (d) audience capsule 
(client-end-point(s) CEP).  

The actuator and the audience capsules interact 
with the applications, and at the same time co-
ordinate with other capsules and hide internal 
details and provide a single channel abstraction to 
the application. The CEP modules can have 
multiple versions specializing to attend mobile or 
high-definition clients adapting to their specific 
needs. There are also two maps, which describe the 
rules for placement of the primary capsules and 
their interconnection, and two auxili ary capsules, 
which dynamically evaluate the network dependent 
placement logics and decide the roving behavior 
and the self-organizing states of the nomadic 
components. The channel designer thus can be 
different from the application programmer. 
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Fig-2 The three-tiers of system architecture in ACF formalism. The top is the subscriber application. It 
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A multicast video application requests an adaptive 
transcoding video (ATV) channel in a similar way 
it   requests sockets. NOS installs the capsules and 
creates the requested channel and application 
receives the finished product. 

4.2 Task Division & Information 
Fragmentation 

The tri-partite development model helps in the task 
separation in the development process and is the 
key to any possibili ty of complex application 
engineering. However, the framework design 
becomes challenging because of the knowledge 
fragmentation in multiparty development. Let us 
first look into the fragmentation. Then we will 
explain how the system glues them together.  We 
will call each a sub-domain. Below we describe 
each sub-domain’s information structure.   

4.2.1 Channel Designer 

The channel designer generall y knows very well 
about the operational mode, control flow and 
detail architecture of the capsules. S/he also 
knows the situational constraints of the channel 
components. However, the channel designer does 
not have access to the exact network map on 
which the system will run.  S/he knows only in a 
logical way on which type of topology the system 
can be deployed. Channel designer also has 
knowledge about the 
computational and 
communication   power that will 
be needed to support the channel 
service. S/he also knows the 
nature of service it can provide. 
S/he probably has a metric 
defined to quantify the service it 
can provide. However, since it 
does not know the exact traffic 
that a specific instance will carry, 
or the exact topology on which an 
instance of the channel will run, 
therefore it can only provide the 
deliverable service capacity, and 
the required network resources to 
support it in some canonical way. 

4.2.2 Subscriber Application 

The subscriber application on the 
other hand is eager to remain 

completely ignorant about the channel architecture, 
capsules, their connections, nor does it is interested 
to know about these details. It is mostly interested 
in the service the channel provides. The subscriber 
on the other hand is the first party to know the 
locations of the end-points. However, it does not 
know, nor is it interested to know the underlying 
network topology. Also, the subscriber application 
is the most knowledgeable among the three about 
the characteristics of traffic that will flow through 
the channel. The subscriber is expected to have a 
fair idea about the nature of service it will receive 
from the channel, though it may not know the 
exact metric that the channel designer has used to 
quantify it. It is interested to know the metric, so 
that, if it wishes it can specify its requirements.  It 
also reserves its right to know how much it is 
actually getting.  

4.2.3 Active Node OS NET/VSM/BEE 

On the other hand, the active node OS 
(NET/VSM/BEE) has no prior knowledge about 
the channel architecture, its components, capacity, 
or network capacity requirements. It also does not 
know in advance about the traffic characteristics or 
size. However, this is most knowledgeable among 
the three about the underlying network 
infrastructure—i.e., the actual topology, and the 
quali ty and capacities of its various elements. 
However, it does not know which among them will 
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be the end-points. Nor does it know in 
advance which part of the network wil l be 
used by the channel components and what 
might be the domain specific criterion for 
selecting the sites. 

4.3 Elements and Dependency 
It becomes the responsibility of the 
Channel Building and Execution 
Environment (BEE) to glue together 
pieces of these fragments so that 
individual parties do not need to know 
other’s components, while at the same 
time, each party can receive the required 
information needed to perform its 
designated tasks. Fig-3 explains the 
dependency and the scheme. 

The Subscriber Application Supplied elements are 
End-Point Vector (VEPT) and Quali ty of Traff ic 
Metric (MROT).  The End-point Vector specifies the 
location, and channel specific type of the End-
Points which have to be connected in the channel. 
MROT is an optional parameter by which the 
Subscriber Application may express the 
requirements of the traffic (using the quali ty-of-
service metric of the channel service).  

The underlying NOS (NET/VSM/BEE) is 
responsible for supplying the Base Topology 
Graph (GBASE), and the Quali ty-of-Network Metric 
(MQON). The base topology graph is the network 
connectivity information where route exists. Nodes 
not included in the base topology cannot be 
connected. Network resources not 
included in it will not be considered 
for inclusion in the channel. Fig-4 
shows an example of base topology 
between two end-points.  

The QON metric provides a snapshot 
of network resources in peak and 
current values. For link resources we 
track bandwidth and delay and for 
node resources we track processing 
power.  Typically NOS should use a 
separate system utili ty to collect the 
metric. 

The channel designer provides the 
capsules required to establish the 
service. It also provides two 

canonical maps called PMAP, and CMAP 
specifying the initial placement and connections of 
the static capsules. The channel designer also 
provides a capsule called “Scout” . These capsules 
serve as the intell igence gathering tool for the 
channel designer in his/her absence. It contains the 
channel specific logic to determine the location and 
activation states of the dynamic capsules.  

The above configuration is sufficient to determine 
the other required system information. Fig-3 shows 
the information elements and their dependency in 
ACF. Once the end-points are declared the Installer 
component computes the End-Point Topology 
graph (GEPT), which is a pruned sub-graph of 
GBASE. It contains k-best path between the end-

 
Placement Map 

 
DEFAULT URL =shttp://medianet.kent.edu/capsules/*.cap 
MAP VALID ON =tree, path.  
 
Rover LOC=all nodes INVOKE= 200s. 
Organizer  LOC= all nodes with rover.XCODE=ON INVOKE=5  
SEP LOC=src     
 URL=shttp://tv.kent.edu/capsules/version2/SEP.cap 
Splitter LOC=all junctions between src and sinks 
Xcoder LOC=all nodes with rover.XCODE=ON 
CEP LOC=all sinks 
 
NETORDER    (Rover,Organizer,SEP,Splitter,Xcoder,CEP) 
EXEORDER    (Rover,Organizer (SEP|Splitter|Xcoder|CEP)) 

 
Fig-5 (a) Capsule Definitions and Constraints 

 

End-
Points 

k (=2) best  
path 
Graph 

r(=1) 
neighborhood 

Graph 

Fig-4 the base topology and corresponding End-Point topology 
graph.  
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points and its neighborhood 
with radius r. A topology 
discovery algorithm is used 
to determine GEPT=T(GBASE, 
MQON, k, r). The example of 
Fig-4 il lustrates the base 
graphs. It has both active 
(square) and passive (circle) 
nodes.  With the declaration 
of end-points it shows the 
base topology graph with 
k=2, and r=1. 

Function SR() in the Scout 
provides the Requirement-
of-Service metric (MROS). It 
tells how much network 
resources will be required to 
satisfy the given 
Requirements-of-Traff ic 
(MROT) posted by the Application.  Function SM() 
then provides the dynamic capsule placement 
mapping (DMAP). Function SQ() then provides the 
feedback on the Quality-of Service metric 
supportable (MQOS) using the current dynamic 
mapping. 

4.4 Channel Components: 

4.4.1 Placement Map:  

Placement Map (PMAP) and Connection Map 
(CMAP) together tells the installation manager 
how to cast the capsules in a given network. The 
specification itself does not require any knowledge 
about the specific network topology rather it 
specifies how the components should be connected 
on a given class of graph.  

Fig-5(a) and (b) shows typical example of these 
maps. Placement MAP shows rules and constraints 
for placing the channel capsules. Each of the lines 
in PMAP describes a capsule object as attribute, 
value pair. Capsule name, placement constraint, 
URL for automatic loading, etc. are some of the 
attributes. Placement constraints can use especially 
defined network state variables such as XCODE 
(it’s use will be explained shortly).  

The placement is generally interpreted in the 
context of a specific context network graph (such 
as chain, binary-tree, multi-way tree, general graph 
etc.) on which the mapping is valid.  PMAP 

statement VALID ON indicates this context. The 
system assigns a partial numeric order to all the 
components. A unique ordered id is assigned by 
the system for each channel session based on the 
specific network on which the channel is cast. The 
NETORDER statement resolved the partial order 
among the capsules, which operate on the same 
node. This partial order is used for topology 
independent addressing.  

The EXEORDER statement specifies the 
invocation order of the modules (if needed) for 
deadlock free operation, and is interpreted by the 
scheduler. For example the Rover must be invoked 
before the others. While, there is no specific 
invocation order requirement for the SEP, Splitter, 
Xcoder, or CEP. 

Channel designer can also specify an invocation 
mode for the capsules such as periodic, non-
terminating (default), event-driven, etc. For 

 
Connection Map 

 
Rover.port0 � (Request-notify) �  prev.Rover.mport1 
Rover.mport2 � (Grant-notify) �  anynext.Rover.port3 
SEP.port1 � (MPEG2-stream) �  next.Xcoder.port0 | 
  next.Splitter.port0| next.CEP.port0 
Xcoder.port1 � (MPEG2-stream) �  next.Xcoder.port0| 
   next.CEP.port0 
Xcoder.port3 � (Control) �  prev.Player.port2| 
  prev.Xcoder.port2 
Splitter.mport5 � (MPEG2-stream) �  anynext.Xcoder.port0| 
  anynext.CEP.port0 
 
Request-notify= Request:UDP 
Grant-notify= Grant:UDP 
MPEG2-stream=  stream:TCP 
Control =  switch:UDP+RatePar:UDP 
 

Fig-5 (b) The Capsule Interconnection Rules 
 

Roverport0 mport2

(Request-notify)
Request:UDP

(Grant-notify)
Grant:UDP

Server port1

(MPEG2-stream)
Stream:TCP

Xcoderport1 port3

(MPEG2-stream)
Stream:TCP

(Control)
Switch:UDP+RatePar:UDP

Splitter mport5

(MPEG2-stream)
Stream:TCP

Fig-5(c) The capsule ports.

Roverport0 mport2

(Request-notify)
Request:UDP

(Grant-notify)
Grant:UDP

Server port1

(MPEG2-stream)
Stream:TCP

Xcoderport1 port3

(MPEG2-stream)
Stream:TCP

(Control)
Switch:UDP+RatePar:UDP

Splitter mport5

(MPEG2-stream)
Stream:TCP

Fig-5(c) The capsule ports.
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example the Rover and the Organizer capsules are 
periodic capsules with invocation period of 200 
seconds and 5 seconds respectively. 

It the responsibili ty of the Channel Designer to 
determine the proper EXEORDER sequence that 
will enable deadlock free operation for the specific 
design of the channel. The NOS installer does not 
guarantee the deadlock avoidance. 

4.4.2 Connection Map: 

Connection Map (CMAP) describes the rules for 
connecting the capsules by specifying the 

connection rules between the port pairs of the 
capsules. The capsules have numbered ports and 
multiports (mport). All are simplex and uni-
directional. A port connects to only one other port. 
A multiport is a collection of memberports which 
share the same data. The actual fanout is 
determined after the casting by the installation 
process. Each memberport of multiport set is 
bound to just one port of another capsule. The 
sharing modes can be scatter, gather, replicate etc.  

Each entry in the CMAP corresponds to one 
sending port of the capsules.  The capsules for 
which Fig-5(b) provides the connection constraints 
are shown in Fig-5(c). For example, it specifies 
that port1 of a transcoder (Xcoder) capsule can 
only connect to the port0 of the next transcoder 
module or port0 of the Player module (SEP.port0 
connects to the Player). The relative address 
‘next’ corresponds to the next transcoder unit 
according to the partial order determined.  

The CMAP interpreter evaluates the rules from 
top to bottom and left to right. CMAP also 
defines the message structure and connection 
type.  For example it specifies that the “Grant 
Notify” connection between the Rovers should be 
implemented using an UDP port. CMAP can 
define complex connections. For example the 
“switch” connection is a complex connection. The 
aggregator in CMAP then defines the packet 
structures and the elementary transport mode 
(TCP or UDP) on which the actual connection is 
established.   

4.4.3 Adaptation Capsules:  

The dynamic placement and adaptive self-
organization behaviors of the transcoder capsules 
is determined by two ‘system’ capsules (a) Rover 
and (b) the Organizer.  

Rovers dynamically determine the nomadic 
behavior and optimum placement of the capsules 
inside the channel. As specified in the PMAP 
execution order (Fig-5(a)), Rovers are invoked 
before other capsules. To ill ustrate the process we 
show a simple Rover body in Fig-6(a). (This is 
also not the only way it can be implemented). 
Upon coming to life, Rovers receive the current 
Topology (GEPT) and their relative locations in it 
from a NOS call . Each Rover also then receives 
the link bandwidths of the connect links by using 

Rover Capsule

1. /*Determine the topological location If the Rover is 
co-located w ith CEP, then  set Player’s need is my  
need. It considers the player to be stream 0*/

2. ….
3. dow nstreamrequest[0]=MY_CEP_NEEDS();

4. /*propagate a request upstream*/
5. if( not receivernode) 
6. Receive(from all-1st-downstream, in 

&dow nstreamrequest[I]); 
7. requesting=min(max(all dow nstreamrequest[I]), 

uplinkcapacity);
8. Send to parent Send(requesting);

9. /*Request granting phase begins from the top*/
10. Receive(from 1st-upstream, &granted,&xcoder); 
11. Else granted=requesting;
12. If(xcoder==ON) rover.xcount++; /*initially zero*/

13. /*and propagates downstream*/
14. For all children I {
15. If(granted>=requested[I]) 
16. rover.granting[I]=requested[I];
17. Else rover.granting[I]=granted;
18. If(granted>rover.granting[I]) { 
19. rover.xcoder[I]=ON;
20. rover.xcount++;
21. }
22. /* Sample controvertial optimization */
23. If(xcoder[I]==ON & dow nlink[I]>granting[I])  {
24. rover.xcoder[I]=OFF;
25. rover.xcount--;
26. pushdown[I]=ON;
27. }
28. ……
29. NOS_SetData(rover ); /* NOS variable 

is updated*/

Fig-6 (a) The rover pseudo-code that determines the self 
placement behavior of the nomadic transcoders

Rover Capsule

1. /*Determine the topological location If the Rover is 
co-located w ith CEP, then  set Player’s need is my  
need. It considers the player to be stream 0*/

2. ….
3. dow nstreamrequest[0]=MY_CEP_NEEDS();

4. /*propagate a request upstream*/
5. if( not receivernode) 
6. Receive(from all-1st-downstream, in 

&dow nstreamrequest[I]); 
7. requesting=min(max(all dow nstreamrequest[I]), 

uplinkcapacity);
8. Send to parent Send(requesting);

9. /*Request granting phase begins from the top*/
10. Receive(from 1st-upstream, &granted,&xcoder); 
11. Else granted=requesting;
12. If(xcoder==ON) rover.xcount++; /*initially zero*/

13. /*and propagates downstream*/
14. For all children I {
15. If(granted>=requested[I]) 
16. rover.granting[I]=requested[I];
17. Else rover.granting[I]=granted;
18. If(granted>rover.granting[I]) { 
19. rover.xcoder[I]=ON;
20. rover.xcount++;
21. }
22. /* Sample controvertial optimization */
23. If(xcoder[I]==ON & dow nlink[I]>granting[I])  {
24. rover.xcoder[I]=OFF;
25. rover.xcount--;
26. pushdown[I]=ON;
27. }
28. ……
29. NOS_SetData(rover ); /* NOS variable 

is updated*/

Fig-6 (a) The rover pseudo-code that determines the self 
placement behavior of the nomadic transcoders
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NOS calls. These Rovers are interested in their 
uplink bandwidth (variable uplinkcapacity). Then 
all the Rovers enter in the rate request 
propagation phase. The phase begins from the 
receiver side and propagates upstream. Rovers co-
located with the CEPs are the CEP Rovers. CEP 
Rovers consider the sinks as their downstream 
port0 and store the requested bandwidth value in 
downstreamrequest0. The upstream request for all 
Rovers, including the junction Rovers, is 
determined by the min/max rule 
min(max(downstream[i]), uplinkcapacity)). All 
Rovers forward this request one step upstream. 
When a Rover receives a request from i-th 
children it then stores the requests into 
downstream[i]. All Rovers follows the min/max 
rule for propagating the rate request. Once the 
request reaches the server-end, SEP Rover grants 
a specified rate (granted). It then propagates 
downstream. This time each Rover sends the 
quantity granting[i]= min(granted, downstream 
[i]) along i-th downstream port. For each Rover 
where there is a mismatching port with unequal 
granted and granting[i] Rover.XCODE is then set 
to ON.   

The Rover in Fig-6(a) also shows a sample 
optimization. A junction node (which already will 
host “Splitter” ) may push down the “Xcoder” one 
step downstream along the step down port using 
the last code segment. Before it can push however 
it checks if there is enough downlink capacity 
(downlink[i]). This generally wil l save junction 
nodes from being overloaded. Once, all the Rovers 
complete, all the nodes those are chosen will have 
their Rover variable XCODE set to ON 
appropriately. In the same process, the Rovers also 
calculates the step-down ratios for each transcoder 
which is the granted:granting[i]. (not shown in the 
code fragment). For simplicity we did not show the 
numerical considerations in the Rover code 
presented in Fig-6(a). However, we will discuss it 
in detail l ater.  

The self-organization state of the transcoders is 
determined by another capsule called Organizer 
(Fig-6(b)). Each capsule instance can save some 
data for their subsequent instantiations. At the end 
of each capsule instantiation can save data by 
NOS_SetData(), and in next instantiation can get 
back data by NOS_GetData() calls.  This saving is 
node local. This mechanism enables them to keep 
track of the video frame-rate (rate) between two 

instantiations. This particular self-organizer 
capsule checks the current frame number of the 
collocated Xcoder (xcoder.frameno), picture 
quali ty statistics (xcoder.snraverage) and also the 
current time (now). It then retrieves the frame 
number and time during its previous instantiation. 
Based on the outgoing frame-rate from the local 
transcoder it then modifies the 
organizer.xcodestate. The Xcoders after processing 
each group-of-picture (GOP) [5] checks for this 
variable to receive their self-organizing state 
determined by the self-organizer logic. 

4.5 NOS Components 
The overall implementation of the system now 
requires the following services from the NOS. 

4.5.1 Programming Interface: 

Unlike classical channels, the NOS provides two 
interfaces. First is the End Point Programming 
Interface (EPPI) to the applications (server and 
player) to request and run a rate transcoding 
channel. The other is the Capsule Programming 
Interface (CPI) for capsules to execute and co-
ordinate their functions.  We have proposed a 
detail of both the interfaces in [14].  

4.5.2 Services: 

Below the interface, the following new network 
layer services are now required for the ATV 
channels: (a) channel installation service (b) intra-
capsule communication service, and (c) network 
state exchange service.  

Self-Organizer Capsule
….
/*set the xcoder configuration state value*/
now=NOS_GetData(system.now);
then=NOS_GetData(saved.then);
frame_now=NOS_GetData(xcoder.frameno);
frame_then=NOS_SetData(saved.frameno);
NOS_SaveData(saved.timethen, now);
NOS_SaveData(saved.framethen,frame);
rate=frame_now-frame-then)/(now-then);
SNR=NOS_GetDate(xcoder.snraverage);
organizer.xcodestate=CalculateConfigure(framerate,SNR, 
QoS);
NOS_SetData(organizer);/* NOS variable is updated*/

Fig-6 (b) The organizer pseudo-code that 
determines the Self-reorganization states of the 

transcoders

Self-Organizer Capsule
….
/*set the xcoder configuration state value*/
now=NOS_GetData(system.now);
then=NOS_GetData(saved.then);
frame_now=NOS_GetData(xcoder.frameno);
frame_then=NOS_SetData(saved.frameno);
NOS_SaveData(saved.timethen, now);
NOS_SaveData(saved.framethen,frame);
rate=frame_now-frame-then)/(now-then);
SNR=NOS_GetDate(xcoder.snraverage);
organizer.xcodestate=CalculateConfigure(framerate,SNR, 
QoS);
NOS_SetData(organizer);/* NOS variable is updated*/

Fig-6 (b) The organizer pseudo-code that 
determines the Self-reorganization states of the 

transcoders
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Channel installation service include the topology 
discovery, determination of GBASE and GEPT, (Fig-
4), the loading of capsules as per CMAP and 
PMAP (Fig-5(a) and (b)), assignment of execution 
resources to capsules, and the allocation of partial 
orders address to capsules. It also needs to ensure 
secured deployment. 

The intra-capsule communication service includes 
channel identifier allocation, interpretation of 
channel relative addresses (to be described 
shortly), inter-capsule message delivery as per the 
addressing, buffering of saved data between 
capsule instantiations, provisioning on CMAP 
placement and other system capsule variables 
(such as rover.XCODE). 

The network state exchange service includes 
making the node local part of MQON available to 
the local capsules such as capacity of connected 
links (uplink bandwidth in the example in Fig-
6(a)). These also include SNMP link MIB-II 
variables, and additional active node states such as 
CPU, memory allocation, and execution time to the 
capsules. An important point to note is that, the 
system does not have to make such information 
available to the capsules on global basis. It is 
sufficient to supply these to the capsules who are 
local. From there capsules can take charge and 
exchange it globally if needed. 

4.5.3 Organization: 

All services have three NOS components. A 
manager, which works at the actuator end of the 
connection, an audience-agent, which works at the 
audience end-point, and a network agent, which 
works in the intermediate nodes. Fig-7 shows the 
service stacks in these three positions. The service 
stack involved at the junction nodes is little 
different form the end-point stacks. Junction nodes 
do not need any EPPI, as there is no subscriber 
application component there. However, since, the 
junction points can be a typical active router, 
instead of relying on general OS, a Virtual Switch 
Machine (VSM) has been created on the router. 
VSM identifies active communication from regular 
routing operation and when an active data arrives it 
diverts the active packets towards the capsules.  
VSM also allocates the CPU and memory 
resources between the competing capsules and acts 
as a capsule scheduler.  Immediately above the 
VSM an execution environment called channel 
Building and Execution Environment (BEE) 
provides the utilities upon which the capsules 
actually execute.  

4.5.4 Dynamic Relocation:   

The channel installation also provides support for 
dynamic relocation. As a part it provides several 
additional passive and periodic capsule 
instantiation modes. It also provides mechanism 
for deferred capsule cancellation. In the example, 

Fig-7  network services for adaptive application maintenance and execution NOS layers 
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the Rover is periodically invoked by the 
VSM/BEE. Each time a new calculation is made 
on the placement variable. If result changes, 
installer accordingly dynamically starts and stops 
capsules. For seamless invocation, the new capsule 
is first loaded and placed in the background 
without changing the current operation. In passive 
instantiation mode some capsules can be preloaded 
but kept in a dormant state,  

Table-1 Requirements of Traffic MROT 
Requirements Posted by MediaetServer Session 

End point Required Bandwidth 

SEP 30 Mbps 

CEP1 30 Mbps 

CEP2 20 Mbps 

CEP3 10 Mbps 

 
Table- 2 Node MQON 

Resource availabili ty on End-Point Topology GEPT(radios = 1) 

 A1 A2 A3 A4 A5 A6 

MAX 100 200 300 400 100 100 

Average 50 100 100 200 100 70 

Available 50 100 200 200 300 50 

 
Table-3  SROS Calculation Table 

Network Resource Requirement per unit of Service 
Capsules Needed Computation 

Splitter 1 per 1MB video stream 

Xcoder 12 per reduce 1 MB 

 

Data marking is used for seamless operation. 
However, the data flow is marked by applications. 
For example the AVT transcoder marks the stream 
in per GOP basis (actually it is already there and in 
this case no additional effort is need) and ensures 
that switch occurs after the completion of the 
current GOP for each module. For the exiting 
capsules it is stopped by NOS in a deferred basis 
only at declared cancellation points called ready-
to-stop point. For incoming capsules there can be 
similar (optional) ready-to-start points. When, the 
module is ready to operate, only then the VSM 
switch is invoked to route active packets to the 
newly activated module. Seamless revocation is 
performed by disabling the packet forwarding first. 
For graceful revocation the VSM/EE invokes a 
particular capsule module called CAP_Destroy(), 
given by the channel designer for graceful 
departure. 

4.5.5 Channel Relative Addressing: 

In addition to the above services, the VSM/BEE 
also provides an abstract addressing scheme, where 
capsules and maps can use a channel relative 
addressing mechanism to refer to each other based 
on their logical position in a channel, without 
knowing the actual deployment. The addressing 
scheme has three references-- src, sink, and this 
node. Complex references are built on them using 
set operators and modifiers such as upstream, 
downstream, all etc. Once, the actuator and the 
audience end-points are determined, the CRA 
interpreter returns determined the actual network 
addresses for all CRA addresses.  The CMAP, 
PMAP and the Rover shown in Fig-5 and Fig-6 
contain several examples of such network relative 
references. 

4.6 Channel Instantiation 
Finally, Figure-8 shows an example assignment of 
the capsule components for a specific channel 
instance using the ACF. 

4.6.1 Request  

The instantiation starts with a subscriber 
application “MediaVideo” which would post the 
initial end-points (in that case one server-end 
connected at entry point A1 and three player-ends 
connected at entry-points A2, A3 and A6) via the 
EPPI interface.  End-points can also join (or leave) 
dynamically later. The application requests an 
“AVT channel” and posts its MROT.  A sample 
requirements-of-traffic metric is shown in Table-1. 

4.6.2 Building 

The Installer determined the End-points Topology 
GEPT  from the base topology GBASE. Table-2 shows 
a sample MQON metric. It obtains the PMAP, 
CMAP, security certificates and the capsules for 
the AVT channel from code server. Next it 
launches the Rovers. It also launches the “Splitter” 
on the only junction node A2, and SEP on the 
MediaVideo Server entry point A1, and two CEPs 
on the MediaVideo Player entry-points A3 and A6. 
The Rover capsules use NOS information GEPT, 
and MQON and its internal knowledge of SROS() and 
SMAP() (for this simple example we assume that it is 
given in Table-3) to determine the best placement 
of the transcoders. Fig-8 shows the optimum 
placements of the “Xcoder” units for this AVT 
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channel instance created for MediaVideo. Once the 
“Xcoders” are activated, SEP and CEPs return 
handles to its MPEG2-stream ports to the 
corresponding MediaVideo end-points-- again via 
the EPPI interface.  

4.6.3 Execution 

Any stream sent/received via the port now receives 
automatic distribution and embedded rate 
adaptation. The subscriber operation interacts with 
the channel only via SEP and CEP end-points. The 
channel designer provides documented sending and 
receiving interfaces under EPPI. During it normal 
streaming operation NOS does not get involved. If 
underlying node/link traffic dynamics changes, 
then this is tracked by the periodic instantiation of 
the Rovers. Also, if a new endpoint attempts to 
join in or leave then accordingly a CEP is invoked 
or terminated, and the corresponding change is 
eventually caught by the Rovers. 

5. Conclusions 

In this paper, we have discussed the requirements 
for an advanced framework that can support 
development of complex netcentric applications for 
active network. We have also outlined the Active 

Channel Framework4 that can support many of 
these requirements. ACF provides formalism 
‘components’ and ‘ interaction environments’ f or 
both the channel developer and the subscriber 
application entities. The complexities arising from 
these distinctions did not arise in previous active 
node programming models.  

We have il lustrated this construction formalism by 
using an example concept application-- a nomadic 

                                                           
4 Some researchers have proposed a three-tier 
active network architecture based on the 
abstraction of Node OS, EE, and AA [26,28].  It 
will be diff icult to map these with the tiers of ACF. 
Unlike these efforts which started from routers 
architecture, ACF is the result of a top-down 
investigation on multiparty active system 
development ‘f ramework’ (rather than on the 
‘architecture’ ). It has more than one notion of 
‘environments’ . The ‘ interaction environments’ are 
distinctly different with non overlapping 
characteristics. Also the meaning of 
‘programming’ is separate at two tiers. Since, the 
definitions are still open and evolving, the 
comparison attempt will remain open ended. 
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MPEG-2 rate transcoding mechanism. Within the 
scope of this paper, however, we have not 
elaborated on the detail of the transcoding 
operation. More information about the SONET 
(Self-Organizing Network Embedded Transcoder) 
system can be found in [6,15].  

In our framework design we emphasized 
reusabili ty, and task division. We placed core 
services in the network layer needed for supporting 
nomadic and self-organization behavior of adaptive 
systems. Additionally, we have introduced the 
concept of programmable channel construct to 
encourage reusabili ty, instead of building the video 
transmission specific adaptive logic directly into 
the application core. Here the service is the video 
rate adaptation. The service itself although requires 
complex organization and design, but apparently it 
can be used by any video application with simple 
socket like interface.  

Though we have presented the case with the 
transcoder channel, but this framework is the result 
of our experience with a number of active 
applications (active prefetch-proxy [17], daisy-
chain forwarder [14], Active Harness group 
communicationware[16], etc). Nevertheless the 
applications are further being expanded. For 
example, we have recently demonstrated 
transcoding channel which performs the 
transcoding operation by distributing the 
computation over an active subnet, instead on a 
single active node. This extension did not require 
any significant modification of the formalism as its 
mapping and dynamic relocation capabiliti es were 
already sufficient to support such distributed 
computation. 

An interesting issue is scalability of active systems. 
A particular concern in any complex and large 
application is the complexity of the signaling 
mechanism. We think there is nothing which will 
prevent a good designer to build schemes which 
will scale. For example, let us take a closer look 
into the communication patterns of the Rovers. The 
given Rover algorithm analyzes the base network 
to determine the placement of the transcoders and 
their step-down ratios. This is the potential 
bottleneck point which involves activity in the 
largest part of the network in the ACF. Yet an 
analysis will reveal that this entire scheme is 
amazingly light. It uses only two signal messages 
(request/grant) per link for this entire job. This 

O(1) cost does not depend on the size of the 
network. This scalabili ty has been derived by 
avoiding any duplicate information from being 
propagated.  All i nformation was optimally pruned 
at the forwarding nodes (in this case the min/max 
rules). Indeed, this is one of the advantages of 
embedded programmabili ty. Information can be 
collected in distributed scalable way when needed. 
Therefore in ACF there is no centralized MQON. All 
its quantities are probed locally.  In general the 
network embedded processing abili ty wil l increase 
the designer’s flexibili ty to build scalable 
solutions. However, there is noting which wil l 
prevent a bad designer either. Also, there might be 
application specific task segments which are 
inherently non-scalable. It suffices to say that 
scalabili ty of active systems can not probably be 
meaningfully discussed without knowing the active 
application. The ACF approach is to empower 
channel programmer to exploit it  maximally where 
it exists. 

Active and programmable network is a relatively 
new area in networking research. The framework 
of systems development on such network is 
perhaps one of the least explored yet enormously 
challenging areas within it. ACF is one of first 
explorations to analyze network programmabili ty 
from the software engineering with several serious 
applications scenarios. We have raised few of the 
issues. Clearly we expect its individual 
components to advance. Programming active 
systems will be much more complex than end-to-
end systems. There is lesser doubt in its capabili ty 
to add tremendous value in communication 
services. The bigger challenge however, lies in the 
techniques of complexity management. 

The work is currently being funded by the DARPA 
Research Grant F30602-99-1-0515 under its Active 
Network initiative. 
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