

Proceedings of the DARPA Active Networks Conference and Exposition 2002, DANCE 2002
San Francisco, CA, May 2002, pp.409-426, IEEE Computer Society Press (unformatted version)

A Framework for Building

Complex Netcentric Systems on Active Network

Javed I. Khan and Seung S. Yang

Media Communications and Networking Research Laboratory
Department of Math & Computer Science, Kent State University

233 MSB, Kent, OH 44242
javed@kent.edu

Abstract

Active applications can add value to
communication. Yet it involves sophisticated
domain knowledge and complex development
process. In this paper we discuss a framework for
the construction of complex active network
applications. Its design motivation is to enable an
expert to develop complex active applications as a
value added communication service and make it
available for repeated use by the end-applications.
As a test case we select a self-organizing adaptive
video transcoding channel. This multi-component
multi-tier novel active application enables video to
propagate over extreme network with highly
asymmetric link and node capacity. At the same
time it offers a unified channel abstraction to its
service subscriber. In this paper we focus how this
channel abstraction can be composed within the
proposed active service composition framework.

Key Words: Adaptive Video, Netcentric
Applications, Active Network.

1. Introduction

In conventional packet network a network junction
node (such as a switch or router) only forwards
(and occasionally drops) packets [2,9,10]. Active
Network extends their classical role to a new
dimension. Here nodes are also capable of
transforming packets in transit through active
processing. Active network paradigm can
potentially spark a new generation of smart
networked applications—which otherwise are not
easily realizable on traditional networks.

Network embedded logic can provide unique
advantage in communication. For example, a
system can adapt with respect to local network
states (such as bandwidth or congestion) inside
network. Embedded components can also provide
high-level localization services (such as language,
weather localization, etc). It can also improve the
performance of traditional communication service
with novel application level knowledge and
techniques. For example an active prefetch proxy
can dramatically accelerate web surfing. An
embedded cache/mirror can help in creating the
abstraction of normal communication over time-
lapse links. It can add scalabili ty to group
communication (by performing application
knowledge enhanced data merging and filtering).
None is easily attainable from end-to-end
paradigm.

In last two years, we have developed and
experimented with a number of active applications.
Though in this paper we present the case with the
transcoder channel, but this framework is the result
of our experience with a number of complex active
applications (active prefetch-proxy [17], daisy-
chain forwarder [14], harness group
communicationware [16], etc). To succeed, the
active network paradigm must provide an overall
application development framework that can
deliver software engineering advantages to active
applications with network embedded components.

At the lowest level of computing engine an active
network requires OS extension where a
programmable module is run on router hardware.
However, building cost effective and efficient
active application on top of it uniquely calls for

Proceedings of the DARPA Active Networks Conference and Exposition 2002, DANCE 2002
San Francisco, CA, May 2002, pp.409-426, IEEE Computer Society Press (unformatted version)

KHAN/YANG 2

research in multi-party development formalism
with complex specification interfacing mechanisms
and unique system level requirements. Indeed
many of the unresolved issues in active networking
concerning security, fault-tolerance, and
performance cannot be addressed without the
overall consideration of the active application and
service development framework.

1.1 Background and Related Work
It will be interesting to look into the current
research in network centric applications and
systems area. Any network-based system is a
composition of two types of elementary constructs-
- the process and the channel. A number of
research areas-- including parallel processing and
middleware, have explored system building
formalisms with distributed processing
components (from PVM, to DCE, RPC [18,19],
DCOM/COM, CORBA [20,21], Java/RMI)
[22,23].

More recently, active networking is exploring the
means for adding programmabili ty into network
data path. Traditional network elements that have
been deployed until now perform only a limited set
of basic operations on the packets (such as
forwarding and routing, fragmentation, packet
dropping). Among the techniques for network
programmabili ty, Active Network proposes the
generalization of the concept by incorporating
almost unlimited programmable packet processing
abili ty into the network elements. Here not only the
header elements but also the contents of transiting
packets may be revised, augmented, compressed,
combined, or otherwise processed in transit. At
least eight systems have been explored. Examples
include Smart Packet [31], ANTS [10], PLAN
[32], NetScript [30], and our Virtual Switch
Machine [6,14]. The first generation systems have
addressed the issues such as execution
environment of a foreign code, remote installation
and capsule deployment, programming language,
router level intercept of active packets [26,27,28].
Pioneering active network platform research now
provides valuable insight into the base
requirement-- executability of code on routers.

In this paper we discuss a framework called Active
Channel Framework (ACF) formalism, which
will address some of the issues of complex system
development. A number of issues from the overall

system development framework have remained
relatively untouched. These include reusable
communicating component based development,
dynamic pathway planning, adaptive deployment,
dynamic module relocation, and interfacing with
service subscriber application and network.
Whereas active network presents a powerful but
bare-bone architecture to insert and execute
programs at junction points, the Active Channel
Framework provides the mechanism to build
reusable service on it.

In this paper we will explain the proposed
formalism by example construction of a novel
system – the nomadic self-organizing transcoding
channel. The nomadic self-organizing transcoder
represents a new generation of network aware
reactive system. This is a full l ogic MPEG-2
ISO/IEC 13818-2 video stream rate adaptation
system developed at Kent Medianet Lab [4,5]. As a
reactive system, it requires different network
service model for automatic launching,
management, and seamless operation, which is not
present to-date. The proposed active channel
framework provides the development formalism
for this concept system with support for advanced
composition features.

The next section begins with the discussion of the
specific challenges of complex systems
engineering. We then also briefly explain the
features of the complex adaptive features of the
transcoding channel. In Section 3 and 4 then we
explain the ACF formalism and how this specific
system can be constructed and operated within
ACF.

2. Framework Issues in Complex
Netcentric Systems

Systems Engineering: If we look into the
development of the current systems research
(middle ware technology), we will see most of the
previous formalisms for building complex
networked systems have eventually focused on
building more complex process construct and used
standard elementary transport channels for
connectivity even at the highest level of process
abstractions. What is missing is the polymorphic
abstraction of the channel construct. A software
system construction framework imposes a set of
ontological and epistemological constrained on the
components or process and a set of protocol and

Proceedings of the DARPA Active Networks Conference and Exposition 2002, DANCE 2002
San Francisco, CA, May 2002, pp.409-426, IEEE Computer Society Press (unformatted version)

KHAN/YANG 3

lexical constraints on their rules of interaction
[25]. A well-defined language for constraint
specification also provides a means to express
properties flexible enough to be felt as
programmable yet disciplined enough to ensure
inheritance and polymorphism. Most of the
recent research initiatives in middleware
technology build on the impressive advances in
component abstraction of Object Technology [18-
23]. Ironically all approaches focus on providing
ingenious domain specific variants-- but still non-
polymorphic instances of channel constructs.
While, conceptually active network provides a
platform for building complex communicating
systems yet a polymorphic framework with
inheritance property which includes both process
and interaction construct is missing.

Planning: In conventional channels the network
embedded components are standard based and
preinstalled. On the other hand almost by
definition in active service composition the
components have to be deployed dynamically in
the pathway between the source(s) and sink(s).
Consequently, a unique stage in active application
construction is pathway planning. Besides the
actual mechanism for installation, this would
require topology discovery, node selection process,
node and pathway query. A key challenge here is
the provisioning of a mechanism for application
knowledge induced and yet deployment time
mapping. The planning specifications are expected
to come from dynamic network states at the time of
instantiation. On the other hand, the constraints are
to be specified by the service designer at design
time. Consequently, a key requirement here is the
appropriate specification language. The planning
process itself may require additional system level
network embedded meta-components. These meta-
components however, may not be all generic as
they too can require application specific scouting.

Network State Accessibility: A service with
network embedded components is meaningful if
the embedded components can dynamically react
with respect to network local states. This imposes
several new requirements, which are not so acute
in classical end-to-end paradigm. There is a
historical irony in the design of network software
stack. In classical design each layer in the network
software stack has been strongly isolated from its
upper layer. For simplicity the interlayer
interfacing mechanisms were designed as

interaction free service transaction pathway. This
model simplified development of first generation
applications. The flip side of this design choice is
that now therefore network states are very difficult
to access. For building efficient active applications
system level re-provisioning will be required so
that embedded service components can be
mutually secured and trusted, and yet will allow
open standard-based access to network local states.
A generalization of the requirement also calls for
an inter services state-interfacing. Here a trusted
component from one service should be able to pass
on vital local states to a collocated component of
another service.

Dynamic Service Configuration: As a part of a
large scale dynamically deployable network
service, it will be more prone to dynamic
component relocation. The issue of run time
service recomposition is not a simple extension of
the first time service installation. In service
reconfiguration additional constraints are placed by
the requirement of minimum interruption of the
ongoing service sessions. For example, while
intermediate components are relocated it must be
ensured that an ongoing service does not suffer
from loss or duplication of packets, or loss of
duplication of processing cycle etc. We must
reduce the impact on overall processing and
communication delay. The signaling sequence to
install/ uninstall components within a running
service requires application specific sequencing
and deadlock avoidance.

Separation of Service Development and Service
Subscription Interface: Another critical
component that arises in active service
composition is the creation of a powerful middle-
layer abstraction. This is related to the remarkation
of the conventional boundary between end-to-end
applications and network. While, the active service
itself can be a complex system, however, the
subscription and use of the composed service (once
designed) should be easy and intuitive. This
required provisioning on a middle-layer
abstraction, where third-party developers can
develop the components required for active
service, while the end-point users and applications
can take advantage of these services with an easy
to use interface. This will require two distinct
programming interface design- one for the service
designer another for the service subscriber.

Proceedings of the DARPA Active Networks Conference and Exposition 2002, DANCE 2002
San Francisco, CA, May 2002, pp.409-426, IEEE Computer Society Press (unformatted version)

KHAN/YANG 4

With these requirements in mind we have proposed
the Active Channel Framework (ACF) for
developing active applications. In this paper, we
ill ustrate the ACF formalism with a concept
application that concentrates on creative
adaptation.

3. Nomadic Video Transcoding

3.1 Adaptive Transcoding
As a test application, we present the nomadic
MPEG-2 [4] rate transcoding mechanism. The
application system has a number of complexities to
offer substantial challenge to the framework.

First of all it addresses the issue of adaptation from
two levels. It adapts with respect to the local
constraints of two critical network resources—
bandwidth and the processing resource at the
junction nodes. As opposed to classical server-
client model for building network applications
under current network software architecture, this
application has three parts-- server, transcoder and
the client. The middle component is the channel
and is reusable. It can be launched as a set of active
capsules in a suitable active junction point in the
stream pathway and downscale it if needed. The
resulting system has two adaptive features. It
performs an adaptation function for its subscriber.
Secondly, its can evolve its own architecture based
on the network resource.

3.1.1 Functional Adaptation

The transcoder senses local asymmetry in link
capacities at various junction points of a network.
Accordingly it auto-converts the video stream rate.
For example, it can be dynamically deployed at
nodes splicing a fiber and a wireless network, and
thus it enables an incoming high-bandwidth video
multicast stream to be re-encoded for the outgoing
low-capacity wireless links.

This particular type of adaptation demonstrates
advantage of active application paradigm and does
not have easy solution in end-to-end-paradigm. In
comparison, today’s media servers are fixed rate
based. They store multiple copies of the same
media one for each supported rate class (LAN,
DSL/Cable, 56K, 28.8K etc.) [13,1,3,4]. The end-
user is required to specify its rate. Although there
have been few attempts to automate such

specification, but the difficulty seems to lie
fundamentally with the end-to-end network
programming paradigm. Neither in a live video
multicast, nor in stored video cache, the end-to-end
solutions seems satisfactory. Classical solutions
such as, sending the high-speed stream cuts off the
low speed clients. Sending the lowest speed stream
penalizes others by forcing the lowest quali ty to
all . Sending multiple streams, burdens the network.
In contrast the in-stream rate adaptation by a
nomadic active transcoder can solve this riddle
and offer optimality even at the level of individual
links.

3.1.2 Architectural Adaptation

The system also has been designed to adapt with
respect to node computation power. This is also a
unique problem specific to active applications.
Video stream rate adaptation is a challenging task.
Because of complex inter packet data dependency,
packet level rate adaptation—which is almost
blind, offers very limited down-scalability.
Dropping only 20-25% of the UDP packets can
render an entire stream useless [12,2,24]. Content
unaware, just packet slicing backed rate control
seems to very wasteful and limited in their
efficacy. Smarter content aware transcoding, in
contrast can offer much broader range of rate
adaptation with much graceful loss of video
quali ty.

However, MPEG-2 transcoding is also quite
complex and computation intensive task. A number
of techniques have been investigated for
accelerated transcoding by us and other
researchers, such as motion vector reuse, fast DCT
domain transcoding, parameter bussing [11,7,8,24]
These models provide a three-way tradeoff
between the computational complexity, video
quali ty degradation and second stage compression.
It seems that in near future with the rapid
advancement of the VLSI technology some nodes
may be able to garner enough processing power for
real-time high fidelity video transcoding. However,
on any given large scale network the fact of the
matter is that there will be always inequality of
processing capabili ty just like the asymmetry in
bandwidths. Consequently, this nomadic
transcoder also demonstrates self-organization
behavior and choose the right operating state in
this three-way trade-off based on the available

Proceedings of the DARPA Active Networks Conference and Exposition 2002, DANCE 2002
San Francisco, CA, May 2002, pp.409-426, IEEE Computer Society Press (unformatted version)

KHAN/YANG 5

network resource of processing power at the
junction points1.

3.1.3 Service Interface

Also, the overall system creates a service
abstraction of an MPEG-2 video communication
channel where instream rate adaptation is
automatically available between a video source and
sink groups, and is reusable by any high-level
video application, without interfering with its
functionali ty or without reengineering of the
transcoding system’s code base. Also, the system
components should automatically be deployable in
the correct nodes as per service designer’s
specification in the network without active
intervention from the user application.

3.2 Nomadic Transcoder

3.2.1 Components

The model we are investigating has three service
modules (a) application server (b) transcoder

1 Node capacity adaptation has been littl e
addressed until now, though it is particularly
important for active networking.

channel and (d) the client. The transcoding
channels has two types of functional
components—a splitter and a transcoder. A splitter
duplicates a stream in a junction. A transcoder
downscales incoming video rate.

Fig-1 shows a sample video distribution network
with asymmetric link capacities and a typical
deployment of the modules that builds a
distribution tree. The server is attached to the
server end-point (SEP). There are various client
classes (regular, mobile and high definition), which
are attached to the network via client-end points
(CEP), mobile client-end-points (m-CEP), and high
definition client-end-points (h-CEP). Each end-
point can in turn act as a local distribution/
concentration center. The network connecting
these end-points has unequal link and node
capacities2. Each link is labeled using two
quantities R:B where and B is the link bandwidth,

2 Bandwidth is increasing with the rapid
advancement of technology [29]. However the
effect seems to be limited at the core. Effectively
what is increasing dramatically is the
heterogeneity and asymmetry in the Internet. The
augmentation of non-traditional devices [33] in
the Internet will further intensify the situation.

SSEEPP

SS11 44::1100 88::2200
CCEEPP

22::33
44::44

11::11 44::33

11::11

mmCCEEPP
11::11 11::11

CCEEPP

SS22

SS33

XX44

XX33

XX11

11::11 22::33

66::77

11::11

SS44

hhCCEEPP

88::99 88::99

hhCCEEPP

hhCCEEPP CCEEPP
22::44

66::77

00

CCEEPP

XX22 XX55
11::
55

88::1188
11 22

11::77

Fig-1 An adaptive video distribution scenario in a network with asymmetric capacities. There are
various types of clients. High-definition client (hCEP) have high requirements, and mobile clients
(mCEP) delivery. These are also connected with links of different capacities. An distribution network
with embedded rate transcoders (X) and stream splitters (S) at correct network points can facilit ate the
distribution.

mmCCEEPP mmCCEE
PP

Proceedings of the DARPA Active Networks Conference and Exposition 2002, DANCE 2002
San Francisco, CA, May 2002, pp.409-426, IEEE Computer Society Press (unformatted version)

KHAN/YANG 6

R is the requested video rate at the leaf links or
final flow rate at the internal links.

3.2.2 Module Mapping

The first application issue is the optimized module
placement. The video rate in the links should be
calculated bottom up based on the requests from
the CEPs downstream and the available link
bandwidths. At each junction point, the
downstream requests are aggregated and the
maximum of these are propagated upstream as a
new request. The requested rate either increases or
stays the same as it propagates upstream. The
number of required transcoders is equal to the
number of rate steps inside the distribution
network. However, instead of catering to each
requested rate, the number of transcoders can be
minimized by using rate classes. A possible
placement of the transcoders seems to be at the
junction nodes. This requires each m-way junction
node to have m-1 step down transcoders.
However, each step down requires significant
computation. Therefore, to distribute the
computational load the step-down transcoders are
not placed at the junctions, but one node down
along each of the downstream paths.

3.2.3 Dynamic State Information Exchange

The placement optimization depends on local
network states. These include link bandwidth,
congestion, switching speed, processor speed, and
available computational power of the nodes. The
link capacity allocated to the video distribution can
also vary with time such as due to congestion.
Similarly, the computation cycles available to the
adaptation mechanism such as the transcoder can
also vary based on the multiprocessing load at the
nodes. The transcoders must be able to optimize its
rate conversion factor in response to the change in
link and node states up and downstream. Similarly,
the transcoding operation can be performed at
several quality/computational effort choice levels.
The particular level should be chosen based on the
available computation power at the node. Thus a
prerequisite to any adaptive system is dynamic and
efficient monitoring of various local network state
information.3.

3 We have developed a group state communication
ware (another active service) [16] and this ware

3.2.4 Dynamic Module Relocation

Initial module mapping is not final. Any change
in the local state not only can spark change in
step-down rate, but it can effectively require
activation of new and deactivation of existing
transcoder modules. Dynamic departure of clients
can similarly trigger activation/deactivation of
splitters and transcoders. Congestion, reduction in
CPU cycle allocation may necessitate migration
of transcoding operations to neighboring nodes.
Thus, ideally, in a large adaptive system these
modules should be occasionally able to relocate,
however, without apparent disruption of the basic
stream. Relocation should not cause loss or
duplication of data. The information order should
also be preserved. Additionally it is desirable that
it should not impose significant delay. System
stability should also be maintained avoiding
excessive reorganization.

4. ACF System Architecture

4.1 Overview
While the above explains the target that we would
like to achieve, however in a large network our
principal interest is not a single smart application
but a formalism that can automate the entire
placement, deployment and running process of the
above system. Consequently, we first identify the
critical network layer services needed for adaptive
systems. We then present the proposed
organization for the entire system.

First we envision the rate adaptive service to be a
special and generalized form of abstract
communication. While, traditional networking
provides only two types of communication channel
constructs TCP and UDP, we generalize the
concept and consider that the automatic rate
adaptive communication service indeed is a higher
level of communication service to the applications.
The channel construct provides two important
benefits. First it provides a separation between the
network related and the network independent tasks.
Secondly, it allows the entire design and modules
to be reused by various actual server and player

can be invoked by the transcoder channel manager
if needed. There are other management tools such
as NESTOR, which can be potentially used [34].

Proceedings of the DARPA Active Networks Conference and Exposition 2002, DANCE 2002
San Francisco, CA, May 2002, pp.409-426, IEEE Computer Society Press (unformatted version)

KHAN/YANG 7

applications. For example, while, in actual server
application VCR operations (such as fast forward,
rewind, pause, etc) can be supported, the network
layer modules are only concerned about the
transport aspect of the service. We will call it rate
adaptive transcoding video (ATV) channel.

Based on this channel abstraction we propose a
three-tier system architecture. Fig-2 il lustrates the
tiers.

First is the subscriber application itself. More
specifically, the network independent part of the
domain routines resides in this tier. The
application advanced auto-rate adaptive transport
service connecting the end-points, however, it does
not want to be concerned about the implementation
details.

Second is the channel layer. This is the layer that
houses the reactive components that bridge
between the network and the application (shown in
the bottom box). The modules in this layer are
programmable however; they execute strictly under
the control of the network and help in the local
state dependent adaptation.

The third is the enhanced network layer, which acts
as a “glue” layer connecting the application layer,
channel layer and the actual network and performs
automation and facilit ation. It is placed on top of
the traditional network and the OS in the individual

machines. We will refer to this glue layer as the
network operating system NOS. This indeed has
three parties. Besides network, this has a converted
active router called Virtual Switch Machine [6] and
the active system building and execution
environment (BEE). The BEE provides the added
extensions and utiliti es to realize the development
formalism. We denote this combined system as the
network operating system NOS (NET/VSM/BEE).

The adaptive transcoding video (ATV) channel is
built with four primary types of capsules (a)
actuator capsule (server-end-point SEP) (b) splitter
(S) (c) transcoder (X), and (d) audience capsule
(client-end-point(s) CEP).

The actuator and the audience capsules interact
with the applications, and at the same time co-
ordinate with other capsules and hide internal
details and provide a single channel abstraction to
the application. The CEP modules can have
multiple versions specializing to attend mobile or
high-definition clients adapting to their specific
needs. There are also two maps, which describe the
rules for placement of the primary capsules and
their interconnection, and two auxili ary capsules,
which dynamically evaluate the network dependent
placement logics and decide the roving behavior
and the self-organizing states of the nomadic
components. The channel designer thus can be
different from the application programmer.

 SSeerrvveerr
AApppplliiccaattiioonn RReecceeiivveerr

AApppplliiccaattiioonn

AAccttuuaattoorr
CCaappssuullee

((SSEEPP))
EEmmbbeeddddeedd
CCaappssuulleess
((SS,,XX,,RR,,OO))

AAuuddiieennccee
CCaappssuullee

((CCEEPP))
EEmmbbeeddddeedd
CCaappssuulleess
((SS,,XX,,RR,,OO))

VVSSMM//
NNEETT

VVSSMM//
NNEETT

VVSSMM//
NNEETT

VVSSMM//
NNEETT

Fig-2 The three-tiers of system architecture in ACF formalism. The top is the subscriber application. It
extracts the communication service from the underlying active network via a set of embedded capsules.

AAVVTT CCHHAANNNNEELL ((3333,,��

&&33,,��

6XEVFULEHU�

$SSOLFDWLRQ�

5HVRXUFH�
DQG�³*OXH´�

3ODWIRUP�

$FWLYH�
&KDQQHO�

Proceedings of the DARPA Active Networks Conference and Exposition 2002, DANCE 2002
San Francisco, CA, May 2002, pp.409-426, IEEE Computer Society Press (unformatted version)

KHAN/YANG 8

A multicast video application requests an adaptive
transcoding video (ATV) channel in a similar way
it requests sockets. NOS installs the capsules and
creates the requested channel and application
receives the finished product.

4.2 Task Division & Information
Fragmentation

The tri-partite development model helps in the task
separation in the development process and is the
key to any possibili ty of complex application
engineering. However, the framework design
becomes challenging because of the knowledge
fragmentation in multiparty development. Let us
first look into the fragmentation. Then we will
explain how the system glues them together. We
will call each a sub-domain. Below we describe
each sub-domain’s information structure.

4.2.1 Channel Designer

The channel designer generall y knows very well
about the operational mode, control flow and
detail architecture of the capsules. S/he also
knows the situational constraints of the channel
components. However, the channel designer does
not have access to the exact network map on
which the system will run. S/he knows only in a
logical way on which type of topology the system
can be deployed. Channel designer also has
knowledge about the
computational and
communication power that will
be needed to support the channel
service. S/he also knows the
nature of service it can provide.
S/he probably has a metric
defined to quantify the service it
can provide. However, since it
does not know the exact traffic
that a specific instance will carry,
or the exact topology on which an
instance of the channel will run,
therefore it can only provide the
deliverable service capacity, and
the required network resources to
support it in some canonical way.

4.2.2 Subscriber Application

The subscriber application on the
other hand is eager to remain

completely ignorant about the channel architecture,
capsules, their connections, nor does it is interested
to know about these details. It is mostly interested
in the service the channel provides. The subscriber
on the other hand is the first party to know the
locations of the end-points. However, it does not
know, nor is it interested to know the underlying
network topology. Also, the subscriber application
is the most knowledgeable among the three about
the characteristics of traffic that will flow through
the channel. The subscriber is expected to have a
fair idea about the nature of service it will receive
from the channel, though it may not know the
exact metric that the channel designer has used to
quantify it. It is interested to know the metric, so
that, if it wishes it can specify its requirements. It
also reserves its right to know how much it is
actually getting.

4.2.3 Active Node OS NET/VSM/BEE

On the other hand, the active node OS
(NET/VSM/BEE) has no prior knowledge about
the channel architecture, its components, capacity,
or network capacity requirements. It also does not
know in advance about the traffic characteristics or
size. However, this is most knowledgeable among
the three about the underlying network
infrastructure—i.e., the actual topology, and the
quali ty and capacities of its various elements.
However, it does not know which among them will

�� ��������������

�� 	�
	�

�� ��������

�� ����������

��������������

��� ���

!! "$#$%"$#$%

&& '�(�)'�(�)

** +-,�.+-,�.

/10�24365/10�24365

7�8:9:;7�8:9:;

;18:9:;;18:9:;
<�=�=�> ? @BA�CD? EGF<�=�=�> ? @BA�CD? EGF
HJI�K�K�L M N�OHJI�K�K�L M N�O

PRQTSVU�U�WGXZY[W�\^] _GU�WG`ba4c�W�d^] eD] W�fPRQTSVU�U�WGXZY[W�\^] _GU�WG`ba4c�W�d^] eD] W�f

gihRjik l4jGmRk-n�oJogihRjik l4jGmRk-n�oJo
p�qGr r s�t-u s�vp�qGr r s�t-u s�v

ww x�yDzx�yDz

{{ |�}�~|�}�~

Fig-3 The tripart ite information dependency between the
application program, channel, and the NOS/VSM/BEE. The
logic for S() functions are supplied by the Channel Designer
as a special capsule set called Scout.

{{ ���G����G�

�� ��������������

�� ������

�� ����������

�� ����������

��������������

��� ���� �

�� � �$�� �$�

�� ��� ���� �

�� �-� ��-� �

�1���4�6��1���4�6�

� �:�:�� �:�:�

�1�:�:��1�:�:�
 �¡�¡�¢ £ ¤B¥�¦D£ §G¨ �¡�¡�¢ £ ¤B¥�¦D£ §G¨
�J© ¡�¡�¢ £ ª�«�J© ¡�¡�¢ £ ª�«

¬R ¥V¨�¨�ªG¢Z®[ª�¯^£ °G¨�ªG± � ¡�ª�¤^£ ²D£ ª�«¬R ¥V¨�¨�ªG¢Z®[ª�¯^£ °G¨�ªG± � ¡�ª�¤^£ ²D£ ª�«

³i´ �iµ ¶4�G·Rµ-¸�¹J¹³i´ �iµ ¶4�G·Rµ-¸�¹J¹
¬ §G¢ ¢ ª�¤-¦ ª�«¬ §G¢ ¢ ª�¤-¦ ª�«

�� ���Dº���Dº

�� ����������

Fig-3 The tripart ite information dependency between the
application program, channel, and the NOS/VSM/BEE. The
logic for S() functions are supplied by the Channel Designer
as a special capsule set called Scout.

�� ���G����G�

Proceedings of the DARPA Active Networks Conference and Exposition 2002, DANCE 2002
San Francisco, CA, May 2002, pp.409-426, IEEE Computer Society Press (unformatted version)

KHAN/YANG 9

be the end-points. Nor does it know in
advance which part of the network wil l be
used by the channel components and what
might be the domain specific criterion for
selecting the sites.

4.3 Elements and Dependency
It becomes the responsibility of the
Channel Building and Execution
Environment (BEE) to glue together
pieces of these fragments so that
individual parties do not need to know
other’s components, while at the same
time, each party can receive the required
information needed to perform its
designated tasks. Fig-3 explains the
dependency and the scheme.

The Subscriber Application Supplied elements are
End-Point Vector (VEPT) and Quali ty of Traff ic
Metric (MROT). The End-point Vector specifies the
location, and channel specific type of the End-
Points which have to be connected in the channel.
MROT is an optional parameter by which the
Subscriber Application may express the
requirements of the traffic (using the quali ty-of-
service metric of the channel service).

The underlying NOS (NET/VSM/BEE) is
responsible for supplying the Base Topology
Graph (GBASE), and the Quali ty-of-Network Metric
(MQON). The base topology graph is the network
connectivity information where route exists. Nodes
not included in the base topology cannot be
connected. Network resources not
included in it will not be considered
for inclusion in the channel. Fig-4
shows an example of base topology
between two end-points.

The QON metric provides a snapshot
of network resources in peak and
current values. For link resources we
track bandwidth and delay and for
node resources we track processing
power. Typically NOS should use a
separate system utili ty to collect the
metric.

The channel designer provides the
capsules required to establish the
service. It also provides two

canonical maps called PMAP, and CMAP
specifying the initial placement and connections of
the static capsules. The channel designer also
provides a capsule called “Scout” . These capsules
serve as the intell igence gathering tool for the
channel designer in his/her absence. It contains the
channel specific logic to determine the location and
activation states of the dynamic capsules.

The above configuration is sufficient to determine
the other required system information. Fig-3 shows
the information elements and their dependency in
ACF. Once the end-points are declared the Installer
component computes the End-Point Topology
graph (GEPT), which is a pruned sub-graph of
GBASE. It contains k-best path between the end-

Placement Map

DEFAULT URL =shttp://medianet.kent.edu/capsules/*.cap
MAP VALID ON =tree, path.

Rover LOC=all nodes INVOKE= 200s.
Organizer LOC= all nodes with rover.XCODE=ON INVOKE=5
SEP LOC=src
 URL=shttp://tv.kent.edu/capsules/version2/SEP.cap
Splitter LOC=all junctions between src and sinks
Xcoder LOC=all nodes with rover.XCODE=ON
CEP LOC=all sinks

NETORDER (Rover,Organizer,SEP,Splitter,Xcoder,CEP)
EXEORDER (Rover,Organizer (SEP|Splitter|Xcoder|CEP))

Fig-5 (a) Capsule Definitions and Constraints

End-
Points

k (=2) best
path
Graph

r(=1)
neighborhood

Graph

Fig-4 the base topology and corresponding End-Point topology
graph.

Proceedings of the DARPA Active Networks Conference and Exposition 2002, DANCE 2002
San Francisco, CA, May 2002, pp.409-426, IEEE Computer Society Press (unformatted version)

KHAN/YANG 10

points and its neighborhood
with radius r. A topology
discovery algorithm is used
to determine GEPT=T(GBASE,
MQON, k, r). The example of
Fig-4 il lustrates the base
graphs. It has both active
(square) and passive (circle)
nodes. With the declaration
of end-points it shows the
base topology graph with
k=2, and r=1.

Function SR() in the Scout
provides the Requirement-
of-Service metric (MROS). It
tells how much network
resources will be required to
satisfy the given
Requirements-of-Traff ic
(MROT) posted by the Application. Function SM()
then provides the dynamic capsule placement
mapping (DMAP). Function SQ() then provides the
feedback on the Quality-of Service metric
supportable (MQOS) using the current dynamic
mapping.

4.4 Channel Components:

4.4.1 Placement Map:

Placement Map (PMAP) and Connection Map
(CMAP) together tells the installation manager
how to cast the capsules in a given network. The
specification itself does not require any knowledge
about the specific network topology rather it
specifies how the components should be connected
on a given class of graph.

Fig-5(a) and (b) shows typical example of these
maps. Placement MAP shows rules and constraints
for placing the channel capsules. Each of the lines
in PMAP describes a capsule object as attribute,
value pair. Capsule name, placement constraint,
URL for automatic loading, etc. are some of the
attributes. Placement constraints can use especially
defined network state variables such as XCODE
(it’s use will be explained shortly).

The placement is generally interpreted in the
context of a specific context network graph (such
as chain, binary-tree, multi-way tree, general graph
etc.) on which the mapping is valid. PMAP

statement VALID ON indicates this context. The
system assigns a partial numeric order to all the
components. A unique ordered id is assigned by
the system for each channel session based on the
specific network on which the channel is cast. The
NETORDER statement resolved the partial order
among the capsules, which operate on the same
node. This partial order is used for topology
independent addressing.

The EXEORDER statement specifies the
invocation order of the modules (if needed) for
deadlock free operation, and is interpreted by the
scheduler. For example the Rover must be invoked
before the others. While, there is no specific
invocation order requirement for the SEP, Splitter,
Xcoder, or CEP.

Channel designer can also specify an invocation
mode for the capsules such as periodic, non-
terminating (default), event-driven, etc. For

Connection Map

Rover.port0 � (Request-notify) � prev.Rover.mport1
Rover.mport2 � (Grant-notify) � anynext.Rover.port3
SEP.port1 � (MPEG2-stream) � next.Xcoder.port0 |
 next.Splitter.port0| next.CEP.port0
Xcoder.port1 � (MPEG2-stream) � next.Xcoder.port0|
 next.CEP.port0
Xcoder.port3 � (Control) � prev.Player.port2|
 prev.Xcoder.port2
Splitter.mport5 � (MPEG2-stream) � anynext.Xcoder.port0|
 anynext.CEP.port0

Request-notify= Request:UDP
Grant-notify= Grant:UDP
MPEG2-stream= stream:TCP
Control = switch:UDP+RatePar:UDP

Fig-5 (b) The Capsule Interconnection Rules

Roverport0 mport2

(Request-notify)
Request:UDP

(Grant-notify)
Grant:UDP

Server port1

(MPEG2-stream)
Stream:TCP

Xcoderport1 port3

(MPEG2-stream)
Stream:TCP

(Control)
Switch:UDP+RatePar:UDP

Splitter mport5

(MPEG2-stream)
Stream:TCP

Fig-5(c) The capsule ports.

Roverport0 mport2

(Request-notify)
Request:UDP

(Grant-notify)
Grant:UDP

Server port1

(MPEG2-stream)
Stream:TCP

Xcoderport1 port3

(MPEG2-stream)
Stream:TCP

(Control)
Switch:UDP+RatePar:UDP

Splitter mport5

(MPEG2-stream)
Stream:TCP

Fig-5(c) The capsule ports.

Proceedings of the DARPA Active Networks Conference and Exposition 2002, DANCE 2002
San Francisco, CA, May 2002, pp.409-426, IEEE Computer Society Press (unformatted version)

KHAN/YANG 11

example the Rover and the Organizer capsules are
periodic capsules with invocation period of 200
seconds and 5 seconds respectively.

It the responsibili ty of the Channel Designer to
determine the proper EXEORDER sequence that
will enable deadlock free operation for the specific
design of the channel. The NOS installer does not
guarantee the deadlock avoidance.

4.4.2 Connection Map:

Connection Map (CMAP) describes the rules for
connecting the capsules by specifying the

connection rules between the port pairs of the
capsules. The capsules have numbered ports and
multiports (mport). All are simplex and uni-
directional. A port connects to only one other port.
A multiport is a collection of memberports which
share the same data. The actual fanout is
determined after the casting by the installation
process. Each memberport of multiport set is
bound to just one port of another capsule. The
sharing modes can be scatter, gather, replicate etc.

Each entry in the CMAP corresponds to one
sending port of the capsules. The capsules for
which Fig-5(b) provides the connection constraints
are shown in Fig-5(c). For example, it specifies
that port1 of a transcoder (Xcoder) capsule can
only connect to the port0 of the next transcoder
module or port0 of the Player module (SEP.port0
connects to the Player). The relative address
‘next’ corresponds to the next transcoder unit
according to the partial order determined.

The CMAP interpreter evaluates the rules from
top to bottom and left to right. CMAP also
defines the message structure and connection
type. For example it specifies that the “Grant
Notify” connection between the Rovers should be
implemented using an UDP port. CMAP can
define complex connections. For example the
“switch” connection is a complex connection. The
aggregator in CMAP then defines the packet
structures and the elementary transport mode
(TCP or UDP) on which the actual connection is
established.

4.4.3 Adaptation Capsules:

The dynamic placement and adaptive self-
organization behaviors of the transcoder capsules
is determined by two ‘system’ capsules (a) Rover
and (b) the Organizer.

Rovers dynamically determine the nomadic
behavior and optimum placement of the capsules
inside the channel. As specified in the PMAP
execution order (Fig-5(a)), Rovers are invoked
before other capsules. To ill ustrate the process we
show a simple Rover body in Fig-6(a). (This is
also not the only way it can be implemented).
Upon coming to life, Rovers receive the current
Topology (GEPT) and their relative locations in it
from a NOS call . Each Rover also then receives
the link bandwidths of the connect links by using

Rover Capsule

1. /*Determine the topological location If the Rover is
co-located w ith CEP, then set Player’s need is my
need. It considers the player to be stream 0*/

2. ….
3. dow nstreamrequest[0]=MY_CEP_NEEDS();

4. /*propagate a request upstream*/
5. if(not receivernode)
6. Receive(from all-1st-downstream, in

&dow nstreamrequest[I]);
7. requesting=min(max(all dow nstreamrequest[I]),

uplinkcapacity);
8. Send to parent Send(requesting);

9. /*Request granting phase begins from the top*/
10. Receive(from 1st-upstream, &granted,&xcoder);
11. Else granted=requesting;
12. If(xcoder==ON) rover.xcount++; /*initially zero*/

13. /*and propagates downstream*/
14. For all children I {
15. If(granted>=requested[I])
16. rover.granting[I]=requested[I];
17. Else rover.granting[I]=granted;
18. If(granted>rover.granting[I]) {
19. rover.xcoder[I]=ON;
20. rover.xcount++;
21. }
22. /* Sample controvertial optimization */
23. If(xcoder[I]==ON & dow nlink[I]>granting[I]) {
24. rover.xcoder[I]=OFF;
25. rover.xcount--;
26. pushdown[I]=ON;
27. }
28. ……
29. NOS_SetData(rover); /* NOS variable

is updated*/

Fig-6 (a) The rover pseudo-code that determines the self
placement behavior of the nomadic transcoders

Rover Capsule

1. /*Determine the topological location If the Rover is
co-located w ith CEP, then set Player’s need is my
need. It considers the player to be stream 0*/

2. ….
3. dow nstreamrequest[0]=MY_CEP_NEEDS();

4. /*propagate a request upstream*/
5. if(not receivernode)
6. Receive(from all-1st-downstream, in

&dow nstreamrequest[I]);
7. requesting=min(max(all dow nstreamrequest[I]),

uplinkcapacity);
8. Send to parent Send(requesting);

9. /*Request granting phase begins from the top*/
10. Receive(from 1st-upstream, &granted,&xcoder);
11. Else granted=requesting;
12. If(xcoder==ON) rover.xcount++; /*initially zero*/

13. /*and propagates downstream*/
14. For all children I {
15. If(granted>=requested[I])
16. rover.granting[I]=requested[I];
17. Else rover.granting[I]=granted;
18. If(granted>rover.granting[I]) {
19. rover.xcoder[I]=ON;
20. rover.xcount++;
21. }
22. /* Sample controvertial optimization */
23. If(xcoder[I]==ON & dow nlink[I]>granting[I]) {
24. rover.xcoder[I]=OFF;
25. rover.xcount--;
26. pushdown[I]=ON;
27. }
28. ……
29. NOS_SetData(rover); /* NOS variable

is updated*/

Fig-6 (a) The rover pseudo-code that determines the self
placement behavior of the nomadic transcoders

Proceedings of the DARPA Active Networks Conference and Exposition 2002, DANCE 2002
San Francisco, CA, May 2002, pp.409-426, IEEE Computer Society Press (unformatted version)

KHAN/YANG 12

NOS calls. These Rovers are interested in their
uplink bandwidth (variable uplinkcapacity). Then
all the Rovers enter in the rate request
propagation phase. The phase begins from the
receiver side and propagates upstream. Rovers co-
located with the CEPs are the CEP Rovers. CEP
Rovers consider the sinks as their downstream
port0 and store the requested bandwidth value in
downstreamrequest0. The upstream request for all
Rovers, including the junction Rovers, is
determined by the min/max rule
min(max(downstream[i]), uplinkcapacity)). All
Rovers forward this request one step upstream.
When a Rover receives a request from i-th
children it then stores the requests into
downstream[i]. All Rovers follows the min/max
rule for propagating the rate request. Once the
request reaches the server-end, SEP Rover grants
a specified rate (granted). It then propagates
downstream. This time each Rover sends the
quantity granting[i]= min(granted, downstream
[i]) along i-th downstream port. For each Rover
where there is a mismatching port with unequal
granted and granting[i] Rover.XCODE is then set
to ON.

The Rover in Fig-6(a) also shows a sample
optimization. A junction node (which already will
host “Splitter”) may push down the “Xcoder” one
step downstream along the step down port using
the last code segment. Before it can push however
it checks if there is enough downlink capacity
(downlink[i]). This generally wil l save junction
nodes from being overloaded. Once, all the Rovers
complete, all the nodes those are chosen will have
their Rover variable XCODE set to ON
appropriately. In the same process, the Rovers also
calculates the step-down ratios for each transcoder
which is the granted:granting[i]. (not shown in the
code fragment). For simplicity we did not show the
numerical considerations in the Rover code
presented in Fig-6(a). However, we will discuss it
in detail l ater.

The self-organization state of the transcoders is
determined by another capsule called Organizer
(Fig-6(b)). Each capsule instance can save some
data for their subsequent instantiations. At the end
of each capsule instantiation can save data by
NOS_SetData(), and in next instantiation can get
back data by NOS_GetData() calls. This saving is
node local. This mechanism enables them to keep
track of the video frame-rate (rate) between two

instantiations. This particular self-organizer
capsule checks the current frame number of the
collocated Xcoder (xcoder.frameno), picture
quali ty statistics (xcoder.snraverage) and also the
current time (now). It then retrieves the frame
number and time during its previous instantiation.
Based on the outgoing frame-rate from the local
transcoder it then modifies the
organizer.xcodestate. The Xcoders after processing
each group-of-picture (GOP) [5] checks for this
variable to receive their self-organizing state
determined by the self-organizer logic.

4.5 NOS Components
The overall implementation of the system now
requires the following services from the NOS.

4.5.1 Programming Interface:

Unlike classical channels, the NOS provides two
interfaces. First is the End Point Programming
Interface (EPPI) to the applications (server and
player) to request and run a rate transcoding
channel. The other is the Capsule Programming
Interface (CPI) for capsules to execute and co-
ordinate their functions. We have proposed a
detail of both the interfaces in [14].

4.5.2 Services:

Below the interface, the following new network
layer services are now required for the ATV
channels: (a) channel installation service (b) intra-
capsule communication service, and (c) network
state exchange service.

Self-Organizer Capsule
….
/*set the xcoder configuration state value*/
now=NOS_GetData(system.now);
then=NOS_GetData(saved.then);
frame_now=NOS_GetData(xcoder.frameno);
frame_then=NOS_SetData(saved.frameno);
NOS_SaveData(saved.timethen, now);
NOS_SaveData(saved.framethen,frame);
rate=frame_now-frame-then)/(now-then);
SNR=NOS_GetDate(xcoder.snraverage);
organizer.xcodestate=CalculateConfigure(framerate,SNR,
QoS);
NOS_SetData(organizer);/* NOS variable is updated*/

Fig-6 (b) The organizer pseudo-code that
determines the Self-reorganization states of the

transcoders

Self-Organizer Capsule
….
/*set the xcoder configuration state value*/
now=NOS_GetData(system.now);
then=NOS_GetData(saved.then);
frame_now=NOS_GetData(xcoder.frameno);
frame_then=NOS_SetData(saved.frameno);
NOS_SaveData(saved.timethen, now);
NOS_SaveData(saved.framethen,frame);
rate=frame_now-frame-then)/(now-then);
SNR=NOS_GetDate(xcoder.snraverage);
organizer.xcodestate=CalculateConfigure(framerate,SNR,
QoS);
NOS_SetData(organizer);/* NOS variable is updated*/

Fig-6 (b) The organizer pseudo-code that
determines the Self-reorganization states of the

transcoders

Proceedings of the DARPA Active Networks Conference and Exposition 2002, DANCE 2002
San Francisco, CA, May 2002, pp.409-426, IEEE Computer Society Press (unformatted version)

KHAN/YANG 13

Channel installation service include the topology
discovery, determination of GBASE and GEPT, (Fig-
4), the loading of capsules as per CMAP and
PMAP (Fig-5(a) and (b)), assignment of execution
resources to capsules, and the allocation of partial
orders address to capsules. It also needs to ensure
secured deployment.

The intra-capsule communication service includes
channel identifier allocation, interpretation of
channel relative addresses (to be described
shortly), inter-capsule message delivery as per the
addressing, buffering of saved data between
capsule instantiations, provisioning on CMAP
placement and other system capsule variables
(such as rover.XCODE).

The network state exchange service includes
making the node local part of MQON available to
the local capsules such as capacity of connected
links (uplink bandwidth in the example in Fig-
6(a)). These also include SNMP link MIB-II
variables, and additional active node states such as
CPU, memory allocation, and execution time to the
capsules. An important point to note is that, the
system does not have to make such information
available to the capsules on global basis. It is
sufficient to supply these to the capsules who are
local. From there capsules can take charge and
exchange it globally if needed.

4.5.3 Organization:

All services have three NOS components. A
manager, which works at the actuator end of the
connection, an audience-agent, which works at the
audience end-point, and a network agent, which
works in the intermediate nodes. Fig-7 shows the
service stacks in these three positions. The service
stack involved at the junction nodes is little
different form the end-point stacks. Junction nodes
do not need any EPPI, as there is no subscriber
application component there. However, since, the
junction points can be a typical active router,
instead of relying on general OS, a Virtual Switch
Machine (VSM) has been created on the router.
VSM identifies active communication from regular
routing operation and when an active data arrives it
diverts the active packets towards the capsules.
VSM also allocates the CPU and memory
resources between the competing capsules and acts
as a capsule scheduler. Immediately above the
VSM an execution environment called channel
Building and Execution Environment (BEE)
provides the utilities upon which the capsules
actually execute.

4.5.4 Dynamic Relocation:

The channel installation also provides support for
dynamic relocation. As a part it provides several
additional passive and periodic capsule
instantiation modes. It also provides mechanism
for deferred capsule cancellation. In the example,

Fig-7 network services for adaptive application maintenance and execution NOS layers

CCPPII

CCOONNNN..
AAGGEENNTT

CCPPII EEPPPPII

IINNSSTT..
AAGGEENNTT

NNEETTWWOORRKK

SSTTAATTEE
EEXXCCGG..

HHAARRNNEESSSS

EEPPPPII

IINNSSTT..
MMAANNAAGGEERR

NNEETTWWOORRKK

CCOONNNN..
MMAANNAAGGEERR

SSTTAATTEE
EEXXCCGG..

HHAARRNNEESSSS

MMAAPPPPEERR

IINNSSTT..
AAGGEENNTT CCOONNNN..

AAGGEENNTT

NNEETTWWOORRKK

VVSSMM

AACCTTIIVVEE
RROOUUTTEERR

CCAAPPSSUULLEE EEXXEECC
EENNVV..

SSTTAATTEE
EEXXCCGG..

HHAARRNNEESSSS

CClliieenntt
AApppp..

AAuuddiieennccee
CCaappssuullee

SSeerrvveerr
AApppp..

AAccttuuaattoorr
CCaappssuullee

EEmmbbeeddddeedd
CCaappssuullee((ss))

(a) Passive-end stack (b) embedded stack (c) active-end stack

Proceedings of the DARPA Active Networks Conference and Exposition 2002, DANCE 2002
San Francisco, CA, May 2002, pp.409-426, IEEE Computer Society Press (unformatted version)

KHAN/YANG 14

the Rover is periodically invoked by the
VSM/BEE. Each time a new calculation is made
on the placement variable. If result changes,
installer accordingly dynamically starts and stops
capsules. For seamless invocation, the new capsule
is first loaded and placed in the background
without changing the current operation. In passive
instantiation mode some capsules can be preloaded
but kept in a dormant state,

Table-1 Requirements of Traffic MROT
Requirements Posted by MediaetServer Session

End point Required Bandwidth

SEP 30 Mbps

CEP1 30 Mbps

CEP2 20 Mbps

CEP3 10 Mbps

Table- 2 Node MQON

Resource availabili ty on End-Point Topology GEPT(radios = 1)

 A1 A2 A3 A4 A5 A6

MAX 100 200 300 400 100 100

Average 50 100 100 200 100 70

Available 50 100 200 200 300 50

Table-3 SROS Calculation Table

Network Resource Requirement per unit of Service
Capsules Needed Computation

Splitter 1 per 1MB video stream

Xcoder 12 per reduce 1 MB

Data marking is used for seamless operation.
However, the data flow is marked by applications.
For example the AVT transcoder marks the stream
in per GOP basis (actually it is already there and in
this case no additional effort is need) and ensures
that switch occurs after the completion of the
current GOP for each module. For the exiting
capsules it is stopped by NOS in a deferred basis
only at declared cancellation points called ready-
to-stop point. For incoming capsules there can be
similar (optional) ready-to-start points. When, the
module is ready to operate, only then the VSM
switch is invoked to route active packets to the
newly activated module. Seamless revocation is
performed by disabling the packet forwarding first.
For graceful revocation the VSM/EE invokes a
particular capsule module called CAP_Destroy(),
given by the channel designer for graceful
departure.

4.5.5 Channel Relative Addressing:

In addition to the above services, the VSM/BEE
also provides an abstract addressing scheme, where
capsules and maps can use a channel relative
addressing mechanism to refer to each other based
on their logical position in a channel, without
knowing the actual deployment. The addressing
scheme has three references-- src, sink, and this
node. Complex references are built on them using
set operators and modifiers such as upstream,
downstream, all etc. Once, the actuator and the
audience end-points are determined, the CRA
interpreter returns determined the actual network
addresses for all CRA addresses. The CMAP,
PMAP and the Rover shown in Fig-5 and Fig-6
contain several examples of such network relative
references.

4.6 Channel Instantiation
Finally, Figure-8 shows an example assignment of
the capsule components for a specific channel
instance using the ACF.

4.6.1 Request

The instantiation starts with a subscriber
application “MediaVideo” which would post the
initial end-points (in that case one server-end
connected at entry point A1 and three player-ends
connected at entry-points A2, A3 and A6) via the
EPPI interface. End-points can also join (or leave)
dynamically later. The application requests an
“AVT channel” and posts its MROT. A sample
requirements-of-traffic metric is shown in Table-1.

4.6.2 Building

The Installer determined the End-points Topology
GEPT from the base topology GBASE. Table-2 shows
a sample MQON metric. It obtains the PMAP,
CMAP, security certificates and the capsules for
the AVT channel from code server. Next it
launches the Rovers. It also launches the “Splitter”
on the only junction node A2, and SEP on the
MediaVideo Server entry point A1, and two CEPs
on the MediaVideo Player entry-points A3 and A6.
The Rover capsules use NOS information GEPT,
and MQON and its internal knowledge of SROS() and
SMAP() (for this simple example we assume that it is
given in Table-3) to determine the best placement
of the transcoders. Fig-8 shows the optimum
placements of the “Xcoder” units for this AVT

Proceedings of the DARPA Active Networks Conference and Exposition 2002, DANCE 2002
San Francisco, CA, May 2002, pp.409-426, IEEE Computer Society Press (unformatted version)

KHAN/YANG 15

channel instance created for MediaVideo. Once the
“Xcoders” are activated, SEP and CEPs return
handles to its MPEG2-stream ports to the
corresponding MediaVideo end-points-- again via
the EPPI interface.

4.6.3 Execution

Any stream sent/received via the port now receives
automatic distribution and embedded rate
adaptation. The subscriber operation interacts with
the channel only via SEP and CEP end-points. The
channel designer provides documented sending and
receiving interfaces under EPPI. During it normal
streaming operation NOS does not get involved. If
underlying node/link traffic dynamics changes,
then this is tracked by the periodic instantiation of
the Rovers. Also, if a new endpoint attempts to
join in or leave then accordingly a CEP is invoked
or terminated, and the corresponding change is
eventually caught by the Rovers.

5. Conclusions

In this paper, we have discussed the requirements
for an advanced framework that can support
development of complex netcentric applications for
active network. We have also outlined the Active

Channel Framework4 that can support many of
these requirements. ACF provides formalism
‘components’ and ‘ interaction environments’ f or
both the channel developer and the subscriber
application entities. The complexities arising from
these distinctions did not arise in previous active
node programming models.

We have il lustrated this construction formalism by
using an example concept application-- a nomadic

4 Some researchers have proposed a three-tier
active network architecture based on the
abstraction of Node OS, EE, and AA [26,28]. It
will be diff icult to map these with the tiers of ACF.
Unlike these efforts which started from routers
architecture, ACF is the result of a top-down
investigation on multiparty active system
development ‘f ramework’ (rather than on the
‘architecture’). It has more than one notion of
‘environments’ . The ‘ interaction environments’ are
distinctly different with non overlapping
characteristics. Also the meaning of
‘programming’ is separate at two tiers. Since, the
definitions are still open and evolving, the
comparison attempt will remain open ended.

CEP1

Splitter

Xcoder

Xcoder

SEP

CEP2

CEP3

A1

A2

A3

A4

A5

A6

Fig-8. The base topology between one server and three players. Nodes A2, A3 A5
maps one splitter and two transcoders respectively.

CEP1

Splitter

Xcoder

Xcoder

SEP

CEP2

CEP3

A1

A2

A3

A4

A5

A6

CEP1

Splitter

Xcoder

Xcoder

SEP

CEP2

CEP3

A1

A2

A3

A4

A5

A6

CEP1

Splitter

Xcoder

Xcoder

SEP

CEP2

CEP3

A1

A2

A3

A4

A5

A6

Fig-8. The base topology between one server and three players. Nodes A2, A3 A5
maps one splitter and two transcoders respectively.

Proceedings of the DARPA Active Networks Conference and Exposition 2002, DANCE 2002
San Francisco, CA, May 2002, pp.409-426, IEEE Computer Society Press (unformatted version)

KHAN/YANG 16

MPEG-2 rate transcoding mechanism. Within the
scope of this paper, however, we have not
elaborated on the detail of the transcoding
operation. More information about the SONET
(Self-Organizing Network Embedded Transcoder)
system can be found in [6,15].

In our framework design we emphasized
reusabili ty, and task division. We placed core
services in the network layer needed for supporting
nomadic and self-organization behavior of adaptive
systems. Additionally, we have introduced the
concept of programmable channel construct to
encourage reusabili ty, instead of building the video
transmission specific adaptive logic directly into
the application core. Here the service is the video
rate adaptation. The service itself although requires
complex organization and design, but apparently it
can be used by any video application with simple
socket like interface.

Though we have presented the case with the
transcoder channel, but this framework is the result
of our experience with a number of active
applications (active prefetch-proxy [17], daisy-
chain forwarder [14], Active Harness group
communicationware[16], etc). Nevertheless the
applications are further being expanded. For
example, we have recently demonstrated
transcoding channel which performs the
transcoding operation by distributing the
computation over an active subnet, instead on a
single active node. This extension did not require
any significant modification of the formalism as its
mapping and dynamic relocation capabiliti es were
already sufficient to support such distributed
computation.

An interesting issue is scalability of active systems.
A particular concern in any complex and large
application is the complexity of the signaling
mechanism. We think there is nothing which will
prevent a good designer to build schemes which
will scale. For example, let us take a closer look
into the communication patterns of the Rovers. The
given Rover algorithm analyzes the base network
to determine the placement of the transcoders and
their step-down ratios. This is the potential
bottleneck point which involves activity in the
largest part of the network in the ACF. Yet an
analysis will reveal that this entire scheme is
amazingly light. It uses only two signal messages
(request/grant) per link for this entire job. This

O(1) cost does not depend on the size of the
network. This scalabili ty has been derived by
avoiding any duplicate information from being
propagated. All i nformation was optimally pruned
at the forwarding nodes (in this case the min/max
rules). Indeed, this is one of the advantages of
embedded programmabili ty. Information can be
collected in distributed scalable way when needed.
Therefore in ACF there is no centralized MQON. All
its quantities are probed locally. In general the
network embedded processing abili ty wil l increase
the designer’s flexibili ty to build scalable
solutions. However, there is noting which wil l
prevent a bad designer either. Also, there might be
application specific task segments which are
inherently non-scalable. It suffices to say that
scalabili ty of active systems can not probably be
meaningfully discussed without knowing the active
application. The ACF approach is to empower
channel programmer to exploit it maximally where
it exists.

Active and programmable network is a relatively
new area in networking research. The framework
of systems development on such network is
perhaps one of the least explored yet enormously
challenging areas within it. ACF is one of first
explorations to analyze network programmabili ty
from the software engineering with several serious
applications scenarios. We have raised few of the
issues. Clearly we expect its individual
components to advance. Programming active
systems will be much more complex than end-to-
end systems. There is lesser doubt in its capabili ty
to add tremendous value in communication
services. The bigger challenge however, lies in the
techniques of complexity management.

The work is currently being funded by the DARPA
Research Grant F30602-99-1-0515 under its Active
Network initiative.

6. References:

[1] Amir, Elan, Steven McCanne, and Randy Katz,
Receiver-driven Bandwidth Adaptation for Light-
weight Sessions, Proceedings of ACM Multimedia
' 97, Seattle, WA, Nov 1997,

[2] Bhattacharjee, S., Kenneth L. Calvert and Ellen W.
Zegura. An Architecture for Active Networking.
High Performance Networking’ 97 ,White Plains,
NY, April 1997. [also available at
http://www.cc.gatech.edu/projects/canes/papers/an
arch.ps.gz, October 98]

Proceedings of the DARPA Active Networks Conference and Exposition 2002, DANCE 2002
San Francisco, CA, May 2002, pp.409-426, IEEE Computer Society Press (unformatted version)

KHAN/YANG 17

[3] Fluckiger, F, Understanding Networked
Multimedia Applications and Technology,
Prentice Hall , UK, 1995.

[4] Haskell B. G., Atul Puri and Arun Netravali ,
Digital Video: An Introduction to MPEG-2,
Chapman and Hall , NY, 1997.

[5] Information Technology- Generic Coding of
Moving Pictures and Associated Audio
Information: Video, ISO/IEC International
Standard 13818-2, June 1996.

[6] Javed I. Khan, S. S. Yang, Medianet Active
Switch Architecture, Technical Report: 2000-01-
02, Kent State University, [available at URL
http://medianet.kent. edu/ technicalreports.html,
also mirrored at http://
bristi.facnet.mcs.kent.edu/medianet]

[7] Keesman, Gertjan; Helli nghuizen, Robert;
Hoeksema, Fokke; Heideman, Geert, Transcoding
of MPEG bitstreams Signal Processing: Image
Communication, Volume: 8, Issue: 6, pp. 481-500,
September 1996,

[8] Javed I. Khan, Motion Vector Prediction in
Interactive 3D Video Stream, Proceedings of the
World Congress on Advanced IT Tools, IFIP ‘96
IT, Canberra, Sept 96 , pp533-539.

[9] Tennenhouse, D. L., J. Smith, D. Sincoskie, D.
Wetherall & G. Minden., "A Survey of Active
Network Research", IEEE Communications
Magazine, Vol. 35, No. 1, Jan 97, pp 80-86

[10] Wetherall , Guttag, Tennenhouse, "ANTS: A Tool
kit for Building and Dynamically Deploying
Network Protocols", IEEE OPENARCH'98, San
Francisco, April 1998. Available at:
http://www.tns.lcs.mit.edu/publications/openarch9
8.html

[11] Youn, J, M.T. Sun, and J. Xin, "Video Transcoder
Architectures for Bit Rate Scaling of H.263 Bit
Streams," will beappeared to ‘ACM Multimedia
1999’ , Nov., 1999. pp243-250.

[12] Jill M. Boyce and Robert D. Gaglianello, Packet
loss effects on MPEG video sent over the public
Internet; Proceedings of the 6th ACM international
conference on Multimedia , 1998, Pages 181 - 190

[13] White Paper, Delivering RealAudio® or
RealVideo® from a Web Server, RealNetworks
Technical Blueprint Series, 1998
[URL:http://service.real.com/help/
library/blueprints/ hosthtml/webhost.htm Last
Download: Sept 20, 2000]

[14] Javed I. Khan, & S. S. Yang, Made-To-Order
Custom Channels for Netcentric Applications over
Active Network, Proc. Of the Conf. On Internet
and Multimedia Systems and Applications, IMSA

2000, Nov 2000, Las Vegas, pp22-26.

[15] Javed I. Khan, Seung Su Yang, Qiong Gu, Darsan
Patel, Patrick Mail , Oleg Komogortsev, Wansik
Oh, and Zhong Guo Resource Adaptive Netcentric
Systems: A case Study with SONET- a Self-Organizing
Network Embedded Transcoder, Proc. of the ACM
Multimedia , Oct. 2001, Ottawa, Canada, pp.617-620.

[16] Javed I. Khan and Asrar Haque, An Active
Programmable Communication Harness for
Measurement of Composite Network States,
Submitted to IEEE International Conference on
Networking, ICN’ 2001, pp628-638.

[17] Javed I. Khan and Qingping Tao, Partial Prefetch
for Faster Surfing in Composite Hypermedia, 3rd
USENIX Symposium on Internet Technologies
and Systems, USITS 2001, San Francisco, March
2001, pp13-24.

 [18] Coulouris, G, and Dolli more, J, Distributed
Systems: concepts and Design, Addison Wesley,
2nd ed., 1994.

[19] Corbin, J. R., The Art of Distributed Applications,
Programming Techniques and Remote procedure
Calls, Springler-Verlag, 1991.

[20] Siegel, J., CORBA Fundamentals and
programming, Wiley, 1996.

[21] Otte, R., Patrick, P, Roy, M, Understanding
CORBA, prentice Hall , 1996.

[22] Gopalan Suresh Raj, A Detailed Comparison of
CORBA, DCOM and Java/RMI, [URL:
http://www.execpc.com /~gopalan/
misc/compare.html,retrieved on Dec. 1999]

[23] Plug-in Guide for Netscape Communicator,
Netscape Communications Corporation, 1997,
[URL: http://developer.netscape.com/docs/
manuals/communicator/plugin /index.htm, Last
Retrieved October 2000]

[24] Javed I. Khan, Q. Gu, Darsan Patel and Oleg
Komogortsev, , Medianet Active Video
Transcoder Performance, Technical Report: 2000-
01-02, Kent State University, [available at URL
http://medianet.kent. edu/ technicalreports.html,
also mirrored at http://
bristi.facnet.mcs.kent.edu/medianet]

[25] Lee, Edward, What’s Ahead for Embedded
Software, IEEE Computers, Vol. 33, No. 9,
September 2000, pp-18-26.

 [26] Xuebin Xu, "A Survey of Ideas in Programmable
Networks", Technical Report: 2002-01-01, Kent
State University, [available at URL
http://medianet.kent.edu/ technicalreports. html,
also mirrored at http:// bristi.facnet.mcs.kent.edu/
medianet]

Proceedings of the DARPA Active Networks Conference and Exposition 2002, DANCE 2002
San Francisco, CA, May 2002, pp.409-426, IEEE Computer Society Press (unformatted version)

KHAN/YANG 18

[27] Andrew T.Campbell , etc., “A Survey of
Programmable Networks” Computer
Communication Review, vol.29, no.2, pp.7-23,
Apr.1999.

[28] Thomas M.Chen, etc., “Active and Programmable
Networks” , guest editorial for Special Issue:
Active and Programmable Networks, Network
Interactive, May 1998.

[29] Gary Stix, The Triumph of the Light, Scientific
American, January 2001, pp31-35 [HTTP://
http://www.sciam.com/2001/0101issue/0101stix.h
tml]

[31] Beverly Schwartz, Wenyi Zhou, Alden W. Jackson,
W. Timothy Strayer, Dennis Rockwell, Smart Packets
for Active Networks. In 2nd Conf. on Open
Architectures and Net-work Programming,
OPENARCH’99,NY, Mar. 1999. [URL:
http://www.ir.bbn.com/~bschwart/, Last retrieved
10//02/00]

[32] M. Hicks et al. PLANnet: An Active
Internetwork. In Conf. on Computer
Communications, INFOCOM’99, pages 1124–
1133, New York, NY, Mar. 1999. IEEE.

[32] Y. Yemini and S. da Silva. Towards
Programmable Networks. In Intl. Work. on Dist.
Systems Operations and Management, Italy, Oct.
1996. [URL: http://www.cs.
columbia.edu/dcc/netscript/Publications/publicatio
ns.html, Last retrieved: 11/02/00]

[33] Peter Forman and Robert W. Saint, Creating
Convergence, Scientific American, November
2000, pp.10-15[HTTP://http://www.sciam.com/
2001/0101issue/0101stix.html]

[34] Y. Yemini and S. Trito, Nestor: Technologies
and protocols for self-managed and self-
organizing networks. URL: http://
www.cs.columbia.edu /dcc/nestor, 1998.

