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Abstract

We report an improved methodology for training a se-
quence of classifiers for document image content extraction,
that is, the location and segmentation of regions contain-
ing handwriting, machine-printed text, photographs, blank
space, etc. The resulting segmentation is pixel-accurate,
and so accommodates a wide range of zone shapes (not
merely rectangles). We have systematically explored the
best scale (spatial extent) of features. We have found that
the methodology is sensitive to ground-truthing policy, and
especially to precision of ground-truth boundaries. Experi-
ments on a diverse test set of 83 document images show that
tighter ground-truth reduces per-pixel classification errors
by 45% (from 38.9% to 21.4%). Strong evidence, from both
experiments and simulation, suggests that iterated classifi-
cation converges region boundaries to the ground-truth (i.e.
they don’t drift). Experiments show that four-stage iterated
classifiers reduce the error rates by 24%. We also present
an analysis of special cases suggesting reasons why bound-
aries converge to the ground-truth.

Keywords: document content extraction, content inventory,
layout analysis, convergence, shape-oblivious segmentation, uni-
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1 Introduction

We have developed a family of algorithms for document im-
age content extraction, able to find regions containing machine-
printed text, handwriting, photographs, etc in images of documents
[3, 5, 4, 7]. Our algorithms cope with a rich diversity of docu-
ment, image, and content types. We classify individual pixels, not
regions, in order to avoid arbitrary restrictions of region shapes.
Previously, we achieved modest per-pixel classification accuracies
(of, e.g., 60–70%). Now we report accuracy of 85%.

Other researchers have attacked this problem of fine-grain clas-
sification without restricting region shape. In [8], Nicolas and Dar-
denne et al adapted and applied conditional random fields (CRF) to

document image segmentation. For features, they defined two fea-
ture functions: a local feature function that takes only into account
features extracted on the observed image, and a contextual feature
function that takes only into account the local conditional proba-
bility densities on the label field in a neighborhood. Although they
extracted features on the basis of pixels, they classified 3x3 region.

Kumar and Gupta et al in [10] use matched wavelets to de-
velop the globally matched wavelet filters for text extraction, i.e.
to discriminate text from nontext, of color document images. The
scheme is extended for the segmentation of document images into
text, background and picture components. To refine the obtained
segmentation results, they exploited the contextual information by
using a Markov random field (MRF) formulation-based pixel la-
beling scheme; and they attained MRF energy minimization using
the alpha-expansion algorithm proposed in [11, 6]. Their method
classifies pixels.

Our technique of iterated classification is similar in broad out-
line to cascading classifier [1], but with these differences: we train
on the results of classification, not on the original images; and we
reclassify every sample, not merely rejected samples.

Since we classify every pixel, our classifiers are similar to
many image processing methods, such as mathematical morphol-
ogy [9].

Our proposed trainable post-processing scheme is based on re-
sults of document image content extraction, and guided by the
ground-truth (gt). This strategy appears to prevent the local re-
gions which are dominated by erroneous classes from expanding,
while allowing those dominated by correct class to expand slowly.1

The key contributions of this paper are:
- significant reductions in per-pixel error rates;
- demonstration that the methodology is highly sensitive to
ground-truthing policy, and especially to precision of ground-truth
boundaries;
- as refining the accurary, iterated classification continues to en-
force local unformity (”purity”) of regions;
- systematic exploration of the best scale (spatial extent) of fea-

1Before we discovered this, we trained the second stage classifier on the
first stage classification results of training set, and used these training sam-
ples for all following stages of classification. This allowed local regions
that are dominated by one content class to expand, whether the dominant
class is correct or incorrect.



tures;
- strong evidence that iterated classification converges region
boundaries to the ground-truth (they don’t drift);
- analysis of reasons why boundaries converge to ground-truth.

2 Experimental Design

In the experiments reported here, we use a training set of 33
images and a distinct test set of 83 images, which are the same im-
ages we used in[2]. (The scanning resolution range from 200-400
dpi. At this moment we do not scale our features with resolution.)
Together the two sets contain machine-print (MP), handwriting
(HW), photograph (PH), and blank (BL) content. Each content
type was zoned manually (using closely cropped isothetic rectan-
gles, overlapped where needed to fit non-rectangular regions) and
the zones were manually ground-truthed. The training data was
decimated randomly by selecting only one out of every 9000th
training sample.

We evaluated performance using per-pixel accuracy. This is
the fraction of all pixels in the document image that are correctly
classified: that is, whose class label matches the class specified
by the ground truth labels of the zones. Unclassified pixels are
counted as incorrect.

3 Tight Ground-truthing

By careful investigation of previous experimental results, we
believe that tight ground-truth is vital to the success of post-
classification. This is because in each stage a post-classifier is
guided by the ground-truth to correct the errors made by its prede-
cessor, and a loose ground-truth can cause confussion.

We rezoned and ground-truthed the training images more
tightly. The effect of rezoning is illustrated in Figure 1.

4 Design of Post-classifiers

The goal of post-classification is to enforce local uniformity
without imposing arbitrary region shapes. We designed a train-
able post-classifier that operates on the output of the previous
classifier, guided by ground truth. Note that the post-classifier
also yields a per-pixel classification result for the document im-
age. This inspired us to try iterated classification: a sequence of
post-classifiers, each trained separately on the training-data results
of the previous classifier, guided, as always, by ground truth. We
will call the initial stage classifier the first stage classifier, the im-
mediately following post-classifier is the called the second stage
classifier, followed by the third stage classifier, etc. A diagram of
iterated classification is shown in Figure 2.

Our strategy has been to extract features from small local re-
gions, so that no single classification stage affects a large area. It’s
worth emphasizing that we train each of the post-classifiers sepa-
rately on the results from the training set of the previous stage.

For the classification technology, we use approximate 5NN us-
ing hashed k-d trees.[4] The features for the post-classifiers are
discussed[2].

5 Systematic Exploration of Scale of Features

Previouly, we extracted features from circles of radius 5 pixels.
Our experiment show that the classification results are sensitive to
this radius. We have explored this sensitivity over a range of scales
for each classifier stage separately. The experiments show that the
best scale of features changes from stage to stage, as shown in
Figure 3. Guided by the classification results for the training set,
we chose radius of 7 for the second stage classification, 9 for the
3rd-stage, and 7 for the 4th-stage. The differences are not always
statistically significant, but it is clear that the sweet spot is some-
where between 6 and 10 pixels radius for these features.

6 Experimental Results

Experiments show great improvement on tighter ground-truth.
With loose ground-truth, the error rate for the first stage of classi-
fication was 38.9%; with tight ground-truth, the error rate for the
first stage of classification has decreased to 21.4%, a drop of 45%.

Our results are illustrated in Figure 1 and Figure 6. Each figure
contains nine images of four types: (a) the original image; classifi-
cation images from stage one using loose ground-truth (b), classifi-
cation images using tight ground-truth from stages one (c), two (d),
three (e), and four (f); and three mask images for MP(g), PH(h),
and HW(i) content classes. In each of these two figures, the orig-
inal images are shown on the upper left (the original images are
full color, but are printed in this Proceedings as grey-level). The
results of classication are shown in (b)-(f), as classification im-
ages where the content classes are shown in color: machine print
(MP) in dark blue (printed as dark grey), handwriting (HW) in
red (printed as medium grey), photographs (PH) in light bluegreen
(printed as light grey), and blank (BL) in white (printed as white).
(In this Proceedings, the distinction between MP and HW may be
hard to see.)

Figure 1 shows results on a color image of a sports maga-
zine page containing complex non-rectilinear regions. With tight
ground-truth, the per-pixel error of the first-stage classifier is
22.9%; Figure 1(b) shows the result obtained with loose ground-
truth: the per-pixel classification error of the first-stage classi-
fier is 36.7%. Note that BL regions are mixed with PH pixels,
MP and PH regions are mixed with HW pixels, HW regions are
mixed with MP pixels. Figure 1(c) shows the result obtained with
tight ground-truth: the per-pixel error of the first-stage classifier is
22.9%; compared to Figure 1(b), BL regions are much purer, MP
and PH regions have less HW pixels in them, but HW regions are
mixed with more MP pixels. the error of the second-stage classi-
fier is 17.2%; the error of the third-stage classifier is 15.4%; and
error of the fourth-stage classifier is 14.4%.

Figure 6 shows results on a color image of a movie maga-
zine page containing complex non-rectilinear regions. With loose
ground-truth, the per-pixel classification error of the first-stage
classifier is 32.5%. And the background is mixed with HW. With
tight ground-truth, the per-pixel error of the first-stage classifier is
25.2%; the error of the second-stage classifier is 18.9%; the error
of the third-stage classifier is 17.7%; and error of the fourth-stage
classifier is 17.7%.

Figure 4 gives the representation of total error rate as a function



(a) test image (b) 1st stage classification (with
loose GT)

(c) 1st stage classification (with
tight GT)

(d) 2nd stage classification (e) 3rd stage classification (f) 3rd stage classification

(g) MP masked (h) PH masked (i) HW masked

Figure 1. Illustration of the dramatic improved result of tighter ground-truth. A document image
with a complex non-rectilinear page layout, contains content of MP, HW, PH and BL. The original
image (a) is in full color (printed in this Proceedings as grey-level). In the classification results (b)-
(f), machine print (MP) is dark blue (printed as dark grey), handwriting (HW) red (printed as medium
grey), photographs (PH) light blue-green (printed as light grey), and blank (BL) white. Tighter ground-
truth drops the error rate of this image from 36.7% to 22.9%, a drop of 38%. The final MP, PH and
HW masks extract their content types well, as shown in (g)-(i). except for some small patches of HW
misclassified as MP, and some small patches of PH misclassified as MP or HW.



Figure 2. The methodology of iterated-classification. The same ground-truth is passed to every
training phase. Classification results are passed from one classifier to its successor for training and
classification. Take the 2nd-stage classifier for example, the classifier is trained on ground-truth and
the first-stage classification results of the training iamges, and classifies both the training and test
images. Note that each classifier is, in general, different from one another.

3 5 7 9 11 13
2nd-stage 0.162 0.158 0.148 0.151 0.166 0.174
3rd-stage 0.144 0.141 0.138 0.137 0.143 0.160
4th-stage 0.136 0.135 0.133 0.134 0.141 0.150

Figure 3. Error rates for training set of each stage using different scale of features, that is in radius of
3, 5, 7, 9, 11 and 13 pixels. Guided by the classification results for the training set, we chose radius
of 7 for the second stage classification, 9 for the 3rd-stage, and 7 for the 4th-stage.



of stages of classification. The post-classifiers reduce the error rate
by 23.4%.

7 Post-classifiers’ Performance Analysis

One of our previous experiments shows that the post-classifiers
reduce the per-pixel classification errors by 23%, running a four-
stage classification on 83 test images. Another experiment with
fewer test images shows that per-pixel errors can fall monoton-
ically for even eight stages. We notice that, as uniformity is im-
proved in local regions, boundaries tend to remain stationary – that
is they do not drift. This observation leads us to try to prove there
exist iterated classifiers that are guaranteed to converge to ground-
truth boundary.

We begin the investigation by simulating that an image con-
tains two content-classes, say MP and BL, and we have a classifier
trained and tested on this image. The ground-truth and first-stage
classification result for this image are shown schematically in Fig-
ure 5(a)-(b); MP pixels are colored black, BL pixels are colored
white. In Figure 5(a)-(d), tg marks the horizontal coordinate of
the boundary in the ground-truth and tr marks the horizontal coor-
dinate of the boundary in the classification results for the image. In
Figure 5(c)-(f), gray regions represent the discrepancies between
ground truth and the classification results for the training image.

Given the ground-truth and results of the first-stage classifier,
we can analyze how the second-stage classifier performs. Recall
that features are extracted within a local window (a circle of radius
R) centered on the target pixel.

7.1 Analysis of the Second-stage Classifier

We start by analyzing the case where the width of the discrep-
ancy is greater than R, i.e. tr − tg > R, as shown in Figure 5(e).
For the post-classifers, we consider one feature that we have been
using in experiments: the number of BL pixels within the right
half of the feature extraction window. Recall that all features are
extracted from the results of classification.

Consider these different cases of a target pixel based on its
ground-truth class, labeled class from classification results, and
the number of BL pixels within the right half of the feature win-
dow.

Case I: Target pixel is ground-truthed MP, classified MP, and
contains no BL pixels whithin the right half of its feature window.

Case II: Target pixel is ground-truthed BL, classified BL, and
all pixels whithin the right half of its feature window are BL.

Case III: Target pixel is ground-truthed BL, classified MP, and
contains no BL pixels whithin the right half of its feature window.

Case IV: Target pixel is ground-truthed BL, classified MP, and
contains at least one BL pixel whithin the right half of its feature
window.

For pixels that fall outside the discrepancy region, the classifi-
cation is obvious: pixels in case I, i.e those in the black region in
Figure 5(c), are still labeled MP; pixels in case II, i.e those in the
white region in Figure 5(c), are still labeled BL.

For pixels within the discrepancy (ground-truthed BL but clas-
sified MP by the first-stage classifier), part of them will be cor-
rectly classified using the feature, as follows:

If the right half of its feature extraction window contains any BL
pixels – case IV – the target pixel is then classified BL, because its
feature value is different from that of pixels in case I. For example:
in Figure 5(e), the pixel centered on circle b and c is labeled BL.
If the right half of its feature extraction window contains no BL
pixel – case III – the pixel is still classified MP because its feature
value is the same as that of pixels in case I. For example: in Figure
5(e), the pixel centered on circle a is labeled MP. Pixels that are
less than R pixels left from the boundary tr are in case IV, and are
thereby are labeled BL.

After the second-stage classification, the horizontal coordinate
of the resulting boundary would be tr − R, which moves towards
ground-truth boundary tg by a distance of R pixels.

7.2 Analysis of Classifiers that Follow the
Second-stage Classifier

As long as the width of the discrepancy is greater than R, each
following classifier must behave the same as the second-stage clas-
sifier and cause the boundary to move again towards tg by R.

When the the width of the discrepancy is smaller than R, i.e.
tr − tg < R, we must consider more cases, as follows:

Case V: Target pixel is on boundary tg , ground-truthed MP,
classified MP, and contains a number, say B, of BL pixels whithin
the right half of its feature window.

Case VI: Target pixel is ground-truthed MP, classified MP, and
contains more than one but less than B of BL pixels whithin the
right half of its feature window.

Case VII: Target pixel is within the discrepancy, ground-
truthed BL, classified MP, and contains more than than B of BL
pixels whithin the right half of its feature window.

Pixels that fall outside the discrepancy are classified in this
way: pixels in cases I, V and VI are still labeled MP; pixels in
case II are still labled BL.

Pixels within the discrepancy will be classified BL: all of them
are in case VII, and their feature values are different from that of
ground-truthed MP pixels in cases I, V and VI, therefore the clas-
sifier must classify them BL. This is illustrated in Figure 5(f): the
center pixel of circle a lies on the left boundary of the discrepancy
area will be classified MP, following its ground-truthed content;
circle b has more BL pixels in its right half than circle a does,
therefore the center pixel of b can be discriminated and classified
BL; for the same reason, pixels in the discrepancy, but not on its
left boundary, are to be classified BL. Consequently, the boundary
in the classification result moves towards tg by tr − tg , the bound-
ary of the classification result has converged to ground-truth.

Simulation shows the same behavior as the analysis above sug-
gests. We simulated a discrepancy of 174 pixels wide, and a fea-
ture extraction (circular) window of radius 20. For the first eight
stages, the boundary moved left by 20 pixels in each stage of clas-
sification. At the ninth stage, the boundary moved left by 14 pix-
els, which converged exactly to the ground-truth boundary.

In summary, analysis of special cases, experiments and simu-
lations, behave as the classifiers appear to do. That is, with proper
choice of features and guidance by the ground-truth, there exists
a sequence of post-classifiers that refine the obtained results and
force them to converge to ground-truth. This implies that the post-
classifiers can converge linear boundaries oriented at any direction



Figure 4. Total error rate averaged over the larger test set, in a function of the stages of classification.
After four stages of classification, the error rate has fallen from 0.214 to 0.164, a drop of 24%.

(a) ground-truth (b) 1st-stage classifica-
tion result of the image

(c) discrepancy be-
tween ground-truth and
1st-stage classification
result, shows in gray

(d) feature extraction
windows and new
boundary

(e) the width of the dis-
crepancy is greater than
the radius of feature ex-
traction windows

(f) the width of the dis-
crepancy is smaller than
the radius of feature ex-
traction windows

Figure 5. Analysis of convergence of iterated classification. Black represents MP, white represents
BL. In figure (c)-(e), the discrepancies between ground-truth and the classification results for the
image are colored gray. In figure (e) and (f), circles represent feature extraction windows. In each
figure, tg marks the horizontal coordinate of the boundary in the ground-truth and tr marks the
horizontal coordinate of the boundary in the classification results for the image. Initially, tg < tr.



(a) test image (b) 1st stage classification (with
loose GT)

(c) 1st stage classification (with tight
GT)

(d) 2nd stage classification (e) 3rd stage classification (f) 3rd stage classification

(g) MP masked (h) PH masked (i) HW masked

Figure 6. A magazine page with a complex non-rectilinear page layout, containing content of MP, PH
and BL. The original image (a) is in full color. The results of classification are shown (b)-(f). The
final MP, PH and HW masks are shown in (g)-(i). The MP mask extracts its content class well, except
for three patches misclassified PH. This error is possibly due to the lack of training sample of MP
written in red color on a yellow background. For curvature preservation, notice the small red circles
containing numbers: their curvature changes slightly.



to ground-truth. We conjecture that for all region shapes, whose
radius of curvature is bounded below, there exists a similar training
methodology such that all boundaries converge to ground-truth.
Some of the experiments show that the post-classifiers also con-
verged on regions with small radii of curvatures. For example, in
Figure 6 the small red circles containing numbers are preserved.

We also conjecture that to converge to ground-truth, the num-
ber of post-classifiers needed is proportional to the width of the
discrepancies, and inversely proportional to the radius of the fea-
ture extraction window.

8 Discussion and Future Work

We are pleased to report that the overall per-pixel error rate
drops by more than 45% through tighter ground-truthing, even on
a large and diverse test set; the post-classifiers contine to drop the
error rate by 24%. We believe there is room for further improve-
ment.

We are working to prove or disprove that the sequence of post-
classifiers converge to ground-truth in real problems. If such post-
classifiers exist, at least how many features and training samples
are necessary for the classification?
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