
Curriculum Learning for Handwritten Text Line
Recognition

Jérôme Louradour, Christopher Kermorvant
A2iA S.A.

39 rue de la Bienfaisance
Paris 75008 France

{jl,ck}@a2ia.com

Abstract

Recurrent Neural Networks (RNN) have recently achieved the best performance
in off-line Handwriting Text Recognition. At the same time, learning RNN by
gradient descent leads to slow convergence, and training times are particularly
long when the training database consists of full lines of text. In this paper, we
propose an easy way to accelerate stochastic gradient descent in this set-up, and
in the general context of learning to recognize sequences. The principle is called
Curriculum Learning, or shaping. The idea is to first learn to recognize short
sequences before training on all available training sequences. Experiments on
three different handwritten text databases (Rimes, IAM, OpenHaRT) show that a
simple implementation of this strategy can significantly speed up the training of
RNN for Text Recognition, and even significantly improve performance in some
cases.

1 Introduction

The application of interest in this paper is off-line Handwritten Text Recognition (HTR), on im-
ages of paper documents. At the time being, the most powerful models for this task are Recurrent
Neural Networks (RNN) with several layers of multi-directional Long-Short Term Memory (LSTM)
units [9, 17]. Gradient-based optimization of RNN, which cannot be guaranteed to converge to the
optimal solution, is a particularly hard issue for two reasons:

First, if we conceptually unfold the recurrences done in the spatial domain (2D, sometimes 1D), we
can see RNN as deep models. Because of the numerous non-linear functions that are composed, they
are exposed to the burden of exploding and vanishing gradient [3, 11, 18]. In practice, the use of
LSTM units, which are carefully designed cells with multiplicative gates to store information over
long periods and forget when needed, turned out to be a key ingredient to enable the learning of RNN
with standard gradient descent despite the network deepness. There are other ways to efficiently
learn RNN, namely enhanced optimization approaches such as second-order methods [15] or good
initialization with momentum [23]. These methods are beyond the scope of this paper.

Secondly, RNN are used here for an unconstrained “Temporal Classification” task [7, 8], where the
length of the sequence to recognize is in general different from the length of the input sequence.
In HTR, the goal is to detect occurrences of characters within a stream of image, without a priori
segmentation, in other words without knowing the alignment between the pixels and the target char-
acters. So the models must be optimized to solve two problems at the same time: localizing the
characters and classifying them.

Because of all these aspects, training RNN takes a particularly long time. Here we propose to make
the training process more effective by using the concept of Curriculum Learning, that has already
been successfully applied in the context of deep models and Stochastic Gradient Descent [2]. The

1

ar
X

iv
:1

31
2.

17
37

v1
 [

cs
.L

G
]

 5
 D

ec
 2

01
3

key idea is to guide the training by carefully choosing samples so as to start simple and progres-
sively increase the complexity of training samples. The main motivation is to speed up the learning
progression, without any loss of generality in the end. Gradually increasing the complexity of the
task has been demonstrated to make learning faster and more robust in several scenarios. This idea
has been exploited in classification [2], grammar induction [5, 22, 24], robotics [20], cognitive sci-
ence [13] and human teaching [12].

In this paper, we show how the Curriculum Learning concept can be naturally be applied to RNN
in the context of Handwritten Text Recognition, using the text sequence length as a measure of
its complexity. We give empirical evidences that our proposal significantly speeds up the learning
progression. The principle is general enough to be applied to any sequence recognition task, and to
any kind of model optimized using a gradient-based method.

2 A curriculum for Text Recognition

2.1 Two tasks when learning to recognize text: Localization and Classification

In text recognition, locating the characters is necessary to learn to recognize them. However, in many
public database for Handwriting Recognition, the positions and the text content are given for each
page or paragraph, not for characters. The localization of the lines is reasonably easy to obtain using
automatic line segmentation. But locating the characters is a more difficult problem, particularly
in the case of handwritten text where even humans can disagree on how to segment the characters.
This is why a Connectionist Temporal Classification (CTC) approach as proposed by [7] is a very
practical way to train RNN models without intensive labeling effort.

In their CTC approach, [7] efficiently compute and derive a cost function that is the Negative Log-
Likelihood (NLL), with the assumptions that all the frame probabilities are independent and that all
possible alignments are equiprobable. Besides, an additional label is considered: the blank, which
stands for “no character” but also for “zone in-between two characters”, meaning that the blank label
can be produced between any two different characters. To the best of our knowledge, taking into
account all the possible alignments (including the blank) is the most effective approach in training
RNN to detect characters. But it also unveils a vague localization of the characters, especially at the
beginning of the training process, when the RNN gives quasi-random guesses for the posteriors of
the labels (see the CTC Error Signal of Figure 4 in [7]).

Several studies about Text Recognition have revealed that the training process of RNN is particularly
long [21]. Not only because of the heavy computational complexity due to the recurrences, but also
because the learning progression frequently starts with a plateau. A high number of model parameter
updates is needed before the cost function starts to decrease. In some extreme cases, the learning
seems to never start, as if the optimization process quickly got stuck in a poor local minimum.

2.2 Building a suitable Curriculum

One of the reasons for this difficulty to start learning is the fact that when initializing with quasi-
random model parameters, the RNN has little chance to produce a reasonable segmentation. More-
over, it is clear that the longer the sequences are, the more serious the problem is. In a nutshell, it is
hard and inefficient to learn long sequences at first.

Thinking in the same spirit as [2], let us make a parallel with how to teach kids to read and write. A
natural way is to do it step by step: first teach him to recognize characters by showing him isolated
symbols, then teach him short words, before introducing longer words and sentences. A similar
Curriculum Learning procedure can be done when optimizing neural networks by gradient-descent
(e.g. RNN using CTC): First optimize on a database of isolated characters (if available), then on a
database of isolated words, and finally on a database of lines1.

Since having access to the positions of characters and/or words may be costly or impossible, we
propose here to adapt this proposition to the case where only lines can be robustly extracted from
the training database. Keeping in mind that the difficulty when starting to train RNN is related to

1RNN cannot decode paragraphs, just single lines: the common RNN architectures collapse the 2D input
image into a 1D signal just before aligning using CTC [9].

2

the length of the training sequences, a general way to build a Curriculum Learning for Text Line
Recognition is to first train on short lines, before including long ones. Note that the last line in a
paragraph can sometimes consist of a single word.

2.3 Proposal: continuous curriculum

In practice, it is awkward to build a step-wise schedule by splitting a database with respect to the
sequence lengths. Instead, we prefer to handle a probability to draw a sample line from the training
database. The idea of defining such a probability for probing the training database has already been
successfully applied in Active Learning [19, 4].

If (Xt, Yt) denotes a training sample (an image along with the corresponding target sequence of
labels), we propose to draw this sample with the following probability parameterized by λ:

Pλ (train on (Xt, Yt)) =
1

Nλ

(
shortness(Xt, Yt)

)λ
(1)

where

• Nλ =
∑
t (shortness(Xt, Yt))

λ is a normalization constant so that (1) defines a probabil-
ity over the set of all the available training samples.
• shortness ∈ [0, 1] is a bounded value to represent how easy is a training sample. Here it

is based on the sequence length. We discuss this quantity below.
• λ ≥ 0 is an hyper-parameter to tune how much the short words are favoured.

The particular setting λ = 0 amounts to the baseline approach where samples are drawn randomly
with flat probability and with replacement. So λ can be tuned during the training process. In our
experiments, we start with λ = 3 and linearly decrease λ until 0, during the equivalent of the first
5 epochs of training. And one epoch is about 10k to 100k different lines of text (see number of
labelled lines in table 1).

Concerning the shortness measure, we propose to use the following simple form:

shortness(Xt, Yt) =
1

max(m, |Yt|)
(2)

where |Yt| is the length of the target sequence (number of characters), and m > 0 is a minimal
length which stands as a clipping threshold. Using m = 1 is needed to avoid numerical problems
when there are empty target sequences in the training set. Using more than 1 can be useful to avoid
favouring too much on very small words, such as frequent pronouns, or punctuation marks when
they are considered as a word with a single character. We used m = 5 in our experiments, as it is a
common length for short words.

Note that we could use in (2) the width of the input images |Xt| instead of (or along with) the
sequence length |Yt|. It also makes sense and these two measures are actually correlated. But the
target length |Yt| has the advantage of being independent of the resolution of the images, and is also
a notion that can be used in other applications than Vision.

3 Experiments

3.1 Databases

Three notated public handwriting datasets are used to evaluate our system:

• the IAM database, a dataset containing pages of handwritten English text [16],
• the Rimes database2, a dataset of handwritten French letters used in several ICDAR com-

petitions (lastly ICDAR 2011 [10, 17]).
• The OpenHaRT database, a dataset of handwritten Arabic pages, used in two NIST Open

Handwriting Recognition and Translation Evaluation (lastly OpenHaRT 2013).
2http://www.rimes-database.fr

3

http://www.rimes-database.fr

For all these databases, the localization of the words is available. So we could compare the con-
tinuous Curriculum strategy proposed in section 2.3 with the simple “by-hand” Curriculum which
consists in first training RNN to recognize words and secondly to recognize lines.

We use distinct subsets of pages to train and to evaluate RNN models. In the case of the “by-hand”
Curriculum, we carefully used the same subset of pages in the training set of words and in the
training set of lines. Table 1 gives the number of data in each training set.

Training subset
different # labelled # characters # labeled

Database Language characters (*) lines (in lines) words
IAM English 78 9 462 338 904 80 505
Rimes French 114 11 065 429 099 213 064
OpenHaRT Arabic 154 91 811 2 267 450 524 196

Table 1: Number of data in the training sets used in this paper.
(*) The number of different characters depends on the language (for instance there are some diacrit-
ics in French that do not exist in English) and also on the punctuation marks that have been labelled
in the database. All tasks are case-sensitive. For Arabic recognition, we used a fribidi conversion
that map 37 Arabic symbols into 128 different shapes.

The resolution of images to feed the network is fixed to 300 dpi. Original OpenHaRT images (resp.
Rimes images) are in 600 dpi (resp. 200 dpi) and they were rescaled with a factor 0.5 (resp. 1.5),
using interpolation.

3.2 Modeling and learning details

2

2

Input image
Block: 2 x 2

MDLSTM
Features: 2

Convolutional
Input size: 2x4

Features: 6

2
6

6

Sum & Tanh MDLSTM
Features: 10

Convolutional
Input: 2 x 4

Features: 20

Sum & Tanh MDLSTM
Features: 50

Fully-connected
Features: N

Sum Collapse

10
20

20

50 N

N
N

.....
N-way softmax

CTC

Figure 1: RNN topology used for all the experiments of this paper. The resolution of input images is
300 dpi. The size of the hidden layers is given as the number of features in each intermediate repre-
sentation. N is the number of possible target characters including the blank (“# different characters”
in Table 1, plus one).

The RNN topology we use is depicted in figure 1. It is the same as described in [9], except that the
sizes of the filters have been adapted to images in 300 dpi: we used 2x2 input tiling, and 2x4 filters
in the two sub-sampling hidden layers (which are convolutional layers without overlap between the
filters). The LSTM layers scan the inputs in 4 directions, and the computations can be parallelized
over the 4 directions.

All the models were optimized using Stochastic Gradient Descent [14]: a model update happens
after each training sample (i.e. each line of characters) is visited. The learning rate is constant, and
was fixed to 0.001 in all our experiments.

4

3.3 Performance assessment

As we are interested in convergence speed, we plot convergence curves that represent the evolution
of some costs with respect to a unit of progression of the training algorithm. In our case, we use
Stochastic Gradient Descent [14] and the unit of progression could be for instance the number of
updates, that is the number of training samples that have been browsed. Given that the sequence
length of training samples is the measure of complexity here, we chose instead to represent the
progression by the total number of targets (characters) that have been browsed. This unit is more
representative of the computation time than the number of updates, because the inputs are sequences
with variable-length, and we remind that the Curriculum strategies tend to process shorter sequences
in the beginning of the learning process.

We remind that the cost optimized using CTC [7] is the Negative Log-Likelihood (NLL), which can
be averaged over the number of training sequences. However, probabilities decrease exponentially
with sequence length. For this reason, the NLL average costs are usually higher on databases with
long sequences (e.g. lines) than on databases with short or middle-length sequences (e.g. words).
That is why we chose a normalized NLL to monitor the performance of our systems:

normNLL
({

(Xt, Yt)
})

=

∑
t NLL(Yt|Xt)∑

t |Yt|
(3)

As a relevant but discrete cost to evaluate RNN optical models, we also monitor the Character Error
Rate (CER) that is computed by an edit distance, normalized in a similar manner:

CER =

∑
tEditDistance(Yt, f̂(Xt))∑

t |Yt|
(4)

where f̂(Xt) is the most probable sequence recognized by the RNN. The edit distance is a Leven-
shtein distance defined by the minimum number of insertions, substitutions and deletions required
to change the target Yt into the model’s prediction f̂(Xt).

3.4 Results and analysis

0 5 10 15 20 250.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

no
rm

 N
LL

0.
85

72

0.
67

04
0.

66
06

0 5 10 15 20 25
Nb targets / 1M

0

20

40

60

80

100

CE
R(

%
)

22
.1

7

17
.4

1
16

.8
5

Baseline: training on lines
(training on words only)
ByHand Curriculum: training on words then on lines
Continuous Curriculum

Figure 2: Convergence Curves for English Handwritten Text Recognition (IAM).

The convergence curves for learning Handwritten Text Recognition on the three languages, respec-
tively IAM (English), Rimes (French) and OpenHaRT (Arabic), are shown in Figures 2, 3 and 4.

5

0 5 10 15 20 25 300.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

no
rm

 N
LL

0.
38

06

0.
39

56

0.
35

46

0 5 10 15 20 25 30
Nb targets / 1M

0

20

40

60

80

100

CE
R(

%
)

10
.3

4

10
.5

5

9.
69

4

Baseline: training on lines
(training on words only)
ByHand Curriculum: training on words then on lines
Continuous Curriculum

Figure 3: Convergence Curves for French Handwritten Text Recognition (Rimes).

0 20 40 60 80 100 120 140 1600.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

no
rm

 N
LL

0.
40

42

0.
39

56

0.
39

56

0 20 40 60 80 100 120 140 160
Nb targets / 1M

0

20

40

60

80

100

CE
R(

%
)

11
.4

1

11
.1

5

11
.3

Baseline: training on lines
(training on words only)
ByHand Curriculum: training on words then on lines
Continuous Curriculum

Figure 4: Convergence Curves for Arabic Handwritten Text Recognition (OpenHaRT).

6

They show the progression of the costs on the validation dataset, and the vertical lines point out the
best cost values achieved during all the learning process.

All the systems use exactly the same RNN topology and the same optimization procedure, the only
difference is the way the training samples are drawn. The baseline system, represented by the
black solid curves, consists in shuffling the dataset differently at each epoch, i.e. randomly drawing
training samples with flat priors and without replacement. The dashed and dotted yellow curves
represent the convergence obtained with a “by-hand” curriculum, starting to train on isolated words,
and then training on lines (the switch was done when no more improvement is made by continuing
training of words, looking at the performance on the validation set of lines). Finally, the red dashed
curve represents the continuous Curriculum approach presented in section 2.3.

In the case of the IAM database, a great improvement is achieved by using Curriculum Learning,
without any additional training time: the CER% is decreased from 22% to about 17%. In the case
of the Rimes and the OpenHaRT databases, the improvement in performance is slight, but the rate
of convergence speed up is remarkable: the whole learning process is roughly twice shorter.

The impact of the Curriculum strategy is visible at the beginning of the training, where the cost
functions can be decreased very fast. However, after this initial fast training phase has been com-
pleted, and after a transitory phase, the convergence rates are suddenly particularly low whereas the
training is not finished. Yet this difficulty to “stop learning” affects all the systems, and indicates
that another strategy than the Curriculum should be used to speed up this last learning phase. For
instance, techniques to compute a forced alignment [21].

Additional experiments show that, when adapting a RNN that has already been trained and that
is able to recognize a good part of the characters, the Curriculum strategy does not improve over
the purely random baseline strategy (neither in performance nor in speed), even in cases where
the CER% was high on the new database on which to adapt. This confirms that implementing a
Curriculum based on the sequence length can play a crucial role at the beginning of the learning
process, but does not affect convergence speed any more after the RNN has learned to detect the
positions of the characters.

The fact that Curriculum Learning can improve generalization performance supports one point men-
tioned by [6], namely that the networks optimized by stochastic gradient descent are greatly influ-
enced by early training samples. By choosing these samples and modifying the initial learning steps,
Curriculum learning is similar to other methods devoted to optimize deep models such as careful ini-
tialization [23] and unsupervised pre-training [1, 6]. However, it is complementary and can be used
in combination with these methods.

4 Conclusion

This paper describes an easy-to-implement strategy to speed up the learning process, that can also
provide better performance in the end. The principle is to build a curriculum based on the lengths
of the target sequences. Experimental results show that in the case of Recurrent Neural Network
for text line recognition optimized by stochastic gradient descent, the first phase of the learning can
be drastically shorten, and the generalization performance can be improved, especially when the
training set is limited.

At the same time, the slowness of the last phase of the learning remains an issue, that has to be
investigated in the future. Further research also includes to experiment our Curriculum Learning
procedure in combination with more elaborated optimization methods [15, 23].

Acknowledgments

This work was supported by the French Research Agency under the contract Cognilego ANR 2010-
CORD-013.

References
[1] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise train-

ing of deep networks. In Advances in Neural Information Processing Systems, NIPS, pages

7

153–160. MIT Press, 2006.
[2] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.

In Proc. of the International Conference on Machine Learning, ICML, 2009.
[3] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with

gradient descent is difficult. IEEE Trans. Neural Networks, 5(2):157–166, 1994.
[4] Alexander Borisov, Eugene Tuv, and George Runger. Active batch learning with stochastic

query-by-forest. JMLR: Workshop and Conference Proceedings, 16:59–69, 2011 – This paper
describes an approch that won the Active Learning Challenge at AISTATS 2010 http://
www.causality.inf.ethz.ch/activelearning.php.

[5] Jeffrey L. Elman. Learning and development in neural networks: The importance of starting
small. Cognition, 48:781–799, 1993.

[6] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, and Pascal Vin-
cent. Why does unsupervised pre-training help deep learning? Journal of Machine Learning
Research, JMLR, 11, 2010.

[7] Alex Graves, Santiago Fernandez, Faustino Gomez, and Jürgen Schmidhuber. Connectionist
temporal classification: Labelling unsegmented sequence data with recurrent neural networks.
In Proc. of the International Conference on Machine Learning, ICML, pages 369–376, 2006.

[8] Alex Graves, Marcus Liwicki, Santiago Fernandez, Roman Bertolami, Horst Bunke, and Jür-
gen Schmidhuber. A novel connectionist system for unconstrained handwriting recognition.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 31(5):855–868, 2009.

[9] Alex Graves and Jürgen Schmidhuber. Offline handwriting recognition with multidimensional
recurrent neural networks. In Advances in Neural Information Processing Systems, NIPS,
pages 545–552. MIT Press, 2008.

[10] Emmanuele Grosicki and Haikal El Abed. Icdar 2011: French handwriting recognition com-
petition. In Proc. of the Int. Conf. on Document Analysis and Recognition, pages 1459–1463,
2011.

[11] Sepp Hochreiter. The vanishing gradient problem during learning recurrent neural nets and
problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based,
6(2):102–116, 1998.

[12] Faisal Khan, Xiaojin (Jerry) Zhu, and Bilge Mutlu. How do humans teach: On curriculum
learning and teaching dimension. In J. Shawe-Taylor, R.S. Zemel, P. Bartlett, F.C.N. Pereira,
and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems 24, pages
1449–1457. 2011.

[13] Kai A. Krueger and Peter Dayan. Flexible shaping: how learning in small steps helps. Cogni-
tion, 110:380–394, 2009.

[14] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. In Proceedings of the IEEE, volume 86, pages 2278–2324,
1998.

[15] James Martens and Ilya Sutskever. Learning recurrent neural networks with hessian-free op-
timization. In Lise Getoor and Tobias Scheffer, editors, Proc. of the International Conference
on Machine Learning, ICML, pages 1033–1040, New York, NY, USA, June 2011. ACM.

[16] Urs-Viktor Marti and Horst Bunke. The iam-database: an english sentence database for of-
fline handwriting recognition. International Journal on Document Analysis and Recognition,
5(1):39–46, 2002.

[17] Farès Menasi, Jérôme Louradour, Anne-laure Bianne-bernard, and Christopher Kermorvant.
The A2iA French handwriting recognition system at the Rimes-ICDAR2011 competition. In
Document Recognition and Retrieval Conference, 2012.

[18] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent
neural networks. Journal of Machine Learning Research, JMLR, 28(3):1310–1318, 2013.

[19] Maytal Saar-tsechansky and Foster Provost. Active sampling for class probability estimation
and ranking. Machine Learning, 54(2):153–178, 2004.

[20] T. D. Sanger. Neural network learning control of robot manipulators using gradually increasing
task difficulty. IEEE Trans. on Robotics and Automation, 10, 1994.

8

http://www.causality.inf.ethz.ch/activelearning.php
http://www.causality.inf.ethz.ch/activelearning.php

[21] Marc-Peter Schambach and Sheikh Faisal Rashid. Stabilize sequence learning with recurrent
neural networks by forced alignment. In Proc. of the Int. Conf. on Document Analysis and
Recognition, ICDAR, 2013.

[22] Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel Jurafsky. From baby steps to leapfrog: How
“less is more” in unsupervised dependency parsing. In IN NAACL-HLT, pages 751–759, 2010.

[23] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of
initialization and momentum in deep learning. In Proc. of the International Conference on
Machine Learning, ICML, 2013.

[24] Kewei Tu and Vasant Honavar. On the utility of curricula in unsupervised learning of proba-
bilistic grammars. In Proc. of the Twenty-Second International Joint Conference on Artificial
Intelligence, volume 22 of IJCAI’11, 2011.

9

	1 Introduction
	2 A curriculum for Text Recognition
	2.1 Two tasks when learning to recognize text: Localization and Classification
	2.2 Building a suitable Curriculum
	2.3 Proposal: continuous curriculum

	3 Experiments
	3.1 Databases
	3.2 Modeling and learning details
	3.3 Performance assessment
	3.4 Results and analysis

	4 Conclusion

