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Abstract—The current Optical Character Recognition (OCR)
systems for Indic scripts are not robust enough for recognizing
arbitrary collection of printed documents. Reasons for this
limitation includes the lack of resources (e.g. not enough examples
with natural variations, lack of documentation available about
the possible font/style variations) and the architecture which
necessitates hard segmentation of word images followed by an
isolated symbol recognition. Variations among scripts, latent
symbol to UNICODE conversion rules, non-standard fonts/styles
and large degradations are some of the major reasons for the
unavailability of robust solutions. In this paper, we propose a
web based OCR system which (i) follows a unified architecture
for seven Indian languages, (ii) is robust against popular degra-
dations, (iii) follows a segmentation free approach, (iv) addresses
the UNICODE re-ordering issues, and (v) can enable continuous
learning with user inputs and feedbacks. Our system is designed
to aid the continuous learning while being usable i.e., we capture
the user inputs (say example images) for further improving the
OCRs. We use the popular BLSTM based transcription scheme to
achieve our target. This also enables incremental training and
refinement in a seamless manner. We report superior accuracy
rates in comparison with the available OCRs for the seven Indian
languages.

Keywords—Optical Character Recognition, Neural Networks,
Indic Scripts

I. INTRODUCTION

Optical character recognition systems for Indic scripts have
not yet reached a state, where it is usable for a common man
in a robust way for most of the languages. There has been
significant progress in the recent past on developing robust
solutions [1], [2], [3]. In addition to many technical challenges
associated with these scripts, languages and algorithms, this
was also partly due to the lack of research manpower (in
both academia and industry) that could focus on a script, and
engineer a robust system. Most of the previous attempts have
been script specific and required high amount of expertise in
transferring the knowledge across the scripts. Extensive use of
machine learning (not just the design of classifiers for isolated
character segments) have helped the document image analysis
in multiple ways in the recent years [2], [4], [5], [6], [7], [8].
For scripts/languages, where the research manpower (and also
possibly the commercial interests) are lacking, this has greatly
helped in rapidly building reasonably robust systems.

While designing the OCRs, the critical learning task is to
output a string or word for a given word image. Traditionally
this module has been formulated as an adhoc composition
of a set of isolated character (or symbol) classifiers [1], [9].
Advances in machine learning has also enabled the output
prediction as structured prediction task rather than predicting
individual class labels and then combining them to obtain
semantically richer structures such as a list of class labels
or a list of UNICODEs. (Note that for Indic scripts often the
classes are defined very differently from the codes used for

the representation.) This paper builds on some of our recent
attempts [3], [7], [10] to design a generic framework, which
is also applicable for multiple Indian scripts.

Earlier attempts on Indian scripts were primarily based
on handcrafted architectures which extensively used the script
and language specific information. This, while throwing light
on the unstructured (rather unmoderated) design and propaga-
tion of fonts and styles within the community, also resulted
in systems that require significant amount of hand tuning.
Because of this it is often susceptible to failure in presence
of wild/natural inputs (e.g. a new style/character, extreme
degradation etc.). Many of the early solutions were based on
rule-based systems with heuristic features [9]. During the last
decade or so, there have been significant efforts in collecting
and annotating data for Indic scripts [2], [11], [12]. This has
resulted in a class of algorithms that employs modern machine
learning based solutions (eg. SVMs, CNNs) for classifying the
isolated characters. However, converting the classifier outputs
built from isolated characters to a structured output (like a
string) required many additional steps, and it was seldom
taken into the consideration while designing these classifiers.
Hidden Markov Models (HMMs) have been extensively used
for predicting the words in the context of handwriting recogni-
tion. HMM based solutions for printed data [13] also required
annotation of data at isolated character level and some extra
effort (say a set of rules) that convert the class label sequences
to a string of UNICODEs. However, Indian scripts show a
larger dependency (not just Markovian) and often non-causal
dependency (bidirectional). This has resulted in limited success
of these methods. Adaptation of the popular open source OCR
solutions to Indic scripts was also adversely affected by the
lack of appropriately annotated datasets.

This paper proposes a step towards building robust rec-
ognizers for a set of Indic scripts. We also present a web-
based system which can robustly recognize a large class of
Indian language documents. This covers seven major scripts,
and we demonstrate the utility on popular printed content. Our
objective is to eventually extend this for a wider styles of
documents. However, this requires additional annotations and
resources to adapt to other print styles. (Scripts like Malay-
alam have gone through formal revision of script in 1970s
and informal changes with the popularity of computer aided
typesetting in late 1980s. Many other scripts like Devanagari
have modified certain specific characters during the last three
decades. One could still see unexpected combinations even in
modern printed documents. The lack of enough such diversities
limit our present system.)

Though there have been some amount of annotated data,
the quantity and quality of the data is still a challenge. Our
web based implementation enables the users to recognize the
documents in two modes: (i) interactive, as well as (ii) an
API. By providing an interactive interface for recognition, user



is enabled to recognize documents without worrying too much
about the complexity of layout and script specific segmentation
issues [14]. Web based interface enables the user to refine the
pre-processing, and obtain the recognized output to download
or receive as an email. Such configurations are for people who
work on isolated pages. For those who wish to use OCR as part
of a larger application, we also implemented an API, which
can be directly used over the web. In both the settings isolated
and bulk OCR options are provided. Our web based system
is designed to continuously improve the performance over
sessions. We use the data provided by the user for improving
the performance of the recognizer. (Details of which are not
part of this paper.) The internal recognition scheme is also
ideally suited for an incremental learning.

This paper is organized as follows. Section II describes
a BLSTM based transcription formulation for Indian language
OCRs. This is followed by the explanation of our web-based
OCR system in Section III. Section IV details the performance
of our OCR for seven Indic scripts and our observations on the
results.

II. OCR: A TRANSCRIPTION FRAMEWORK

OCR systems often have multiple intermediate steps while
they convert a word image to its corresponding text/UNICODE
representation. Word to symbol/character separation, is re-
quired for classifiers that recognize isolated characters [1].
Holistic word recognition systems [13] however bypass this
step and directly extract features at word level. The extracted
features are then sent to the classifier for recognition. Once
the classification is done, a set of rules are required for the
conversion of latent symbols generated by the classifier to the
corresponding UNICODE representation. The rules become a
necessity in case of Indic scripts where (i) a symbol could be
made using multiple UNICODEs and (ii) the UNICODEs might
require re-arrangement so that the word could be rendered
properly. i.e. the order of symbols occurring in the image space
and the order of those symbols in the text space may not be
same.

Developing an OCR engine for a new language is chal-
lenging if one is not aware of the set of UNICODE rules. More
over, these conversions are often brittle and can fail with noisy
symbol labels. In our previous work [7], we have proposed
a solution to this problem by considering it as a sequence
to sequence transcription, where we convert the sequence of
word features into the corresponding text sequence. Such an
approach does not mandate one to identify the UNICODE
rearranging rules in advance. The system should be capable
of learning these rules. While [7] demonstrated the system
which recognizes Hindi (a language with relatively fewer re-
arranging rules), the present work shows the result on multiple
Indic scripts, having much complicated rearranging rules. To
accommodate such rules it is important for the classifier to
analyze the feature segment based on its forward and backward
information. We have observed that the BLSTM network, with
its unique forward and backward LSTM networks, is well suited
for such a transcription task.

A. Feature Extraction

Profile features are among the most popular features which
can be used to represent the word images as a feature sequence.
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Fig. 1. Figure shows the various features extracted from the upper split of
the word image. Here I1, I2 and I3 corresponds to the original gray, split
gray and split binary image respectively. F1 to F6 are the features which
corresponds to #black pixels, lower profile, upper profile, transition profile,
mean and standard deviation respectively. Similar features are computed for
both the top half as well as the bottom half for every word image resulting
in a total of 12 features for every word.

In this work, we use the split profile features where we divide
the image horizontally into two parts and the following features
are computed. (i) vertical profile (F1) i.e the number of ink
pixels in each column (ii) location of lowermost ink pixel
(F2), (ii) location of uppermost ink pixel (F3) and (iv) number
of ink to background transitions (F4). The profile features
are calculated on binarized word images obtained using the
Otsu thresholding algorithm. Apart from these features, we
have also used gray level information such as the mean pixel
value and the standard deviation among the gray pixel values.
Figure 1 shows an example of these features on the word image
shown as I1. We compute the features on a one dimensional
horizontal sliding window of size of 20 pixels with an overlap
of 75%. The features are normalized with respect to the height
of the word image. No shiro-rekha removal is performed for
Devanagari based scripts.

B. BLSTM Networks

Our preferred solution to the transcription problem is a
recurrent neural network such as Bidirectional Long-Short
Term Memory (BLSTM) network. BLSTM networks have been
successfully used in the past for both printed and handwritten
text recognition tasks. The distinctive feature about these
networks is their ability to remember long range context
over several timesteps. The use of Connectionist Temporal
Classification (CTC) layer as the output layer allows the words
to be presented as a sequence of unsegmented features. This
helps to a large extend to reduce the character segmentation



issues in Indian languages. Further the bidirectional nature of
the network makes it suitable for UNICODE level learning as it
is capable of handling UNICODE reordering issues which are
quite prevalent in Indian scripts. These features make BLSTM
a natural choice for developing a document image translation
system for Indian languages.

A BLSTM network contains two LSTM networks in which
one network takes the input from beginning to end while
other network takes the input from end to beginning. The
individual output of both these networks are used to predict the
final output. The final ground-truth alignment is done using a
Connectionist Temporal Classification (CTC), which internally
uses a forward-backward algorithm. The presence of CTC layer
also avoids the requirement of segmenting training data into
symbols. This kind of layer has got the ability to directly
output the probability distribution over label sequences. We
normalize the output activation functions in such a way that
the result is one when they are summed up. This is then treated
as probability vector of the characters present at that position.
The output layer contains one node for each class label plus
a special node ε , to indicate “no character”, i.e. no decision
about a character can be made at that position. Thus, there are
K + 1 nodes in the output layer, where K is the number of
classes. The CTC objective function is defined as the negative
log probability of the network correctly labeling the entire
training set. For a given training set (S) consisting of pairs
of input and target sequences (x, z), the objective function O
can be expressed as:-

O = −
∑

(x,z)∈S

ln p(z|x)

More details into BLSTM network and CTC layer can be found
in [15], [16].

We analyzed the network performance on various parame-
ter settings for the Indic OCR problems. A BLSTM network is
mainly characterized by the number of hidden nodes (LSTM
Size) it uses, number of hidden layers and the stopping criteria
used for training. The time complexity for each epoch increases
with increasing the LSTM size or the number of hidden layers.
We stop the network training when successive training error
rates cease to reduce below a certain threshold. We found
that increasing number of hidden layers until 3 gave better
results. The network with larger LSTM size resulted in poor
generalization. The best results are obtained from the LSTM
size 50 with 3 hidden layers.

III. WEB BASED SYSTEM

We also provide users with a way to evaluate our system
via web. We provide a simple web-interface where users
can upload scanned images and download the corresponding
OCR text. A set of commonly used pre-processing libraries
have been utilized to perform tasks like skew correction,
word segmentation etc. We have exposed our OCR as web
services and any developer who wishes to use this can do so
by requesting the Web Based Services over Internet for text
recognition processes.

User can upload the document images individually or
in bulk onto the server. We then proceed to perform pre-
processing on the uploaded document images and send the

processed images to the recognition engine. After the text
extraction has been done, the extracted output will be available
for download to the user. We are also proposing to provide
authentication services to authenticate the credible users of the
interactive and web based services. The documents uploaded
by different users help us in improving our systems further.
We believe our web-based system will help the development
of robust OCRs in the following ways:

• Evaluation of our system by testing it against different
fonts, scan quality, page layout etc.

• A self learning system which can adapt to different
fonts/styles automatically over time.

• A collection of documents which can be shared across
document image community.

• An interface which can be used by developers to build
several applications without getting into the specifics
of script and algorithms.

IV. RESULTS & DISCUSSION

A separate neural network is trained for each language.
For each language, the initialization parameters have been
found out experimentally. Number of input nodes is equal to
number of input features (12 in our case) and number of output
nodes is same as the number of target labels. As mentioned
in the previous sections, in order to show the generality of
the proposed method, we have taken seven different scripts
from Indian languages. Table II shows the details of the
dataset used for the experimentation. In each language we
have taken around 1000 pages from the corpus which has
emerged as a common benchmark data [2] within Indian
research community. Almost all of these scripts have its own
unique way of representing the character symbols. The scripts
of the languages such as Hindi, Bangla and Gurumukhi uses
shirorekha (headline) over its words while the languages such
as Malayalam, Tamil, Telugu and Kannada are more curved
in nature. Also the presence of matras, samyuktakshars and
multiple representation of same symbol further makes the
script complex. It is to be specially noted that many of the
Indian languages are highly inflectional which induces a large
vocabulary. The training of the network is done using 60% of

TABLE II. DATASET DETAILS

Language No. of Books No. of Pages No. of Words

Hindi 7 1146 390K

Malayalam 5 1050 210K

Kannada 7 1086 210K

Tamil 8 1052 130K

Telugu 6 1047 200K

Gurumukhi 7 1024 320K

Bengali 6 932 260K

word images and tested on the remaining 40%. The error rates
obtained for each language is shown in Table I. The results are
computed on independent word recognition outputs. We also
compare the results of our method against state of the art OCRs
available for these languages. Our method clearly outperforms
in terms of both character and word level error rates. The
performance trend across the languages are consistent. This
indirectly points that such an architecture would be fairly



TABLE I. CHARACTER AND WORD ACCURACY FOR DIFFERENT LANGUAGE CORPUS. WE COMPARE OUR RESULTS AGAINST OTHER
STATE-OF-THE-ART OCR SYSTEMS. NOTE THE PROPOSED METHOD DOES NOT USE ANY KIND OF LANGUAGE MODELS OR POST-PROCESSING TECHNIQUES.
THE RESULTS ARE COMPUTED ON A 1000 PAGE DATASET USING A 60:40 SPLIT FOR TRAINING AND TESTING. (*) THE ERROR RATES FOR TESSERACT OCR

FOR THESE LANGUAGES ARE VERY POOR TO BE REPORTED.

Character Error Rate(CER) Word Error Rate (WER)
Language Our Method Char. OCR [1] Tesseract [17] Our Method Char. OCR [1] Tesseract [17]

Hindi 1.80 11.34 26.67 5.72 25.38 42.53
Malayalam 1.16 4.16 * 6.08 27.74 *
Kannada 1.01 11.61 * 10.83 51.63 *

Tamil 1.54 16.69 * 13.23 52.56 *
Telugu 1.57 20.63 32.95 9.08 51.49 72.11

Gurumukhi 2.11 6.01 * 7.06 20.64 *
Bengali 2.05 8.06 * 6.80 29.8 *

applicable to newer languages for which OCRs are unavailable.
Figure 4 shows some of the qualitative results. We show the
words which our method has recognized correctly along with
words which our method has failed to recognize. For failure
cases, we show the recognized text (in red color) along with
the word image. It is to be specially noted that the current work
does not use any language models or any other post-processing
techniques.

For all these experiments, we have used LSTM size of 50
and number of hidden layers is set at 3. We have conducted our
experiments on mid-level desktop PC having 16GB RAM and
a 2.3GHz processor. On an average training was conducted for
50 epochs where each epoch took around 1.8Hrs to complete.
During testing, recognition of words in a page took 1.57
seconds on average, considering 250 words in a page.

A. Discussion

In case of Indian languages, the average length of the words
is quite high which is partly because of the inflectional nature
of the language. We verified how our method performs in
terms of increase in word lengths. Figure 5 shows such a study
where we check the rate at which the mean edit distance error
changes with respect to the size of the word. As expected the
error is increasing but it does in a slow fashion. In general
longer words are rare and the probability of its presence in the
training set is low. But since our method uses the context of
sub-sequences, the chances are lesser that these rare words also
have rare sub-sequences. In contrast a character level OCR does
not use any contextual information and would fail miserably
for longer words. Figure 2 lists some of the confusing classes
present in different languages. Use of contextual information
also helps in avoiding mistakes for these cases. Figure 3 shows
one of the degraded word image from Tamil language where
our method did a correct prediction. As can be seen in the
image, isolated character recognition becomes tough due to
presence of extreme degradations. However, we use larger
contextual information to correctly predict the sequence. The
results in Figure 4 shows example images where our method
was able to re-arrange the UNICODE sequences correctly.

B. Failure Analysis

The errors shown in Figure 4 are mainly because of missing
pixels, matra’s etc. As one can notice, for Hindi (second
error image) there is a strike through in the image which
disturbed the profile features resulting in misclassification.

Kannada

 ಭ - > ಛ
 ಧ - > ಢ

Hindi

क़ - > ऋ 
ग - > ग़

Telugu

 జ -> ఙ
 జ - > ఔ

Gurumukhi

 ਐ - > ਔ
 ਬ - > ਥ

Bangla

 ট -> ঔ
 ল - > ঈ

Fig. 2. Confusing Labels: Characters which are frequently confused due to
visual similarities.
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Fig. 3. Degradation Analysis: An example showing successful recognition
of our method for a degraded Tamil word image.

In case of Malayalam (first error image), the font resulted
in a combination of the last two symbols and produced a
valid another symbol as shown in the recognized text. Other
common errors were reported in numerals and special symbols
such as comma, quotes and fullstops (punctuation). This is
because the size of punctuation is much small when compared
against the size of entire word. Using better features or looking
specifically for punctuation in word image might be able to
solve this issue. Degradations in document images are the
biggest challenges which will need better features and good
amount of post-processing using language models.

V. CONCLUSION

A single framework which can be used to perform robust
recognition of multiple Indic scripts have been presented in
this paper. This is achieved by considering the problem of
OCR as that of transcription of sequence of features to the
text sequence. Such an architecture helps us in bypassing
the challenges present in UNICODE generation, especially
the rearranging rules. By directly predicting UNICODE text,
we also avoid the possibility of classifier generating invalid
UNICODE sequences (like matras occurring in beginning of
a word or a consonant occurring between two vowels etc.).
By performing recognition at word level, we also avoid the



Language Correct Recognition Errors (With Recognition Output)

Hindi

Gurumukhi

Bengali

Kannada

Malayalam

Telugu

Tamil

Fig. 4. Qualitative Results: Success and failure examples from different languages are shown in above figure. We show corresponding text recognized by our
method along with failed examples.
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Fig. 5. Mean edit distance v/s word length: Analyzing performance of our
method (on Hindi and Telugu) and Char. OCR in terms of mean edit distance
error of words recognized w.r.t word length.

challenges due to degradations like cuts/merges etc. Also, the
average edit distance for words having large word length is
also significantly less. Note that no language models or any
other post-processing modules were used to achieve these
results. Our OCR is integrated with a web based system. Such
a mechanism will also help us in obtaining examples from the
users which can be used to further improve the OCR system.

In future, we would extend our system to more Indic
languages like Marathi, Urdu etc. We would also like to
improve the word recognition rates to facilitate robust search
and retrieval over the entire corpus. Such a system should
also have efficient post-processing module to further boost the
performance.
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