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Abstract
Self-supervised learning (SSL) methods have re-
sulted in broad improvements to neural network
performance by leveraging large, untapped col-
lections of unlabeled data to learn generalized
underlying structure. In this work, we harness
unsupervised data augmentation (UDA), an SSL
technique, to mitigate backdoor or Trojan attacks
on deep neural networks. We show that UDA is
more effective at removing trojans than current
state-of-the-art methods for both feature space
and point triggers, over a range of model archi-
tectures, trojans, and data quantities provided for
trojan removal. These results demonstrate that
UDA is both an effective and practical approach
to mitigating the effects of backdoors on neural
networks.

1. Introduction
Deep neural networks (DNNs) continue to achieve state-
of-the-art performance on a wide variety of tasks. This
has led to additional research investigating their robustness,
trustworthiness, and reliability including vulnerabilities to
adversarial attacks. Trojan attacks, also called backdoor
or trapdoor attacks, are a training time adversarial attack.
These attacks modify a machine learning model through
some algorithmic procedure to respond to a specific trig-
ger in the model’s input. When this trigger is present, the
model will infer a pre-programmed response that could have
potentially malicious consequences in a deployed setting.

Using the standard nomenclature, we define a trigger as a
model-recognizable characteristic of the input data that is
used by an attacker to insert a trojan, and a trojan to be the
alternate behavior of the model when exposed to the trigger,
as desired by the attacker. Trojan attacks are effective if
the triggers are rare or impossible in the normal operating

*Equal contribution 1Research and Exploratory Development
Department, Johns Hopkins University//Applied Physics Labo-
ratory, Laurel, MD, USA. Correspondence to: Kiran Karra <ki-
ran.karra@jhuapl.edu>.

Preliminary work.

environment, so that they are not activated in normal opera-
tions and do not reduce the model’s performance on normal
inputs. Additionally, the trigger is most useful if it can be
deliberately activated at will by the adversary in the model’s
operating environment, either naturally or synthetically.

A trojan attack can be implemented by manipulating both
the training data and its associated labels (Gu et al., 2017),
directly altering a model’s structure (Zou et al., 2018), or
adding training data that have correct labels but are specially-
crafted to produce the trojan behavior (Turner et al., 2018).
Perhaps the easiest way to poison a neural network with
a trojan is by manipulating the training data through data
poisoning. It has been shown that minuscule amounts of
modified data are needed to insert the trojan behavior (Dai
et al., 2019).

However, detecting poisoning in the data seems impracti-
cal due to the enormous size of datasets required to train
state-of-the-art deep learning models. Even if datasets are
controlled, trojans can be embedded into models in a con-
tinual learning environment by drifting trusted data away
from the expected distribution (Kantchelian et al., 2013;
Zhang et al., 2020). Instead of analyzing the training data
which may not even be available for some models, a com-
mon approach is detecting the trojan in the model. At the
time of this writing, the Intelligence Advanced Research
Projects Activity (IARPA) is holding a competition, called
TrojAI, on detection of trojans in neural networks (IARPA,
2019). After the trojan is detected, one may sanitize the
model through a sanitization algorithm, if one is known, or
simply discard it. Our proposed trojan mitigation strategy
is to bypass the need for detection and develop a process
which effectively cleanses a model of trojans if they are
present, but has minimal effect on the model’s performance
for its intended task. In this case, the process produces an
new model where triggers are rendered ineffective while
preserving accuracy on non-triggered data.

Mitigation approaches in the literature include Neural-
Cleanse (Wang et al., 2019), fine pruning (Liu et al., 2018),
bridge mode connectivity (Zhao et al., 2020), and neural
attention distillation (Li et al., 2021). In this work, we
propose a self-supervised method that uses unsupervised
data augmentation (UDA) (Xie et al., 2019) and empiri-
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cally show that it is more effective at mitigating various
types of triggers than previously published state-of-the-art
methods. Strengths of this UDA-based approach include:
1) not having to select hyperparameters which are difficult
to chose in real-world scenarios, and 2) using unlabeled
datasets to further boost performance. In this paper, we
begin by summarizing existing approaches to trojan miti-
gation and discuss respective limitations. We then describe
UDA and explain how to apply it to trojan mitigation. Next,
we present our experimental setup and results, and finally
conclude with a discussion of our approach’s advantages
while including suggestions for future work.

2. Current Approaches for Trojan Mitigation
Research into trojan mitigation has existed since the intro-
duction of trojans in DNNs (Gu et al., 2017). An early
approach was fine-tuning, which involves further training
of the trojaned DNN on a smaller, vetted dataset (Liu et al.,
2017). This approach can require a significant amount of
labelled data before it is effective. Fine-pruning (Liu et al.,
2018), a combination of pruning and fine-tuning, was an-
other early mitigation technique but its performance can be
sensitive to training hyperparameters. NeuralCleanse (Wang
et al., 2019) went in a different direction using gradient in-
formation to reverse engineer the trigger before mitigating
its effects. Reverse engineering the trigger is computation-
ally expensive and error-prone especially when considering
global triggers like image filters.

A recent method is Bridge Mode Connectivity (BMC),
which relies on a geometric discovery that a curve of equiv-
alent loss exists between two models, and that this curve,
parametrized by a single hyperparameter t, can be discov-
ered through standard optimization techniques (Garipov
et al., 2018). BMC was shown to be useful in mitigating
trojans in Zhao et al. (2020). By choosing a model along
the curve of equivalent loss between two triggered models
sufficiently far away from the originals (curve endpoints),
but not being so far away from the end points that perfor-
mance degrades to unacceptable levels, the trojan’s effect
could be removed without significant loss of performance
on clean data. Fig. 1 shows this concept more concretely.
To use BMC for trigger removal, one first learns the curve
of equivalent loss, and then chooses a value of t (which cor-
responds to a different set of model weights along that curve
with the same loss) that satisfies operational requirements
for clean data accuracy versus triggered data accuracy.

While shown to be effective, two practical considerations
make BMC infeasible for realistic trojan removal:

1. For BMC to be effective, the hyperparameter t which
indicates the model to be chosen along the loss sur-
face, needs to be chosen correctly. This is not possible

Figure 1. Accuracy of models along the bridge mode, trained with
a 5% subset of CIFAR-10 data. The models were configured to
classify the label “4” as the label “5”, when an Instagram Gotham
filter is present. Here, the x axis represents t, the value along the
curve of equivalent loss which was learned by the BMC algorithm,
and the y axis represents the accuracy. The star indicates the
optimal value of t, which maximizes the clean data accuracy while
minimizing the effect of the trigger.

without access to triggered data. This is demonstrated
in Fig. 1 where the optimal value of t is defined as
the point that maximizes the clean data accuracy while
minimizing the trigger’s effect and is indicated by the
star. It is seen that varying t by even 10% will dras-
tically change both the clean data accuracy and the
triggered data accuracy.

2. Another concern is that BMC requires two models
to operate, and it is unlikely that a second, similar-
quality model will be readily available. A possible
workaround is to fine-tune an initial model to generate
a second model, which can then be used for the bridge
connection. While practically possible, this is unsatis-
fying because the same data used to fine-tune will be
used to build the bridge-mode, and the data processing
inequality specifies that information cannot be gained
by further processing.

Neural Attention Distillation (NAD) is another recent ap-
proach for trojan mitigation (Li et al., 2021). NAD works by
fine-tuning the trojaned model with an additional loss term
derived from a “teacher” model and an attention operator.
The attention operator is applied to blocks of convolution
layers of both the teacher model and the trojaned model, and
the loss term is setup to minimize the difference between
the attention values of the two models. The teacher model
should ideally be one that is not influenced by the trigger
in the trojaned model. In practice, however, the teacher is
the trojaned model fine-tuned on available clean data and Li
et al. (2021) shows that using the fine-tuned model can be
effective under the assumed operating conditions. Currently,
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this approach is limited to networks with convolutional lay-
ers.

3. UDA-based Trojan Mitigation
From previous experiments, we know that having more
supervised data results in better mitigation performance.
However, getting large amounts of data for cleaning neu-
ral networks is often not feasible due to the costs of data
curation and annotation. Thus, our primary motivation for
this work is to develop a trojan mitigation technique that
uses more easily obtainable unlabeled data. Self-supervised
learning (SSL) is a method of training DNNs that does
not require labels and has been shown to increase perfor-
mance in many areas of deep learning. Many variants of
self-supervised algorithms exist in the literature, but in this
work we focus on unsupervised data augmentation (UDA).

UDA is an SSL technique which attempts to teach models to
learn underlying structure in data, thereby increasing model
robustness and performance (Xie et al., 2019). The structure
of the data is learned through the UDA objective (Eq. 1),
which adds an unsupervised consistency loss Junsup(θ) to
the original supervised loss Jsup(θ).

min
θ
J(θ) = Jsup(θ) + Junsup(θ) (1)

The unsupervised consistency loss (Eq. 2) measures the dif-
ference in the consistency of predictions made by the DNN
between unsupervised data points and random perturbations
of those same unsupervised data points. Minimizing Eq. 2
results in maximizing this consistency.

Junsup(θ) = λEx∼pU (x)Ex̂∼q(x̂|x)
[
CE
(
pθ̃(y|x)||pθ(y|x̂)

)]
(2)

In (2), x is the input, the output distribution is given by
pθ(y|x), CE denotes cross entropy, q(x̂|x) is the data aug-
mentation transformation. θ̃ is a fixed copy of the current
parameters θ indicating that the gradient is not propagated
through θ̃, and D(·||·) indicates computation of divergence
between the two distributional arguments.

UDA was created to increase DNN performance when there
is a limited amount of supervised training data. The algo-
rithm was shown to be successful in both image and text
domains across a wide range of network architectures. Si-
multaneously, researchers in adversarial machine learning
have discovered that enforcing consistency in model predic-
tions is important, primarily under the popular inference-
style adversarial attacks (Cohen et al., 2019). At the time
of this writing, we are unaware of any approaches applying
these ideas to the trojan problem.

Intuition for why consistency loss can be helpful in data
poisoning is shown in Fig. 2. Here an image and a ro-
tated and style modified version of that image are shown
as inputs to a consistency loss function. The consistency
loss encourages the network to make the same prediction
regardless of perturbation. In the data poisoning domain,
triggers are designed to be highly specific, to avoid being
activated arbitrarily (Karra et al., 2020). We hypothesize
that by enforcing consistency loss, we make the network
less dependent on particular features (spatial, color related,
etc.), which should nullify the effect of triggers, regardless
of what specific dataset is used for computing and enforcing
consistency.

Figure 2. Example of consistency training

4. Experimental Setup
We designed experiments to test our proposed UDA ap-
proach and answer three fundamental questions related to
trojan mitigation:

1. Algorithm Sensitivity: How sensitive are sanitization
algorithms to: 1) different types of trojans, 2) model
architectures, and 3) the amount of supervised data
made available for sanitization?

2. Degradation of Non-Trojaned models: How do saniti-
zation algorithms affect models without trojans?

3. Source of Unsupervised Data: Can sanitization per-
formance be increased by using unsupervised data?
What characteristics of unsupervised data work best
for sanitization?

Our experimental matrix consists of two model architec-
tures, two trigger types, two trojan behaviors, and two
alternate datasets for unsupervised learning. The target
task for our experiment is classification of the CIFAR-10
dataset (Krizhevsky et al., 2009). We generate different sam-
plings of CIFAR-10 train and test sets, including samplings
of which images to poison, and consider three different sizes
of validation datasets for sanitizing the models. Details are
provided in the following sections.
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4.1. Trojaned Dataset Configurations

Our experiments uses combinations of two triggers and two
trojan behaviors inserted into the CIFAR-10 dataset:

1. Gotham Instagram filter applied to all classes

2. Gotham Instagram filter applied to one class

3. Reverse lambda pattern placed at the upper left corner
applied to all classes

4. Reverse lambda pattern placed at the upper left corner
applied to one class

The trojan behavior is configured such that when the cor-
responding trigger is present, the network learns to predict
the next class, according to the CIFAR-10 dataset class
enumeration (Krizhevsky et al., 2009). This variation in
trigger types and trojan behaviors allows us to explore the
difference in trojan mitigation performance for both global
triggers (Instagram filter) and point triggers (reverse lambda
pattern). Global refers to the fact that the trigger is applied
across the entire image, whereas point triggers are localized
to a certain region of the image.

For each trojan and model architecture combination, we
generate 5 Monte Carlo variants of trojaned models, with
random subsets of triggered data chosen by different random
seeds. The datasets are combined into experiment config-
urations that specify the data points each model is trained
with. We utilize the TrojAI software framework (Karra et al.,
2020) to train the models, employing the standard approach
of embedding trojans into models through data poisoning
(Gu et al., 2017) 1.

4.2. Training the Trojaned Models

The trojaned models are generated by poisoning 20% of
the training data with triggers described above. We chose
20% to ensure that the model maintains good performance
on clean data while also being responsive to the trigger.
Triggered image examples are shown in Fig. 3.

To measure sensitivity to DNN model architecture, we con-
duct all experiments with both the VGG16 and WideResNet-
28x10 network architectures (Simonyan & Zisserman, 2014;
Zagoruyko & Komodakis, 2016). The models are trained
with the PyTorch framework (Paszke et al., 2019) for 300
epochs, using stochastic gradient descent with a momentum
of 0.9, and a weight decay of 10−4. The learning rate is
set to 0.0025 with a scaling factor λ defined by Eq. 3. We
include data normalization and randomized flips as part of
the data pipeline. We exclude randomized cropping from

1All experimental configurations and training code will be
released at https://github.com/sanitais/

(a) (b) (c)

Figure 3. (a) Original Image (b) Image with Reverse Lambda Trig-
ger (c) Image with Instagram Gotham filter

the preprocessing pipeline due to its interference with the
reverse-lambda trigger. This configuration is chosen be-
cause it is a common method of training the chosen model
architectures for the CIFAR-10 dataset and provides a good
balance between training time and performance.

λ =


1 epoch

300 ≤ 0.25

1− ( epoch
300 −0.25)

0.65 × 0.99 0.25 ≤ epoch
300 ≤ 0.9

0.01 epoch
300 > 0.9

(3)

4.3. Evaluation Metrics

We define three metrics for evaluation that capture degrada-
tion of the model on clean data and effectiveness at removing
the response to the trigger. Denote yitrue to be the correct
label for input xi, and yitrig to be the label the network is
configured to predict if the trigger is present. Let Dclean
represent a subset of the dataset D which only contains
clean examples, andDtrig represents a subset ofD that only
contains triggered examples. Additionally, define |D| to be
the number of data points in dataset D. In our test sets, we
configure data points in Dtrig to be

yitrig = (yitrue + 1) mod C

where C = 10 is the number of classes. Then, for a given
model M , where M(x) denotes the model output given
input x, we define:

ACCclean =

∑
xi∈Dclean

[
M(xi) = yitrue

]
|Dclean|

(4)

ACCfullrestore =

∑
xi∈Dtrig

[
M(xi) = yitrue

]
|Dtrig|

(5)

ACCerase =

∑
xi∈Dtrig

[
M(xi) = yitrig

]
|Dtrig|

(6)

Clean data accuracy, ACCclean, represents the accuracy
of the sanitized model on a held-out test set with no trig-
gers. Predictions are considered correct if the model pre-
dicts the correct label. Full restore triggered data accuracy,

https://github.com/sanitais/
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ACCfullrestore, represents the accuracy of the sanitized
model on triggered data, where inference is considered cor-
rect if the model predicts the true label on triggered data.
A correct prediction indicates that the trigger has been nul-
lified. Trigger erase accuracy, ACCerase, represents the
accuracy of the sanitized model on triggered data, where
inference is considered correct if the model predicts the trig-
gered label on triggered data. A correct prediction indicates
that the trigger is still in effect. A good sanitation algorithm
will have a high clean data accuracy, a high full-restore
triggered accuracy, and a low trigger-erase accuracy. Note
that full-restore accuracy and erase accuracy are not strict
complements of each other.

4.4. Sanitizing Models

We compare our proposed approach with the latest state-of-
the-art in trojan mitigation techniques, including fine-tuning,
bridge mode connectivity (BMC), Neural Attention Distilla-
tion (NAD), Maxup and Cutmix augmentation (Gong et al.,
2020; Yun et al., 2019), and our own version of fine-pruning
based on learning rate rewinding (Renda et al., 2020), which
we refer to as Learning-Rate rewinding and Compression,
or LRComp. Importantly, we note that every sanitization
algorithm we evaluate is configured with the recommended
hyperparameters outlined in the respective publication, to
the extent possible. We configure UDA according to the
default settings provided under the original UDA use case,
which is not trojan mitigation.

For fine-tuning, we take advantage of the NAD codebase2,
and accomplish fine-tuning by setting the β parameter to
zero, removing the NAD loss term. We found that the
learning rate (LR) schedule from (Li et al., 2021) would
often fail to clean the our models, and in some cases cause
them to revert to random performance. With minimal testing
of alternate LR schedules, we trained our models with the
following settings: For the Gotham trigger, we set an initial
LR of 0.1 for our WideResNet architecture, and 0.001 for
our VGG16 architecture, and then multiply that rate by 0.1
every two epochs (as done in (Li et al., 2021)). For the
reverse-lambda trigger and both architectures, we use an
LR of 0.02 for epochs 1-3, 0.01 for epochs 4-6, and 0.001
for epochs 7-10. We train for a total of 10 epochs for each
model.

For BMC, we use the default hyperparameters and training
methodology outlined in Zhao et al. (2020). More specifi-
cally, we train for 600 epochs with an initial LR of 0.015, an
LR schedule defined by Eq. 3, a weight decay of 5× 10−4,
and a Bezier curve for the bridge with three control points.
Because BMC requires two models for the algorithm, we
connect two triggered models with the same performance
characteristics, but trained with different subsets of triggered

2https://github.com/bboylyg/NAD

data. The exact details of which models were used for the
experiments are provided in the open-source experimental
configuration. The results reported for BMC correspond to
the point along the curve which corresponds to t = 0.1 for
the VGG16 model, and t = 0.2 for the Wide ResNet model,
in accordance with the methodology reported in Zhao et al.
(2020).

For NAD, we followed the procedure outlined by Li et al.
(2021), with the same modifications as used in the fine-
tuning method described above. We obtain the teacher
model through the fine-tuning process previously described,
then train using the same code and hyperparameters used
in the fine-tuning step, but with the NAD loss parameter, β,
set to 5000, to obtain the NAD-sanitized model. Attention
was computed using the A2

sum attention map at the end of
the convolution layers of our architectures, as done in (Li
et al., 2021). The results reported correspond to the training
epoch for which the model exhibits the highest ACCclean.

For LRComp, we fine-tune each model for 50 epochs while
decaying the initial learning rate of 0.001 by a factor of
0.5 at every epoch. Then, every five epochs, we remove
(zero-out) the lowest magnitude 20% of the currently active
weights and reset the learning rate back to 0.001.

For UDA, we train the networks for 200 epochs, with the
SGD optimizer set to a learning rate of 0.01, Nestrov mo-
mentum of 0.9 and a weight decay of 1 × 10−4. We also
utilize a cosine annealing learning rate scheduler configured
with a minimum learning rate of 1.2 × 10−4. These set-
tings for training come from a reference implementation of
UDA3, which we utilized in our experiments. Four classes
of UDA experiments are conducted: 1) UDA with no addi-
tional unsupervised data, 2) UDA augmented with in-class
data from another source (CINIC-10) (Darlow et al., 2018),
3) UDA augmented with unsupervised random-class data
from another source (ImageNet) (Deng et al., 2009), and
4) UDA with no supervised data. During training, we store
the best model as measured by the accuracy on clean data,
and use that model to compute the triggered data metrics,
mentioned previously. For computing the UDA consistency
loss with unsupervised data, we use RandAugment (Cubuk
et al., 2019) to produce randomized perturbations of the
unsupervised input label.

Finally, to determine whether the consistency constraint
imposed by UDA is a driver of santization performance,
or whether complex data augmentations are sufficient, we
test the performance of fine-tuning trojaned models with
complex and aggressive data augmentations and the MaxUp
loss function, which optimizes for the worst-case loss over
augmented data (Gong et al., 2020). We combine this with

3https://github.com/lantgabor/
Unsupervised-Data-Augmentation-PyTorch

https://github.com/bboylyg/NAD
https://github.com/lantgabor/Unsupervised-Data-Augmentation-PyTorch
https://github.com/lantgabor/Unsupervised-Data-Augmentation-PyTorch
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CutMix augmentation, which combines random snippets
of images from a configurable m classes to confuse clas-
sifiers (Yun et al., 2019). The combination of MaxUp and
CutMix was shown to achieve the best performance for top1
and top5 accuracies on the validation set of ImageNet for a
wide variety of model architectures For these experiments,
we train with a learning rate of 0.001 for 200 epochs using
the SGD optimizer. CutMix was configured with m = 4,
the same value which was used in the ImageNet experiments
referenced.

5. Results
5.1. Algorithm Sensitivity

We measure algorithm sensitivity to: 1) the amount of su-
pervised data made available to the sanitization algorithm,
2) the type of trigger, 3) the type of trojan, and 4) the model
architecture. We provide three different quantities of clean
CIFAR-10 data to all sanitization algorithms: 5%, 10%,
and 20%. The four trigger-trojan configurations described
above, combined with the two model architectures and five
Monte-Carlo simulations per configuration, yields 120 mod-
els to be sanitized for each of the six algorithms that we
test.

Fig. 4 (a), (b), and (c) display the values of the metrics
defined in (4), (5), and (6), respectively, of the various algo-
rithms on the CIFAR-10 dataset for all trojan configurations,
training data percentages, and model architectures.

The UDA results shown are with the configuration that
included the CINIC-10 dataset to compute the unsupervised
consistency loss. Additional configurations of unsupervised
datasets applied to UDA are compared and described in
section 5.3.

Fig. 4(a), which displays the clean data accuracy ACCclean,
indicates that UDA outperforms all other compared algo-
rithms for this metric. It preserves the clean data perfor-
mance across all compared model architectures, supervised
data percentages, and trojan configurations. Fig. 4(b), which
measures trojan nullification, indicates that UDA generally
performs better than the other tested algorithms. There are
still cases where the algorithm failed to sanitize the network,
as indicated by ACCfullrestore being low and correspond-
ing examples of ACCerase being high. Examining these
cases in detail, we discovered that these results stemmed
from the configuration where all classes were poisoned with
the reverse lambda trigger and embedded into the VGG16 ar-
chitecture. All other algorithms had similar difficulties with
this configuration, except for BMC. We believe this merits
further investigation, but for now leave as future work. On
average however, the trends indicate UDA to still performs
favorably compared to other algorithms across all perfor-
mance metrics. Finally, Fig. 4(c) shows the effectiveness

of the algorithm to erase the trigger. As noted previously,
a lower value of ACCerase is desirable. UDA produces
results closest to 0%. The combination of Fig. 4(b) and
(c) indicate that UDA generally performs best in removing
trojans.

5.2. Degradation of Non-Trojaned models

We test the effect of the sanitation algorithms on clean
(non-trojaned) models. In these experiments, we run a non-
trojaned model through a sanitization algorithm, and mea-
sure the difference between ACCclean of the non-trojaned
model processed by the algorithm, and the model before
it was processed. This measures any degradation in per-
formance caused by the sanitization algorithm. Here, the
algorithms are configured in the exact same manner as above.
The difference in performance, denoted by ∆ACCclean is
shown in Fig 4(d). The results show that UDA is the least
detrimental amongst all algorithms for the tested configura-
tions.

5.3. Source of Unsupervised Data

To evaluate whether additional datasets can be helpful in
sanitization, we experiment with CINIC-10 (Darlow et al.,
2018) and ImageNet (Deng et al., 2009) datasets. We use the
these datasets as unsupervised datasets for UDA. CINIC-10
is a drop-in replacement dataset for CIFAR-10 that contains
different images of the same classes as CIFAR-10. Ima-
geNet is a much larger dataset which contains many more
data points and classes than CIFAR-10 or CINIC-10, and
has less overlap with CIFAR-10 than CINIC-10 does. Due
to the size of ImageNet, we randomly select a 10% sub-
set without applying class stratification. This simulates a
realistic scenario for trojan mitigation, where potentially
unrelated data exists and is available for trojan mitigation.
Because CINIC-10 and ImageNet are related to the origi-
nal task dataset, CIFAR-10, in different ways, we can also
investigate the question of the characteristics of additional
data that are best for improving sanitization performance.

The results are shown in Fig. 5, aggregated across the four
trigger-trojan pairs and supervised data percentages for both
model architectures. In these figures, the x-axis label defines
the metric being measured, and the y-axis represents the
additional dataset used for the UDA consistency loss (2).
None indicates that no additional unsupervised data was
used.

Figure 5 indicates that augmenting with the CINIC-10
dataset provides the greatest gain in performance. This
is intuitive, since the CINIC-10 dataset can be considered
“in-domain” with CIFAR-10, or in other words, data from
both datasets come from the same distribution. The re-
sults indicate that ImageNet also provides gains, but they
are not as pronounced as those coming from the used of
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Figure 4. Performance after sanitization of ResNet and VGG16 models. The x-axis label indicates the metric being measured, as
previously defined in Section 4.3. The plot was created by sweeping over different trojan configurations and amounts of supervised data,
for both VGG16 and WideResNet-28x10 model architectures.

CINIC-10. Quantitatively, across all configurations, on av-
erage, the in-domain dataset (CIFAR-10) provides a 1.4%
increase in ACCclean, 15.1% increase in ACCfullrestore,
and 66.3% decrease in ACCerase when compared to using
ImageNet for UDA. This indicates that the in-domain data
is preferred to UDA. However, we also note that the UDA
based approach with out-of-domain unsupervised data for
both ACCclean and ACCfullrestore still outperforms other
compared algorithms, and is comparable for the ACCerase
metric.

An additional test was conducted to measure the perfor-
mance of UDA with no labeled CIFAR-10 data, and only
use unlabeled CINIC-10 and ImageNet data. In these scenar-
ios, UDA was not able to remove the trigger and performed
poorly, indicating that a small percentage of supervised data
is needed to bootstrap the trojan mitigation process.

6. Discussion
The results in Section 5 are summarized by the following
observations:

1. Applying UDA with unlabeled data coming from a
similar distribution as the original task significantly re-

moves trojan effects from trained models with minimal
negative effects.

2. The UDA algorithm is robust to multiple types of tro-
jans, network architectures, and amounts of data used
for sanitization.

3. UDA is the least detrimental to clean models; other
algorithms degrade performance at varying degrees.
These results hold across multiple types of trojans and
varying network architectures.

4. Additional related data also helps sanitization perfor-
mance in UDA, as shown by the increase in perfor-
mance by using ImageNet for UDA.

Table 1 summarizes the average performance of the tested
algorithms across all configurations. UDA compares fa-
vorably to all other algorithms for both the ACCclean and
ACCfullrestore metrics. However, BMC displays less vari-
ance in the ACCfullrestore metric. The remainder of the
algorithms fail to effectively remove the trojan properly.

The difference in performance between UDA and
MaxUp+CutMix indicates that the performance benefit
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Figure 5. The performance of UDA after sanitization with different
additional data sources on triggered data for the three metrics
defined in Section 4.3, across trigger-trojan configurations, model
architectures, and supervised data percentages.

gained by UDA is not due solely to the randomized pertur-
bations inherent in computing the unsupervised consistency
loss, but also the fact that UDA is able to leverage additional
data sources to improve performance.

We additionally note that because BMC builds a bridge-
mode, there are an infinite amount of models to choose from
along the curve for sanitization performance evaluation. As
mentioned previously, we choose the points along the curve
for each model architecture as recommended by the authors
of the publication. However, it is likely that there exist
other values of t for which clean performance is better and

ACCclean ACCfullrestore ACCerase

UDA 90.2± 3.2 80.9± 16.2 4.9± 14.5
BMC 77.9± 4.8 67.4± 12.4 6.4± 6.7
NAD 77.6± 14.6 37.9± 33.3 37.6± 39.1

MaxUp
+

CutMix
85.8± 1.1 11.9± 19.8 76.8± 24.0

LRComp 37.8± 27.7 38.3± 31.1 5.0± 5.1
FineTune 58.0± 31.4 37.0± 33.3 17.1± 27.5

Table 1. Summary of results for all algorithms over all models,
trojan configurations, and supervised data percentages.

the trojan effect is better mitigated. When triggered data is
available and the trojan is known, one can attempt to find
an optimal t that maximizes ACCclean while minimizing
ACCerase, but it is not clear how one might choose t in a
realistic scenario where this information and data would be
unavailable to the owner of the model.

7. Conclusion
In this work, we have shown the efficacy of UDA in mitigat-
ing trojans for neural networks. The primary advantages of
UDA over other methods are practical, in that: 1) the algo-
rithm is robust to variants of triggers, models, and available
data, 2) it can additionally leverage out-of-domain datasets
to further boost sanitization performance, and 3) the general-
ity of the UDA framework allows for the same algorithm to
be applied across a variety of data modalities. In our study,
we found that a shortcoming of all of the current methods
for trojan mitigation (including UDA) is that they require
some minimum percentage of supervised data. Potential
future work could address this via new consistency loss
functions, newer algorithmic approaches to model sanita-
tion, and stronger forms of augmentations such as those
proposed by Gong et al. (2020).
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