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Abstract—This article presents an ongoing research study
investigating the potential of using Grand Theft Auto V (GTAV)
as a simulation environment for testing edge cases in self-
driving vehicles. Our hypothesis is that GTAV can offer a more
accessible and cost-effective solution for testing edge cases com-
pared to established simulation environments such as CARLA.
In this work-in-progress study, we aim to assess the feasibility,
scalability, and effectiveness of utilizing GTAV by simulating
complex driving scenarios. We selected Openpilot, an open-
source Advanced Driver-Assistance System (ADAS), to test these
scenarios. Compared to CARLA, GTAV proved to be a better
choice for testing realistic urban environments, dynamic weather,
complex intersections, and detailed nighttime settings. Moreover,
these simulations offered valuable insights into how Openpilot
reacts to various driving conditions and how it could be enhanced
to handle edge cases more efficiently.

Index Terms—Self-driving vehicles, Openpilot, Edge-case sce-
nario, GTAV, Simulation environment, CARLA

I. INTRODUCTION

Autonomous vehicles are often expected to revolutionize
our commute by offering increased convenience, safety, and
efficiency. At the core of these innovations are complex self-
driving algorithms, the product of countless hours of research
and development, which govern vehicle behavior. One such
algorithm that stands out due to its maturity and distinct
approach is Openpilot [1].

Openpilot, developed by Comma.ai, is an open-source,
end-to-end self-driving system. Unlike modular systems that
decompose the driving task into discrete components, Open-
pilot’s deep neural network takes raw input from cameras and
sensors and outputs steering, throttle, and brake actions di-
rectly. This end-to-end approach provides a unique perspective
in the autonomous driving landscape.

The challenge, however, lies in adequately testing these
algorithms to ensure they can handle the different situations
that arise on the roads. This challenge escalates in the context
of SAE International’s classification of autonomous vehicles.
This standard ranges from Level 0, where the car is entirely
controlled by a human, to Level 5, which represents complete
autonomy in all situations [2]. Currently, most ”self-driving”
cars available are at Level 2, including Openpilot.

Testing the higher levels of autonomy in vehicles is chal-
lenging, as they may encounter various real-world scenarios.
One approach is to use simulation environments, such as
CARLA [3], to create controlled conditions that allow for

extensive testing without the potential hazards and costs asso-
ciated with real-world testing.

However, these environments have their limitations. Despite
the impressive fidelity of simulators like CARLA, they still
struggle to replicate the complexity and unpredictability of
real-world driving conditions, particularly the so-called edge
cases that fall outside of normal operating conditions. It’s
these edge cases that often prove to be the most critical in
testing autonomous driving algorithms [4]. In an attempt to
address these challenges, this research explores the potential of
using commercially available videogames as simulation envi-
ronments. Specifically, we turn our attention to GTAV, a game
renowned for its detailed and dynamic urban environment that
mirrors the complexities of a real city.

Our hypothesis is that the richness of the GTAV environment
might provide a more robust platform for testing edge-case
scenarios than traditional simulators. Our research specifically
focuses on testing Openpilot, comparing its performance in
GTAV against the established CARLA simulator. In the fol-
lowing sections, we will present our methodology, the current
preliminary results, and discuss future work.

II. RELATED WORK

The vision of Autonomous Vehicles (AVs) is prompting a
revolutionary change in the realm of transportation. However,
this vision introduces a multitude of research challenges
spanning technology and infrastructure to accommodate AVs,
reliable V2X communication [5], [6], as well as the crucial
need for comprehensive testing and simulation to ensure
the reliability and safety of AVs. The last decade has seen
intensified efforts dedicated to addressing these challenges,
setting the stage for this novel era of transportation.

Advanced Driver-Assistance Systems (ADAS) represent an
essential step in this evolution, encompassing various systems
designed to automate, adapt, and enhance vehicle systems
for safety and better driving. In particular, Autopilot and
Openpilot stand as two of the most mature ADAS systems.
Autopilot, developed by Tesla, and Openpilot, a project by
Comma.ai, use a combination of radar-based sensors and
cameras to achieve features such as Adaptive Cruise Control
(ACC) and Lane Keeping (LK). Openpilot distinguishes itself
as an end-to-end solution where a deep neural network pro-
cesses raw sensor input to output driving commands [7].



In [4], authors highlight the role of simulation in the
verification and validation of AVs and propose a high-level
roadmap for future research. The testing and validation of
such systems, especially those aspiring to higher autonomy
levels, are of paramount importance. In this context, simulation
platforms like CARLA, PTV Vissim, Autoware ROS, and
DYNA4 have gained traction. Authors in [4] (cf. table VI)
present an exhaustive comparison between simulation envi-
ronments. CARLA [3] stands out as the defacto open-source
simulator for AV research, providing a wide variety of urban
and suburban environments.

Edge case scenarios have garnered significant attention.
These scenarios, which represent unusual or extreme driving
conditions, are critical for testing and improving the robust-
ness of self-driving algorithms. However, they are inherently
challenging to replicate in real-world testing due to their
rarity and potential risk. Therefore, simulation environments
have become an essential tool for exploring these edge-case
scenarios in a safe and controlled manner. Several studies have
highlighted the importance of edge case testing in autonomous
driving. For instance, [4] emphasized the role of edge case
scenarios in revealing the limitations of current self-driving
technologies, while [8] proposed a framework for systemati-
cally generating and testing edge case scenarios in simulation
environments.

While traditional simulation environments have been in-
strumental in testing edge-case scenarios, they often lack the
complexity and diversity of real-world driving conditions. This
is where video games, such as GTAV, present an intriguing
alternative. Videogames offer immersive, dynamic, and un-
predictable scenarios that closely resemble real-world situa-
tions. Their detailed environments are advantageous for testing
edge-case scenarios in autonomous driving, enabling a broad
spectrum of situations to be simulated. Utilizing videogames
as simulation environments could expedite the development
of self-driving algorithms due to their cost-effectiveness and
scalability in generating diverse driving scenarios. Therefore,
the exploration of video games like GTAV as a simulation
environment for autonomous driving is a promising avenue
for future research [9].

GTAV is a popular video game known for its realistic and
detailed virtual environment. The game’s environment includes
a wide variety of urban and rural settings, diverse weather con-
ditions, and dynamic traffic scenarios, making it a potentially
rich resource for autonomous vehicle simulation. The potential
of GTAV as a simulation environment for autonomous driving
has been recognized in a few studies [10], [11]. Other studies
highlighted using GTAV as data generation and collection for
AV testing [12], [13].

III. METHODOLOGY

This study aims to compare the usability and realism of
two different simulation environments, GTAV and CARLA,
for testing the Openpilot self-driving algorithm in edge-case
scenarios. In this section, we first highlight the necessity for
edge case testing with AV. We then present the Openpilot

architecture with respect to the AV architecture. We finally,
present our experimental setup and testing procedure.

A. The Importance of edge case testing for AVs

Autonomous driving environments can be broadly classi-
fied into three main categories: rural, highway, and urban
environments. Each environment is characterized by unique
parameters to which the autonomous vehicle must integrate
and adapt its driving. For instance, urban environments are
often characterized by intersections, signalization, and vulner-
able road users, while rural environments may feature elements
such as trees, mountains, and bends.

The task of adapting to these diverse parameters is chal-
lenging. In several instances, autonomous vehicles have been
involved in fatal accidents due to their inability to effectively
handle certain driving conditions. For example, on March 18,
2018, in Arizona, a pedestrian was killed by an autonomous
vehicle that was driving at a speed 20 km/h above the rec-
ommended limit during nighttime [14]. The vehicle’s braking
time was insufficient to avoid the accident, resulting in the
death of a vulnerable road user. In another crash incident, the
self-driving vehicle failed to detect an emergency vehicle with
flashing lights in a timely manner [15].

Meteorological conditions have also been responsible for
several AV accidents. A notable example occurred on May
7, 2016, in Florida, when an autonomous vehicle, crashed
in a tractor-trailer (the AV’s sensor is believed to have been
dazzled by the sun) [16]. Tests conducted by other drivers have
revealed that self-driving vehicles have difficulty navigating
snow-covered roads [17].

Moreover, where driverless vehicles may encounter resis-
tance from people such as the incident in San Francisco
where protesters placed traffic cones on the hoods of these
autonomous cars as a form of protest against their expansion
on city streets [18].

By simulating autonomous driving in a game environment
like GTAV, we can test several extreme cases, such as driving
on a rural track at night in snowy weather or driving in the
wrong direction on a highway. This allows us to evaluate the
performance of autonomous driving algorithms in a wide range
of challenging scenarios, which is crucial for improving their
safety and reliability.

B. Openpilot software architecture

Openpilot is an advanced driver-assistance system that has
been designed with a modular architecture [19], [20], which
includes several key components related to autonomous vehi-
cle (AV) operation: perception, localization and path planning,
and control (cf. Fig. 1).

• Perception: Openpilot uses a combination of sensors and
machine learning algorithms to perceive the environment
around the vehicle. This includes detecting other vehicles,
pedestrians, and road signs, as well as estimating the
vehicle’s relative position and velocity.

• Localization and Path Planning: Once the environment is
perceived, Openpilot uses a module called the ”planner”
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Fig. 1: Openpilot architecture w.r.t. to Autonomous Vehicle Overall Architecture.

to determine the vehicle’s position within it and plan
a safe path forward. This involves predicting the future
positions of other road users and adjusting the planned
path accordingly.

• Control: The final step in the process is controlling the
vehicle to follow the planned path. Openpilot’s control
module, known as ”controlsd”, uses the planned path and
the vehicle’s current state to generate control commands
for the vehicle’s steering, throttle, and brakes.

C. Experimental Setup

As shown in figure 2, the testing environment for this
study was set up on an Ubuntu system (version 20.04). The
GTAV game was installed using Wine, a compatibility layer
that allows Windows applications to run on Linux operating
systems like Ubuntu.

To interact with GTAV programmatically, we used
ScriptHookV1, a library that enables the game’s native
functions to be called from custom scripts. The necessary
ScriptHookV files were placed in the GTAV installation folder,
which allowed us to open a network socket for sending and
receiving data from the game environment.

To facilitate the interaction with GTAV, we used DeepG-
TAV2, a plugin for GTAV that provides a rich set of data
from the game environment. We also used VPilot3, a Python
abstraction layer for DeepGTAV, which allowed us to control
the game programmatically.

Using an Openpilot self-driving model version from the
littlemountainman/modeld GitHub repository (available here
https://github.com/littlemountainman/modeld), we adapted the
Python script from the same repository in order to receive a
video stream from GTAV. This video stream was then fed into
the Openpilot self-driving model for processing4.

Scenarios for testing the self-driving model were defined
and launched using VPilotGUI5, a graphical user interface for
VPilot. This setup allowed us to simulate a wide range of

1http://www.dev-c.com/gtav/scripthookv
2https://github.com/aitorzip/DeepGTAV
3https://github.com/aitorzip/VPilot
4https://github.com/idirsmadhi/OpenpilotGTAV
5https://github.com/hamouddd/VPilotGUI
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Fig. 2: Experimental setup architecture for GTAV.

driving conditions and scenarios in GTAV and evaluate the
performance of Openpilot under these conditions.

In parallel to the GTAV setup, we also established an ex-
perimental environment using CARLA. CARLA was installed
on the same Ubuntu system (version 20.04). For our testing
procedure, we utilized CARLA’s Python API to programmat-
ically control the simulation environment and to feed sensor
data to the Openpilot self-driving model. This setup allowed
us to compare the performance of Openpilot in both GTAV
and CARLA under similar edge-case scenarios.

D. Quantitative evaluation of path prediction accuracy

In this work-in-progress paper, various trajectory similar-
ity measures [21], [22], including Dynamic Time Warping
(DTW), Frechet Distance [23], and others, were considered
for evaluating the performance of Openpilot’s path predictions
in different edge-case scenarios. These sophisticated mea-
sures offer detailed insights into the alignment and similarity
between predicted and ground truth trajectories, capturing
complex variations and temporal distortions. However, for the
sake of simplicity and practicality in this preliminary study,
we opted to utilize the Point-to-Point (P2P) distance. The
P2P distance provides a straightforward and intuitive measure
of trajectory similarity, calculating the Euclidean distance
between corresponding points in 2D space at each frame.
Despite its simplicity, the P2P distance allows for a frame-by-
frame assessment of the algorithm’s path prediction accuracy,
making it suitable for our current stage of research.

Point-to-Point (P2PD) Distance (cf. Figure 3):
Given two trajectories, G = {g1, g2, . . . , gn} (for the ground

truth path) and P = {p1, p2, . . . , pn} (for the predicted path),
where n represents the number of frames.
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i distances at each
ith sampled point in the frame t.

1. At each time step t (frame t), along the Y-axis, sample
points at equal intervals to define a set of sampling points for
both trajectories.

2. For each frame t, calculate the Euclidean distance be-
tween the x coordinates of the corresponding sampling points
in the trajectories:

P2PD(G[t], P [t]) =

num samples∑
i=1

P2PDi
t

where

P2PDi
t = gitx − pitx

and gitx and pitx are the x coordinates of the ith sampling
point on the ground truth path and predicted path in frame
t, respectively. num samples represents the total number of
sampling points along the Y-axis.

3. Repeat the calculation for all frames, from t = 1 to t = n.
4. Average the sum of the Basic Point-to-Point distances at

each time step to obtain the total similarity measure:

P2PDtotal =
1

n

n∑
t=1

P2PD(G[t], P [t])

The Point-to-Point (P2PD) distance provides a frame-by-
frame evaluation of the similarity between the predicted tra-
jectory (P) and the ground truth trajectory (G), considering
the x-coordinate distances of the sampled points along the Y-
axis. This measure allows for a more detailed analysis of the
algorithm’s performance, considering the lateral accuracy of
the predictions at each frame. It provides valuable insights
into the model’s ability to maintain accurate positioning in
complex driving scenarios and edge cases.
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IV. PRELIMNINARY RESULTS

A. AVs’ simulation environments: GTAV Vs CARLA

Our preliminary results indicate that both GTAV and
CARLA have their strengths and weaknesses as simulation
environments for testing Openpilot.

As shown in figure 4, GTAV showed promising results in
terms of usability and realism. The game’s rich and dynamic
environment provided a wide range of realistic driving scenar-
ios, including several edge-case scenarios that are difficult to
replicate in traditional simulators. This made GTAV a valuable
tool for testing the robustness of Openpilot in diverse and
challenging conditions.

On the other hand, CARLA excelled in terms of the
granularity of scenarios. The simulator’s comprehensive API
allowed for a high level of control over the driving scenarios,
making it possible to test Openpilot under very specific condi-
tions. This was particularly useful for testing the algorithm’s
performance in edge-case scenarios, where small details can
have a significant impact on the outcome.

B. Preliminary edge-cases analysis and interpretation

In this work-in-progress paper, We will be presenting and
discussing a few scenarios.

It’s worth noting that certain scenarios would pose consid-
erable challenges not only for autonomous driving systems
but also for human drivers. These scenarios, characterized by
adverse weather conditions, low visibility, or complex road
layouts, are inherently difficult to navigate safely. Human
drivers may also encounter difficulties in making accurate
predictions and decisions in such situations, highlighting the
complexity of these edge cases. This observation underscores
the importance of developing robust autonomous driving sys-
tems capable of handling these challenging scenarios, as they
can occur in real-world driving conditions.

Our preliminary testing focused on four specific edge-case
scenarios: (i) pedestrian detection in a nighttime environment
with heavy rain; (ii) reaction to sudden changes in brightness,
such as during a storm or when exiting tunnels; (iii) reaction
to obstacles on a winding road; and finally (iv) driving on a
snowy road.



C. Night Driving Scenario

In the night driving scenario, we conducted tests in both
CARLA and GTAV environments to assess the performance of
Openpilot in predicting trajectories under low-light conditions.
However, our findings revealed that Openpilot struggled to
accurately predict the correct trajectory in both environments,
resulting in a significant decrease in trajectory precision (see
Figure 5).

Fig. 5: Illustration of Openpilot’s trajectory prediction in the
night driving scenario (top: CARLA, bottom: GTAV).

D. Challenging Weather Scenario

Under challenging weather conditions, such as rain and
fog in CARLA and snowy rural roads at night in GTAV,
the Openpilot algorithm faced difficulties in predicting correct
trajectories (see Figure 6).

E. Combined Scenario - Snowy Night Driving

In this combined scenario, we evaluated the Openpilot
prediction algorithm on a rural road covered in snow during
nighttime in the GTAV environment. The results were par-
ticularly challenging, as the algorithm struggled to accurately
detect and track the road lines. The reduced visibility caused
by the snowy weather and darkness seemed to significantly
impact the algorithm’s ability to perceive and respond to the
road markings (see Figure 7).

In these extreme scenarios, the path prediction showed an
oscillating detection of the road edges, indicating that the
algorithm was struggling to accurately perceive and navigate

Fig. 6: Illustration of Openpilot’s trajectory prediction under
challenging weather conditions (top: CARLA, bottom: GTAV).

Fig. 7: Illustration of Openpilot’s trajectory prediction in the
combined scenario of snowy night driving.

the challenging conditions. Such a prediction could result in
unpredictable and potentially unsafe driving actions.

These preliminary results highlight the importance of testing
self-driving algorithms in a wide range of scenarios, particu-
larly those that combine multiple challenging conditions. They
also underscore the need for further research and development
to improve the performance of autonomous driving algorithms
in extreme scenarios.

V. CONCLUSION AND FUTURE WORK

Our preliminary results highlight the potential of using
video games, specifically GTAV, as a simulation environment



for testing self-driving algorithms. GTAV excels in simulating
realistic urban environments with intricate traffic patterns,
dynamic weather conditions, and highly detailed nighttime set-
tings. Additionally, GTAV models realistic pedestrian behavior
and allows for diverse non-vehicular obstacles on roads. Its
flexibility and scalability enable the creation of customized
scenarios tailored to research needs. These advantages make
GTAV a valuable choice for testing and training autonomous
vehicle systems in a wide range of challenging scenarios.

These results also underscore the challenges that self-driving
models face when dealing with complex, multi-factor edge-
case scenarios. Specifically, we tested Openpilot on specific
edge-case scenarios on both GTAV and CARLA simulation
environments. These scenarios provided valuable insights into
how the self-driving model responds to different driving
conditions and how it can be improved to handle edge-case
scenarios more effectively. In particular, we visually examined
the predicted paths generated by Openpilot for various edge-
case scenarios in both CARLA and GTAV environments.
As a disclaimer, it is important to note that this qualitative
discussion does not serve as a comprehensive evaluation of
the Openpilot self-driving model itself, but rather aims to use
it as a general path prediction capability in our simulation
environments.

In future work, we will focus on refining the testing proce-
dure and further exploring the potential of video games as
a simulation environment for autonomous driving research.
Specifically, we intend to quantitatively measure the Point-
to-Point Distance (P2PD) using the annotated ground truth
paths to provide a more rigorous and objective evaluation of
the model’s performance. We plan to test a wider range of
edge-case scenarios and to further investigate the performance
of Openpilot under these conditions. These results could
potentially provide suggestions for enhancing the performance
of self-driving technology in extreme scenarios by refining its
perception, planning, and control modules.
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