
MER-SDN: Machine Learning Framework for
Traffic Aware Energy Efficient Routing in SDN

Beakal Gizachew Assefa and Oznur Ozkasap
Department of Computer Engineering

Koc University, Istanbul, Turkey
{bassefa13, oozkasap}@ku.edu.tr

Abstract—Software Defined Networking (SDN) achieves pro-
grammability of a network through separation of the control
and data planes. It enables flexibility in network management
and control. Energy efficiency is one of the challenging global
problems which has both economic and environmental impact.
A massive amount of information is generated in the controller
of an SDN based networks. Machine learning gives the ability
to computers to progressively learn from data without having to
write specific instructions. In this work, we propose MER-SDN:
a machine learning framework for traffic aware energy efficient
routing in SDN. Feature extraction, training, and testing are
the three main stages of the learning machine. Experiments
are conducted on Mininet and POX controller using real-world
network topology and dynamic traffic traces from SNDlib.
Results show that our approach achieves more than 65% feature
size reduction, more than 70% accuracy in parameter prediction
of an energy efficient heuristics algorithm, also our prediction
refine heuristics converges the predicted value to the optimal
parameters values with up to 25X speedup as compared to the
brute force method.

I. INTRODUCTION

SDN is a widely accepted networking paradigm based
on the concept of separation of control and data planes.
It is implemented in a home network, campus networks,
ISP, telecom, and cloud data centers. Major companies like
Facebook, Yahoo, Microsoft, Huawei, Cisco, and Google has
adopted SDN to their data centers and network equipment
designs [1], [2].

Machine learning is used in various disciplines as a tool
to discover a pattern in a structured, semi-structured and
unstructured data. It has a global impact on the technology as
it is useful in AI, genetics, computer vision, business predic-
tion, and others. In SDN, because of the logically centralized
controller, a massive amount of information is generated and
stored instantly. With the ever-increasing network informa-
tion, machine learning techniques are formidable and play a
vital role in discovering knowledge from the stored network
information [3]–[5].

One of the most prominent challenges of the present world
is energy since it has both economic and ecological issues.
10% of the global energy consumption is due to ICT sector
out of which 2% is from network components. By 2020
the total electricity cost of cloud data centers is expected
to increase by 63% [6], [7]. SDN enables us to achieve
traffic proportional energy consumption through dynamic re-
routing of flows. The practical solution is to sleep/turn off
underutilized components during low traffic load. However,

there is a trade-off between performance and efficiency since
turning off network components for sake of efficiency has an
adverse effect on performance.

In our previous work [8], [9], we have proposed IP formu-
lations and heuristics to maintain this trade-off. However, the
efficiency of the three heuristics we proposed namely Next
Shortest Path, Next Maximum Utility, and MEPT depend on
the value of the utility interval parameters Umin and Umax.
In the previous work, we have determined these parameter
values by brute force.

In this work, we propose MER-SDN, a framework that
combines the capabilities of SDN and machine learning for
energy efficient routing. MER-SDN is implemented on the
POX controller. It extracts the topology and traffic informa-
tion and stores it in a repository. It also uses PCA (Principal
Component Analysis) for feature size reduction and linear
regression for training the model. MER-SDN is a generic
framework that can be applied to a range of energy efficient
approaches. In this work, however, we use it to predict the
optimal values of the Umin and Umax parameters for the
MEPT heuristics. We also propose a heuristics to maximize
the accuracy of the predicted Umin and Umax values.

The contributions of this work are as follows.
• We propose a three module machine learning framework

for traffic proportional energy saving in SDN. The
modules are Traffic Manager, Topology Manager, and
Learning Machine.

• Most of the machine learning approaches used in SDN
are for traffic classification, routing, intrusion detection,
or attack prediction. To the best of our knowledge,
we are the first in applying it to energy saving and
performance combined.

• We present a full-fledged machine learning method that
starts from feature extraction, applies feature reduction,
and also provides a heuristics to increase the accuracy
of the predictor to 100% in a constant time.

• We present the cross-fold validation results that show
how we choose the number of principal components for
PCA for the training set. The results indicate more than
65% feature size reduction.

• Our model predicts Umin and Umax with an accuracy
of more than 70%. The refine heuristics we proposed to
increase the accuracy converges to the optimal values
with a speedup of 15 to 25 times as compared to the
brute force approach.

ar
X

iv
:1

90
9.

08
07

4v
3

 [
cs

.N
I]

 5
 A

ug
 2

02
1

The remainder of the paper is organized as follows. Section
II presents related work. MER-SDN framework is discussed
in section III. Section IV presents the experimental analysis
of our approach. Conclusion and future work are discussed
in section V

II. RELATED WORK

The use of machine learning techniques for energy effi-
ciency in traditional networks has been studied [10], where
the techniques are applied in assisting resource management,
power distribution, demand forecasting, workload prediction,
virtual machine placement prediction, memory assignment,
CPU frequency, and traffic classification. The techniques
range from supervised learning, unsupervised learning, re-
inforcement learning, and hybrid combination.

A meta-layered machine learning approach composed of
multiple modules is proposed [3]. The goal of this approach is
to mimic the results of heuristics used in traffic engineering
to maximize the quality of service (QoS). However, each
neural network per module is trained separately and each
trained model operates separately for each demand pair. The
drawback of this approach is that it does not represent the
relationships between the demands.

Seer is a configurable platform for network intelligence
based on SDN, Knowledge Centric Networking, and Big
Data principles, where the goal is to accommodate the
development of future algorithms and application that target
network analytics [4]. It is also flexible in a sense that it
allows high-level users to decide what network information
to use for their goals. By focusing on reliability, the platform
aspires to provide a scalable, fault-tolerant and real-time
platform, of production quality.

Machine learning in SDN is also used in predicting the
host to be attacked [11] using C4.5, Bayesian Network,
Decision Table, and Naive-Bayes algorithms. Prediction of
DDoS attack using neural network is implemented in NOX
controller [12].

Another machine learning based approach NeuRoute is
a dynamic framework which learns a routing algorithm
and imitates its results using neural networks in real-time.
NeuRoute is implemented on top of Google’s TensorFlow
machine learning framework and tested on POX controller.
Experimental findings on GEANT topology show that the
NeuRoute is faster than dynamic routing algorithms [5].

In contrast to the existing machine learning based solutions
proposed for SDN, our framework models performance and
energy efficiency at the same time. We present a method of
representing traffic as features, perform feature size reduction
using mathematically proven techniques, provide heuristics
to increase the accuracy of the prediction to 100%. In our
approach, we predict utility parameters Umin and Umax
for the MEPT heuristics algorithm [9].

III. MER-SDN FRAMEWORK DESCRIPTION

We propose MER-SDN framework that utilizes machine
learning techniques to achieve traffic proportional energy
efficiency in SDN. The objectives are to jointly formulate

energy efficiency and network performance, to propose gen-
eralized heuristics algorithms, and to apply machine learning
approaches on SDN controller that learn from traffic, network
and solution history.

OpenFlow Protocol

Traffic Manager

Topology Manager

Learning Machine

Repository

H1H1

H2 H3 H4

H5

OpenFlow Protocol

Traffic Manager

Topology Manager

Learning Machine

Repository

H1

H2 H3 H4

H5

Fig. 1: MER-SDN: Machine Learning Framework for Energy Effi-
cient Routing in Software Defined Networking

Figure 1 illustrates the MER-SDN framework consisting of
three modules. The information of the traffic generated by the
applications is passed to the traffic manager that stores details
of traffic information in terms of source-destination pairs,
rate, time a traffic demand arrives, and the total amount of
flow. The status of the network and the topology information
are fed to the learning machine from the switches, which
generates an optimal sub-graph based on the traffic volume
by learning from historical data. Since the module is designed
to work in a dynamic environment, low traffic load would
result in a sub-graph with a smaller number of active links
and switches as compared to a subgraph in the case of high
traffic load. The topology manager module is responsible for
retrieving information about the organization and status of the
network components. It also keeps track of cost information
of links and forwarding switches. If a network component
fails or is out of service, the topology manager updates the
global topology information.

Figure 2 illustrates the machine learning stages applied to
learn from traffic information and statistics of the network
components. The pre-processing stage extracts features from
the traffic, topology, switch, and link data and represents them
using a matrix to perform size reduction. The training stage
sets the hyper-parameters of the training model using cross-
validation, and then builds a training model. The testing stage
makes a prediction on the next sub-optimal graph that is
proportional to the traffic volume. The refining prediction
component improves the predicted state using a heuristics
algorithm.

A. Feature Extraction

In machine learning, feature extraction is a technique used
to select a subset of data more relevant to finding interesting
patterns. Feature extraction involves feature representation
and feature reduction. The performance of machine learning

Model Building

Hyperparameter Tuning

Prediction

Refining

Feature Reduction

Feature RepresentationFeature Representation

Fe
at

ur
e

Ex

tr
ac

ti
on

Fe
at

ur
e

Ex

tr
ac

ti
on

Tr
ai

n
in

g
Tr

ai
n

in
g

Te
st

in
g

Te
st

in
g

Fig. 2: Inside the Learning Machine

methods depends on the choice of features. Complex features
require memory, computational power, and longer training
time. Moreover, the machine leaning algorithm over-fits the
training set and generalizes poorly for unseen data. Feature
reduction is a method of reducing the dimension of the fea-
ture set. Dimension reduction is the process of reducing the
number of random variables under consideration by obtaining
a set of principal variables [13]–[15]. Major techniques used
in machine learning are Principal Component Analysis (PCA)
[16], Factor Analysis (FA), Projection Pursuit (PP), and
Independent Component Analysis (ICA) [17].

The network is represented as a directed graph where the
nodes and the edges represent the switches and the links,
respectively. A traffic flow is represented by the source node,
destination node, and the flow rate. If the number of nodes
in the network is N, then the size of the traffic matrix is
Nx(N-1).

PCA is a linear combination of optimally-weighted ob-
served variables. The outputs of PCA are these principal
components whose numbers are less than or equal to the
size of the original feature space. The principal components
are orthogonal to each other. PCA is commonly used in face
recognition, image classification, and unsupervised predic-
tions. In this work, we use PCA to reduce the dimension of
the feature set.

Algorithm 5 shows the steps used in PCA for feature size
reduction. Line 1 computes the mean vector X̄ of X. The
dimension of X̄ is equal to the feature size n. Line 2 mean
normalizes the data. Mean normalization is necessary because
it makes each feature component have same standard devia-
tion which helps all principal components have equal weight.
The next step in PCA is to compute the covariance matrix
of the mean normalized data and compute the eigenvectors
V and eigenvalues E as stipulated on lines 3 and 4 . Line
5 orders the V based on eigenvalues E in descending order.
The eigenvector corresponding to the maximum eigenvalue

Algorithm 1 PCA: Reduce the feature data size Xdxn to
Xdxk and produce the projection matrix W
INPUT : Feature data Xdxn and k the number of principal
components
OUTPUT : Feature data Xdxk where k is the number of
principal components

1: X̄ ←
n∑

i=1

Xi . mean of X

2: X̄ ← X − X̄ . mean normalize X
3: C ← 1

d (X − X̄)T (X-X̄) . C is the covariance matrix
4: V,E ← eig(C) . compute eigenvalues & eigenvectors
5: V← sortdesc(V,E) . sort V based on E
6: W ← eigenvecsk . Projection matrix Wd∗k

7: Xdxk ← XW . Project X on W space
8: return Xdxk,W

is at the first position while the eigenvector corresponding to
the minimum eigenvalue is at the end of the list.

The next step in the PCA algorithm is to prepare the
projection matrix W with the top k principal components.
However, selecting the value of k is a significant step in PCA
and challenging task. Small k value reduces the feature size
significantly but preserves fewer information of the original
data. The variance of the principal components shows the
direction of the the maximum eigenvalue. The direction of the
eigenvector corresponding the to maximum eigenvalue that
carries most of the information in the original unreduced data.
The larger the variance the more information the principal
components carry. If we use the whole principal components
the variance will be closer to 100%, and if the number of
principal components chosen does not carry any information
about the whole matrix, the value becomes 0. The variance
decreases while moving from the first (largest) component to
the last one. Line 6 computes the projection matrix Wnxk.
W is used to project the original data Xdxn or a new data
sample of various size. Line 7 reduces the dxn dimensional
matrix X to dxk by projecting it over the eigenspace W. Line
8 returns the projected matrix Xdxk and the projection matrix
Wkn.

B. Training

The training stage of MER-SDN has two parts: hyper-
parameter tuning and model training. We use linear regres-
sion to build our training model. However, setting the number
of principal components needs to be investigated carefully.
We use 10 fold cross-validation to pick parameter k. In 10-
fold cross-validation, the original sample is randomly parti-
tioned into 10 equal size subsamples. Of the 10 subsamples,
a single subsample is retained as the validation data for
testing the model, and the remaining 9 subsamples are used as
training data. The cross-validation process is then repeated 10
times (the folds), with each of the 10 subsamples used exactly
once as the validation data. The 10 results from the folds
can then be averaged (or otherwise combined) to produce a
single estimation. The advantage of this method is that all
observations are used for both training and validation, and

each observation is used for validation exactly once. This
avoids bias in the training. After tuning the parameters, the
next step is to build a regression model by using all the
training dataset. The regression model is now ready to use
for predicting new features.

C. Testing

Testing refers to applying the model trained to predict the
values for unknown new data sample. First, we transform the
test data set to eigenspace by a simple linear transformation.
Then, we use the regression model we build (in section III-B)
for prediction. However, in our experiments, the accuracy of
the prediction is not 100% in constant time.

Algorithm 2 increases the accuracy of the model. The
rationale behind the Refine algorithm is to increase the
predicted Umin by α until the energy saving decreases and
to decrease the value of the predicted Umax by α until
the energy saving remains constant. And the outputs are the
improved Umin and Umax.

The inputs to the algorithm 2 are predicted Umin0,
predicted Umax0, step size α, and threshold β. The step size
parameter α is the value to add or subtract from Umin and
Umax to find if the near values have better energy efficiency
or not. The threshold parameter β is the terminating condition
for the algorithm that measures that measures the energy
saving difference between previous and current Umin and
Umax values.

Lines 2, 3, and 4 calculate the efficiency of the energy
saving algorithm MEPT for the Umin parameter value of
Umin0,Umin0−α, and Umin0+α respectively. Lines from
5 to 9 if the change in Umin changes the energy saving.
Line 11 sets the terminating condition for refining the value
of the predicted Umin by checking if the difference between
the energy saving using the current Umin and the previous
Umin is not greater than the threshold β. Lines from 13 to 15
alliteratively reduce the Umax0 value till the energy saving
is not changing according to line 17. The optimal value of
Umin and Umax are found on lines 16, and 17.

IV. EXPERIMENTAL ANALYSIS

The experimental platform is based on POX controller and
Mininet [18] network emulator installed on Ubuntu 16.04 64-
bit. The topology is created on Mininet, and the heuristics
are implemented on POX controller. Our experiments are
conducted using real traces from SNDlib [19], in particular,
the Abilene, GEANT, and Nobel-Germany dynamic traffic
trace of the European research network. The metrics we use
in this experiment are the accuracy of the predictor, feature
size reduction due to PCA, cross-fold validation to pick the
optimal number of principal components, speedup of the
predictor and the refine algorithm as compared to the brute
force method, energy efficiency, and average path length.
Accuracy is calculated as 100∗(1− |TV−PV |

TV)±ε where TV
is the true value of the parameter, PV the predicted value of
the parameter, and ε is the error tolerated. In this experiment,
the value of ε is 3%. Speedup is calculated as 100

N where N

Algorithm 2 Refine: Improves the predicted parameters
Umin0 and Umax0 values for better efficiency
INPUT : Predicted parameters Umin0 and Umax0, change
α, threshold β.
OUTPUT : Improved parameters Umin,Umax

1: repeat
2: EEcurr ← EE(Umin0, Umax0)
3: EEprev ← EE(Umin0 − α,Umax0)
4: EEnext ← EE(Umin0 + α,Umax0)
5: if EEprev < EEnext then
6: Umin0 ← Umin0 + α
7: else
8: Umin0 ← Umin0 − α
9: end if

10: EEnew ← EE(Umin0, Umax0)
11: until ABS(EEcurr − EEnew) ≤ β
12: while EEcurr ≥ EE(Umin0, Umax0 − α) do
13: Umax0 ← Umax0 − α
14: EEcurr ← EE(Umin0, Umax0)
15: end while
16: Umin← Umin0
17: Umax← Umax0
18: return Umin, Umax

TABLE I: Topologies and Traces

Topology Nodes Edges Avg
Deg.

Feature
Size

Snapshot
Minutes

Abilene 12 15 2.5 132 5
GEANT 22 36 4.35 462 15

Nobel-Germany 17 26 3.06 272 5

is the number of times the energy saving algorithm (MEPT)
is run before the Refine algorithm gets the optimal value.

Table I presents the topologies, traffic characteristic and
the size of the features used in this experiment. The features
are extracted from a snapshot of the network aggregated in 5
to 15 minutes. The features are represented as a matrix where
each row is an N(N-1) vector representing the rates between
a source and destination pairs. For the Abilene topology
with 12 nodes, accordingly, the dimension of the feature is

Algorithm 3 PCA: Reduce the traffic matrix Xnxd to Xnxk

and produce the projection matrix Wdxk

Input: Traffic matrix Xnxd and k the number of principal
components
Output: Feature data Xnxk and projection matrix Wdxk

where k is the number of principal components and d is

1: X̄ ←
d∑

i=1

Xi . mean of X

2: T ←X - X̄ . mean normalize T
3: C ← 1

n (X − X̄)T (X − X̄) . C is the covariance matrix
4: V,E ← eig(C) . computer eigen value and vector
5: V ← sortdesc(V,E) . sort V based on E
6: W ← eigenvecsk . Projection matrix W dxk

7: Xnxk ← XW . Project X on W space

12*11=132. Accordingly, the feature sizes for GEANT and
Nobel-Germany are 462 and 272 respectively. We train the
models for traffic size of 10% to 90%.

Algorithm 4 MaxRESDN (G, F,U,Umin,Umax)

1: Input: Graph G, set of traffic flow F, utility of links U,
minimum utility Umin, and maximum utility Umax

2: Output: Modified utility of links U and graph G
3: for all f = (sr, ds, λf) ∈ F do
4: pathf ← PathMaxRESDN (sr,ds,λf)
5: for all eij ∈ pathf do

6: Uij ← Uij +
λf
Wij

7: end for
8: end for
9: for all eij ∈ E do

10: if Uij == 0 then
11: Lij ← 0
12: end if
13: end for

Algorithm 5 PCA: Reduce the traffic matrix Xnxd to Xnxk

and produce the projection matrix Wdxk

Input : Traffic matrix Xnxd and k the number of principal
components
Output : Feature data Xnxk and projection matrix Wdxk

where k is the number of principal components and d is

1: X̄ ←
d∑

i=1

Xi . mean of X

2: T ←X - X̄ . mean normalize T
3: C ← 1

n (X− X̄)T (X− X̄) . C is the covariance matrix
4: V,E ← eig(C) . computer eigen value and vector
5: V ← sortdesc(V,E) . sort V based on E
6: W ← eigenvecsk . Projection matrix W dxk

7: Xnxk ← XW . Project X on W space

Figure 3 show size reduction, cross-validation accuracy
and variance of the model for the Abilene, GEANT, and
Nobel-Germany topology and trace. Size reduction is in-
versely proportional to accuracy and variance. The percentage
of principal components we picked from the 10-fold cross
validation are 30%, 32% and 35% which correspond to
accuracy values 78%, 79%, 80% and feature size reduction
of 70%, 68%, 65% for the Abilene, GEANT and Nobel-
Germany topologies and traces. The value of k we have
chosen for the PCA is 40, 148, and 96 for the three topologies
and traces. The number of principal components we picked
is up to 5% larger than where the accuracy and the size
reduction plots intersect. The choice is carefully made so
that the model would not over-fit the data at the same time
contain at least 80% of the information in the original data.

Figure 4 shows the accuracy of predicting Umin,
Umax, Umin/Umax (Umax given Umin is known),
Umax/Umin (Umin given Umax is known) versus for
the GEANT data set. The accuracy of predicting Umin
ranges between 68% to 75%. For the Abilene trace, Umax

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Principal Components (%)

Pe
rc

en
ta

ge

Size Reduction
Accuracy
Variance

(a) Abilene

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Principal Components (%)

Pe
rc

en
ta

ge

Size Reduction
Accuracy
Variance

(b) GEANT

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Principal Components (%)

Pe
rc

en
ta

ge

Size Reduction
Accuracy
Variance

(c) Nobel-Germany
Fig. 3: Cross validation results of the percentage of PCs versus
feature size reduction, accuracy, and variance for Abilene, GEANT,
and Nobel-Germany topology traces. It also shows the optimal
percentage of PCs selected for each topology and trace.

prediction accuracy is 3 to 5% better than Umin’s prediction.
An interesting observation from this experiment is that the
accuracy of Umin and Umax increase if Umax and Umin
are known apriori. In case of the GEANT topology trace, a
prior knowledge of Umin increases the prediction accuracy
of Umax by at least 15%. The accuracy of the predictor is
independent of the traffic volume.

10 20 30 40 50 60 70 80 90 100
40

50

60

70

80

90

100

Traffic Volume (%)

A
cc

ur
ac

y
(%

)

drawUmin drawUmin/Umax
drawUmax drawUmax/Umin

(a) Abilene

10 20 30 40 50 60 70 80 90 100
40

50

60

70

80

90

100

Traffic Volume (%)

A
cc

ur
ac

y
(%

)

drawUmin drawUmax
drawUmax/Umin drawUmin/Umax

(b) GEANT

10 20 30 40 50 60 70 80 90 100
40

50

60

70

80

90

100

Traffic Volume (%)

A
cc

ur
ac

y
(%

)

drawUmin drawUmin/Umax
drawUmax drawUmax/Umin

(c) Nobel-Germany
Fig. 4: Accuracy for predicting Umin, Umax, Umin/Umax
(Umin given Umax is known, and Umin/Umax (Umax given
Umin is known a) Abilene b) GEANT and c) Nobel-Germany
topology traces

Table II shows fast the Refine algorithm converges the
optimal values of Umin and Umax parameters relative to
the brute force method. The brute force method checks all
values from 0% to 100 % and selects the optimal Umin
and Umax for highest energy saving. Since the accuracy of
the prediction is not 100%, the Refine heuristic improves the
predicted values to reach the optimal value with few numbers

TABLE II: Refine algorithm speedup for convergence of the Umin
and Umax parameters of MEPT heuristics algorithm as compared
to the brute force method

Traffic Abiline GEANT Nobel-Germany
Umin Umax Umin Umax Umin Umax

10 17.86 21.43 18.37 15.43 14.29 18.37
20 16.07 22.69 16.77 16.77 18.37 16.77
30 14.84 20.3 18.37 16.77 16.77 16.07
40 16.77 19.29 20.3 19.29 21.43 19.29
50 17.53 19.29 16.07 20.3 19.29 19.29
60 16.07 19.29 16.77 16.77 18.37 21.43
70 15.43 25.71 18.37 24.11 14.84 18.37
80 16.07 20.3 20.3 22.69 14.29 16.07
90 14.29 20.3 21.43 24.11 16.77 25.71

of steps. The speedup for traffic ranging from 10% to 90%
traffic volume is 14.85X to 25.71X the brute force method.
Like the accuracy of the predictor, the speedup of the Refine
heuristics is independent of the traffic volume.

20 30 40 50 60 70 80 90

10

20

30

40

50

60

Traffic Volume (%)

E
ne

rg
y

Sa
vi

ng
(%

)

Abilene
GEANT
Nobel-Germany

(a) Energy Saving

20 30 40 50 60 70 80 90
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Traffic Volume (%)

A
ve

ra
ge

Pa
th

le
ng

th
(#

ho
ps

)

(b) Average Path Length
Fig. 5: Energy Efficiency and Performance of the MEPT heuristics
according to the predicted Umin and Umax values for the Abilene,
GEANT, and Nobel-Germany topology traces

Figure 5a and 5b illustrates the energy efficiency and
average path length of the MEPT heuristics according to
the predicted Umin and Umax parameters after applying
the Refine heuristics. Results show that MEPT achieves an
energy saving of 48% for low traffic. The trends in energy
saving are indirectly proportional to the traffic volume. This

shows MEPT algorithm makes traffic proportional energy
saving. The average path length measurement shows that
increase in traffic increases the average path length. This is
because as the volume of traffic increases, the shortest paths
become overloaded, because of flows have to be re-routed to
longer paths.

The significance of the machine learning method lies in the
fact that it predicts Umin and Umax for a given new traffic.
Getting the optimal values the parameters increases the
EPT value. Maximum EPT value increases utilities of links,
energy saving, and also maintains an acceptable network
performance.

V. CONCLUSION AND FUTURE WORK

SDN is a very powerful networking paradigm that allows
flexibility in the control and management of a network
through re-routing flows in order to achieve efficiency, per-
formance, load balancing, and security. In this work, we
proposed MER-SDN, a machine learning based framework
for traffic aware energy efficient routing in SDN. We used
topology and traffic as features to train our model. We
also employed PCA and achieved a feature size reduction
of more than 65% on real-world network topology and
dynamic traffic traces. Particularly, we tested MER-SDN to
predict Umin and Umax parameters for the energy efficient
MEPT heuristics algorithm. In addition to the prediction, we
also proposed a heuristics to increase the accuracy of the
predictor to 100%. Experiment results show that the accuracy
of predicting Umin and Umax are more than 70%. The
refining heuristics algorithm converges to the optimal Umin
and Umax values 15 to 25 times faster than the brute force
method.

Our framework is tested by taking snapshots of historical
traffic traces. As future work, we plan to incorporate time
dimension to the features. The effect of the traffic volume
on the accuracy of our model would also be discussed. We
aim at using reinforcement learning technique to help the
controller to be self and incrementally learn and predict in a
dynamic environment. We also plan to add link and switch
status as a feature, and conduct comprehensive experiments
on the effect of the energy saving approach on throughput
and delay.

REFERENCES

[1] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and
T. Turletti, “A survey of software-defined networking: Past, present,
and future of programmable networks,” Communications Surveys and
Tutorials, IEEE, vol. 16, no. 3, pp. 1617–1634, 2014.

[2] D. Kreutz, F. M. V. Ramos, P. E. Verı́ssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A
comprehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp.
14–76, Jan 2015.

[3] L. Yanjun, L. Xiaobo, and Y. Osamu, “Traffic engineering framework
with machine learning based meta-layer in software-defined networks,”
in Network Infrastructure and Digital Content (IC-NIDC), 2014 4th
IEEE International Conference on. IEEE, 2014, pp. 121–125.

[4] K. Sideris, R. Nejabati, and D. Simeonidou, “Seer: Empowering
software defined networking with data analytics,” in 2016 15th Interna-
tional Conference on Ubiquitous Computing and Communications and
2016 International Symposium on Cyberspace and Security (IUCC-
CSS), Dec 2016, pp. 181–188.

[5] A. Azzouni, R. Boutaba, and G. Pujolle, “Neuroute: Predic-
tive dynamic routing for software-defined networks,” CoRR, vol.
abs/1709.06002, 2017.

[6] R. Maaloul, L. Chaari, and B. Cousin, “Energy saving in carrier-grade
networks: A survey,” Computer Standards and Interfaces, 2017.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0920548916301817

[7] GreenPeace. (2014) Clicking clean: How the Companies are creating
the green internet. [Online]. Available: http://www.greenpeace.org/
international/en/

[8] B. G. Assefa and O. Ozkasap, “Link utility and traffic aware energy
saving in software defined networks,” 2017 IEEE International Black
Sea Conference on Communications and Networking (BlackSeaCom).

[9] ——, “Framework for traffic proportionalenergy efficiency in software
defined networks,” 2018 IEEE International Black Sea Conference on
Communications and Networking (BlackSeaCom)-preprint.

[10] M. Demirci, “A survey of machine learning applications for energy-
efficient resource management in cloud computing environments,”
in Machine Learning and Applications (ICMLA), 2015 IEEE 14th
International Conference on. IEEE, 2015, pp. 1185–1190.

[11] S. Nanda, F. Zafari, C. DeCusatis, E. Wedaa, and B. Yang, “Predicting
network attack patterns in sdn using machine learning approach,” in
Network Function Virtualization and Software Defined Networks (NFV-
SDN), IEEE Conference on. IEEE, 2016, pp. 167–172.

[12] J. Ashraf and S. Latif, “Handling intrusion and ddos attacks in software
defined networks using machine learning techniques,” in Software
Engineering Conference (NSEC), 2014 National. IEEE, 2014, pp.
55–60.

[13] P. Pudil and J. Hovovicova, “Novel methods for subset selection with
respect to problem knowledge,” IEEE Intelligent Systems and their
Applications, vol. 13, no. 2, pp. 66–74, 1998.

[14] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” science, vol. 290, no. 5500, pp. 2323–2326,
2000.

[15] H. Samet, Foundations of multidimensional and metric data structures.
Morgan Kaufmann, 2006.

[16] N. Kambhatla and T. K. Leen, “Dimension reduction by local principal
component analysis,” Dimension, vol. 9, no. 7, 2006.

[17] I. K. Fodor, “A survey of dimension reduction techniques,” Lawrence
Livermore National Lab., CA (US), Tech. Rep., 2002.

[18] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, 2010, p. 19.

[19] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly, “SNDlib
1.0–Survivable Network Design Library,” in Proceedings of the 3rd
International Network Optimization Conference (INOC 2007).

http://www.sciencedirect.com/science/article/pii/S0920548916301817
http://www.sciencedirect.com/science/article/pii/S0920548916301817
http://www.greenpeace.org/international/en/
http://www.greenpeace.org/international/en/

	I Introduction
	II Related Work
	III MER-SDN Framework Description
	III-A Feature Extraction
	III-B Training
	III-C Testing

	IV Experimental Analysis
	V Conclusion and Future Work
	References

