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Abstract—An explicit construction of systematic MDS codes,
called HashTag+ codes, with arbitrary sub-packetization level for
all-node repair is proposed. It is shown that even for small sub-
packetization levels, HashTag+ codes achieve the optimal MSR
point for repair of any parity node, while the repair bandwidth
for a single systematic node depends on the sub-packetization
level. Compared to other codes in the literature, HashTag+ codes
provide from 20% to 40% savings in the average amount of data
accessed and transferred during repair.

Index Terms: Explicit, systematic, MDS, MSR, small sub-

packetization, all-node repair, access-optimal.

I. INTRODUCTION

Redundancy is essential to ensure reliability in distributed

storage systems. Maximum Distance Separable (MDS) codes

are optimal erasure codes in terms of the redundancy-

reliability tradeoff. In particular, a (n, k) MDS code tolerates

the maximum number of failures, up to r = n−k failed nodes,

for the added redundancy of r nodes. A systematic (n, k) MDS

code is applied in such a way that the original data is equally

divided into k parts without encoding and stored into k nodes,

called systematic nodes, and r linear combinations of the k
parts are stored into r nodes, called parity nodes. In addition to

their redundancy-reliability optimality, systematic MDS codes

are preferred in practical systems because data access from

the systematic nodes can be done instantly without decoding.

Conventional MDS codes do not perform well in terms of

the repair bandwidth defined as the amount of data that is

transferred during a node repair. Dimakis et al. [1] proved

that the lower bound of the repair bandwidth γ for a single

node with a (n, k) MDS code is:

γmin
MSR ≥

M

k

n− 1

n− k
, (1)

where M is the file size. The equality is met when a fraction

of 1/r-th of the stored data is transferred from all n− 1 non-

failed nodes. Minimum Storage Regenerating (MSR) codes

satisfy the equality and they operate at the MSR point.

The exponential sub-packetization level is a fundamental

limitation of any high-rate MSR code. The sub-packetization

levels are α = r
k/r and α = r

n/r for optimal repair of

systematic nodes and optimal repair of both systematic and

parity nodes (all-node repair) [2], respectively. Large sub-

packetization levels bring multiple practical challenges such

as high I/O, high repair time, expensive computations, and

difficult management of meta-data. Thus constructing high-

rate MDS codes with small sub-packetization levels has at-

tracted a lot of attention in the recent years. Table I summarizes

several high-rate MDS codes with small sub-packetization [3]–

[7]. Three piggyback designs were presented in [4]. For the

purpose of this paper, we compare with piggyback design 2

that optimizes all-node repair for r ≥ 3 and sub-packetization

of (2r − 3)m where m ≥ 1. HashTag codes [4], [5] repair

the systematic nodes with the lowest repair bandwidth in the

literature for arbitrary sub-packetization 2 ≤ α ≤ r⌈
k/r⌉.

Rawat et al. presented two approaches for all-node repair in

[6]. The second approach, that is more flexible in terms of

the sub-packetization, requires MSR codes and error correct-

ing codes with specific parameters to obtain ǫ-MSR codes.

However, codes with such specific parameters may not always

be available. Additionally, there is a tradeoff between ǫ and

the length of the code. Clay codes were recently presented

in [7]. They are optimized for all-node repair. However, Clay

codes require an exponential sub-packetization level, and for

sub-packetization levels lower than the maximal exponential

value, they are just MDS codes that do not achieve the optimal

MSR point neither for the data nodes nor for the parity nodes.

It is observed in [8] that 98.08% of the failures in Facebook’s

data-warehouse cluster that consists of thousands of nodes are

single failures. Thus, we optimize the repair for single failures

of any systematic or parity node.

In this paper we present a family of MDS codes called

HashTag+ codes with the following properties: 1. They are

systematic MDS codes; 2. They are exact-repairable codes;

3. They have a high-rate; 4. They have a flexible sub-

packetization (4 ≤ α ≤ r⌈
n/r⌉); 5. They achieve the MSR

point for repair of single parity node for sub-packetization

levels lower than or equal to the maximal exponential value

of r⌈
n/r⌉; 6. They achieve the MSR point for repair of single

systematic node for α = r⌈
n/r⌉ and repair near-optimally for

α < r⌈
n/r⌉; 7. They are access-optimal (access and transfer the

same amount of data). We combine the framework proposed

by Li et al. [9] and the family of MDS codes called HashTag

codes [5]. Compared to the work by Li et al. [9] where they

focus on MSR codes with the maximal sub-packetization level

α = r⌈
n
r
⌉, we construct explicit codes for the whole range

of sub-packetization levels 4 ≤ α ≤ r⌈
n
r
⌉ motivated by the

practical importance of codes with small sub-packetization

levels.

The rest of the paper is organized as follows. Section
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TABLE I
COMPARISON OF HASHTAG+ CODES WITH EXISTING MDS CODES WITH SMALL SUB-PACKETIZATION FOR n− 1 HELPER NODES.

Code Systematic Explicit
construction

Number of pari-
ties r

Sub-packetization
α

All-node repair Optimal parity
repair for small α

Piggyback 2 [3] Yes Yes r ≥ 3 (2r − 3)m,m ≥ 1 Yes No

HashTag [5] Yes Yes r ≥ 2 2 ≤ α ≤ r⌈
k/r⌉ No No

Rawat et al. [6] Yes Yes r ≥ 2 rτ , τ ≥ 1 Yes No

Clay codes [7] Yes Yes r ≥ 2 α ≤ r
n/r Yes No

HashTag+ Yes Yes r ≥ 2 4 ≤ α ≤ r⌈n/r⌉ Yes Yes

II presents HashTag+ code construction by first giving two

examples and then presenting a general algorithm and per-

formance comparison between HashTag+ and state-of-the-art

codes. Section III concludes the paper.

Notations. For two integers 0 < i < j, we denote the set

{i, i + 1, . . . , j} by [i : j], while the set {0, 1, . . . , j − 1} is

denoted by [j]. Vectors and matrices are denoted with a bold

font.

II. HASHTAG+ CODE CONSTRUCTION

We now present two examples of HashTag+ codes with

the maximal and a small sub-packetization, and we later

give algorithms for general code construction and repair. An

appealing feature of HashTag+ codes is that they support any

values of code parameters k, r ≥ 2, and sub-packetization

4 ≤ α ≤ r⌈
n
r
⌉ including cases where r does not divide n.

Example 1: Consider a (6, 4) HashTag MDS code with

α = 2
4/2 = 4 as a base code. The code given in Fig.1 is

generated with Alg. 1 from [5] where the coefficients are from

the finite field F16 with irreducible polynomial x4 + x3 + 1.

This code achieves the bound in Eq. (1) for repair of any single

systematic node, i.e., 10 symbols are read and transferred for

repair of 4 symbols of any systematic node. The repair of a

single parity node is the same as Reed-Solomon codes, i.e., 16

symbols are read and transferred for repair of 4 parity symbols.

The goal is to construct a code that provides optimal repair of

the parity nodes as well (all-node repair).

In a first step, we generate r − 1 = 1 additional instances

of the (6, 4) HashTag MDS code with α = 4 by using Alg.

1 from [5]. The data of the first systematic node d0 stored in

instance 0 is a0,0, . . . , a3,0 and in instance 2 is a4,0, . . . , a7,0
as it is shown in Fig. 2. In this way, we obtain a (6, 4) code

with sub-packetization level of r×α = 2×4 = 8. A systematic

node dj , j = 0, . . . , 3, comprises the symbols ai,j from the

two instances where i = 0, . . . , 7 and j = 0, . . . , 3, and a

parity node pl, l = 0, 1, comprises the symbols pi,l from the

two instances where i = 0, . . . , 7 and l = 0, 1. Note that the

base code from above has been renamed to instance 0.

In the second step, we permute the data in the two instances

of the parity nodes p0 and p1. First, this data is represented

as p
(i)
l where the superscript i denotes the instance and the

subscript l denotes the parity node. Then, the permutation is

as follows: p
(i)
l → p

(i)
l+i where the index arithmetic is cyclic,

i.e., modulo r (for example l + i = 3 → l + i = 1).

Instance 1 

,#"*'+'

Instance 0 

Instance 1 
Permute 

Instance 0 

In the third step, the data from the parity nodes is paired

following this rule:

p
(i)
l =







p
(i)
l , if i = l,

θl,ip
(i)
l + p

(l)
i , otherwise

(2)

where {θl,i, θi,l} ⊆ {1, θ} and θ ∈ F16 \ {0, 1}. The

bidirectional arrows in the figure below shows which parity

parts are paired together. This completes the code generation.
,#"*'+'

Pair 

Instance 0 

Instance 1 

The final (6, 4) HashTag+ code with α = 8 that provides

optimal all-node repair is given in Fig. 1.

We now illustrate that this code recovers optimally any

systematic or parity node. Let us assume that node d0 has

failed. In order to recover a0,0, a1,0, we transfer 6 symbols

a0,1, a1,1, a0,2, a1,2, a0,3, a1,3 from instance 0 of the non-failed

systematic nodes and 2 non-paired symbols p0,0, p1,0 from the

parity nodes. Next we recover a4,0, a5,0 by downloading 6

symbols a4,1, a5,1, a4,2, a5,2, a4,3, a5,3 from instance 1 of the

systematic nodes and 2 non-paired symbols p4,0, p5,0 from

the parity nodes. To recover the remaining symbols a2,0, a3,0
from instance 0, we transfer the paired symbols θp0,1 +
p4,1, p4,1+p0,1 and solve 2× 2 system of linear equations. In

a similar manner we recover the last two symbols a6,0, a7,0
by transferring the paired symbols p5,1 + p1,1, θp1,1 + p5,1.

Thus, the repair of d0 (or any other systematic node) requires

20 symbols in total, and it achieves the bound in Eq.(1).



!"##$%&'%"($')#"*'+'

Systematic nodes Parity nodes 

Fig. 1. A systematic (6, 4) HashTag MDS code with α = 4.
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Instance 0 

Instance 1 

 

d0 p0 p1 

Fig. 2. Two instances of a (6, 4) HashTag code with α = 8.

The same amount of data is transferred when repairing

the parity nodes p0 or p1. We first repair the unpaired

symbols p0,0, p1,0, p2,0, p3,0 from instance 0 by transferring

all 16 symbols from instance 0 of the systematic nodes

a0,0, a1,0, a2,0, a3,0, a0,1, a1,1, a2,1, a3,1, a0,2, a1,2, a2,2, a3,2,
a0,3, a1,3, a2,3, a3,3. Next the paired symbols from p0 are

recovered by downloading the 4 symbols from instance 0 of

p1. In total, 20 symbols are read and transferred for repair of

8 symbols from p0.
Example 2: We next give a (6, 4) HashTag+ code with α =

4 in Fig. 4. The code is obtained by following the steps from

the previous example where the base code is a (6, 4) HashTag

code with α = 2. Note that the sub-packetization level in

this example is lower than the optimal one in Example 1. The

goal is to illustrate that the code achieves the MSR point when

repairing a single parity node although the sub-packetization

is small.
Repairing any systematic node is near-optimal, i.e., 12

symbols for repair of 4 symbols. Let us assume that node

d0 has failed. In order to recover a0,0, we transfer 3 sym-

bols a0,1, a0,2, a0,3 from instance 0 of the non-failed sys-

tematic nodes and 1 non-paired symbol p0,0 from the parity

node p0. Next we recover a2,0 by downloading 3 symbols

a2,1, a2,2, a2,3 from instance 1 of the systematic nodes and 1

non-paired symbol p2,0 from the parity node p1. To recover

the remaining symbols a1,0, a3,0 from instance 0 and 1, we

transfer the paired symbols θp0,1 + p2,1, p2,1 + p0,1 and

a1,2, a3,2 (due to the small sub-packetization level) and solve

2 × 2 system of linear equations. Thus, the repair of d0 (or

any other systematic node) requires 12 symbols in total, and

the repair bandwidth of the systematic nodes is the same as

that of the base code (HashTag code).
However, the repair bandwidth for any parity node achieves

the lower bound in Eq.(1). In particular, all 4 symbols from p0
are repaired by transferring all 8 symbols from instance 0 of

the systematic nodes a0,0, a1,0, a0,1, a1,1, a0,2, a1,2, a0,3, a1,3
and 2 symbols θp0,1 + p2,1 and θp1,1 + p3,1 from instance 0

of p1. In total, 10 symbols are read and transferred for repair

of 4 symbols from p0. Repair of p1 requires the same amount

of repair bandwidth.

A. General Code Construction

Consider a file of size M = kα symbols from a finite field

Fq stored in k systematic nodes dj of capacity α symbols. We

start the construction with a HashTag code [4], [5] as a base

code that is defined as follows.

Definition 1: A (n, k)q HashTag linear code is a vec-

tor systematic code defined over an alphabet F
α
q for some

2 ≤ α ≤ r⌈
k/r⌉. It encodes a vector x = (x0, . . . ,xk−1),

where xi = (x0,i, x1,i, . . . , xα−1,i)
T ∈ F

α
q for i ∈ [k],

to a codeword C(x) = c = (c0, c1, . . . , cn−1) where the

systematic parts ci = xi for i ∈ [k] and the parity parts

ci = (c0,i, c1,i, . . . , cα−1,i)
T for i ∈ [k : n− 1] are computed

by the linear expressions that have a general form as follows:

cj,i =
∑

fν,j,ixj1,j2 , (3)

where fν,j,i ∈ Fq and the index pair (j1, j2) is defined in the

j-th row of the index array Pi−r−1 where ν ∈ [r]. The r index

arrays P0, . . . ,Pr−1 are defined as follows:

P0 =











(0, 0) (0, 1) . . . (0, k − 1)

(1, 0) (1, 1) . . . (1, k − 1)
...

...
. . .

...

(α− 1, 0) (α− 1, 1) . . . (α− 1, k − 1)











,



Table 1: Before permutation, the parity part from the code given in

(0) (0)

Table 2: Before permutation, the parity part from the code given in

(1) (1)

Table 3: After permutation, the parity part from the code given in

(0) (0)

Table 4: After permutation, the parity part from the code given in

(1) (1)

Table 5: Pair the data in the parity nodes

(0) (0) (1)

Table 6: Pair the data in the parity nodes

(1) (0) (1)

Table 7: ν,j,i

a0,0 a0,1 a0,2 a0,3 p0,0 = 6a0,0 + 13a0,1 + 15a0,2 + 7a0,3 θp0,1 + p4,1 = θ( 8a0,0 + 12a0,1 + 8a0,2 + 4a0,3 + 12a2,0 + 8a1,2) + 8a4,0 + 12a4,1 + 8a4,2 + 4a4,3 + 12a6,0 + 8a5,2
a1,0 a1,1 a1,2 a1,3 p1,0 = 2a1,0 + 8a1,1 + 14a1,2 + 6a1,3 θp1,1 + p5,1 = θ( 7a1,0 + 7a1,1 + 4a1,2 + 8a1,3 + 4a3,0 + 5a0,3) + 7a5,0 + 7a5,1 + 4a5,2 + 8a5,3 + 4a7,0 + 5a4,3
a2,0 a2,1 a2,2 a2,3 p2,0 = 14a2,0 + 12a2,1 + 7a2,2 + 14a2,3 θp2,1 + p6,1 = θ( 2a2,0 + 7a2,1 + 15a2,2 + 5a2,3 + 6a0,1 + 15a3,2) + 2a6,0 + 7a6,1 + 15a6,2 + 5a6,3 + 6a4,1 + 15a7,2
a3,0 a3,1 a3,2 a3,3 p3,0 = 8a3,0 + 11a3,1 + 11a3,2 + 6a3,3 θp3,1 + p7,1 = θ(13a3,0 + 6a3,1 + 2a3,2 + 5a3,3 + 15a1,1 + 7a2,3) + 13a7,0 + 6a7,1 + 2a7,2 + 5a7,3 + 15a5,1 + 7a6,3

Table 8: Instance 1

12 12 12 12 13 15

14

15 15 15 15 14 12 14

13 15 13 15 11 11

Table 9: ν,j,i

04 01 04 θp 02 03 ) + 02 03

00 θp 02 02 04 ) + 02 02 04

Table 10:

Instance 1

02 03 02 03 04 01 04

02 02 04 02 02 04 00

Table 1: Before permutation, the parity part from the code given in

(0) (0)

Table 2: Before permutation, the parity part from the code given in

(1) (1)

Table 3: After permutation, the parity part from the code given in

(0) (0)

Table 4: After permutation, the parity part from the code given in

(1) (1)

Table 5: Pair the data in the parity nodes

(0) (0) (1)

Table 6: Pair the data in the parity nodes

(1) (0) (1)

Table 7: ν,j,i

13 15 θp 12 12 ) + 12 12

14 θp ) +
14 12 14 θp 15 15 ) + 15 15

11 11 θp 13 15 ) + 13 15

Table 8: Instance 1

a4,0 a4,1 a4,2 a4,3 p4,1 + p0,1 = 8a4,0 + 12a4,1 + 8a4,2 + 4a4,3 + 12a6,0 + 8a5,2 + 8a0,0 + 12a0,1 + 8a0,2 + 4a0,3 + 12a2,0 + 8a1,2 p4,0 = 6a4,0 + 13a4,1 + 15a4,2 + 7a4,3
a5,0 a5,1 a5,2 a5,3 p5,1 + p1,1 = 7a5,0 + 7a5,1 + 4a5,2 + 8a5,3 + 4a7,0 + 5a4,3 + 7a1,0 + 7a1,1 + 4a1,2 + 8a1,3 + 4a3,0 + 5a0,3 p5,0 = 2a5,0 + 8a5,1 + 14a5,2 + 6a5,3
a6,0 a6,1 a6,2 a6,3 p6,1 + p2,1 = 2a6,0 + 7a6,1 + 15a6,2 + 5a6,3 + 6a4,1 + 15a7,2 + 2a2,0 + 7a2,1 + 15a2,2 + 5a2,3 + 6a0,1 + 15a3,2 p6,0 = 14a6,0 + 12a6,1 + 7a6,2 + 14a6,3
a7,0 a7,1 a7,2 a7,3 p7,1 + p3,1 = 13a7,0 + 6a7,1 + 2a7,2 + 5a7,3 + 15a5,1 + 7a6,3 + 13a3,0 + 6a3,1 + 2a3,2 + 5a3,3 + 15a1,1 + 7a2,3 p7,0 = 8a7,0 + 11a7,1 + 11a7,2 + 6a7,3

Table 9: ν,j,i

04 01 04 θp 02 03 ) + 02 03

00 θp 02 02 04 ) + 02 02 04

Table 10:

Instance 1

02 03 02 03 04 01 04

02 02 04 02 02 04 00

Fig. 3. Two instances of a (6, 4) HashTag+ code with α = 8 where θ ∈ F16 \ {0, 1}.

Table 1: Before permutation, the parity part from the code given in

(0) (0)

Table 2: Before permutation, the parity part from the code given in

(1) (1)

Table 3: After permutation, the parity part from the code given in

(0) (0)

Table 4: After permutation, the parity part from the code given in

(1) (1)

Table 5: Pair the data in the parity nodes

(0) (0) (1)

Table 6: Pair the data in the parity nodes

(1) (0) (1)

Table 7: ν,j,i

13 15 θp 12 12 ) + 12 12

14 θp ) +
14 12 14 θp 15 15 ) + 15 15

11 11 θp 13 15 ) + 13 15

Table 8: Instance 1

12 12 12 12 13 15

14

15 15 15 15 14 12 14

13 15 13 15 11 11

Table 9: ν,j,i

a0,0 a0,1 a0,2 a0,3 p0,0 = 15a0,0 + 12a0,1 + 2a0,2 + 15a0,3 θp0,1 + p2,1 = θ( 3a0,0 + 7a0,1 + 13a0,2 + 3a0,3 + 6a1,0 + 14a1,2) + 3a2,0 + 7a2,1 + 13a2,2 + 3a2,3 + 6a3,0 + 14a3,2
a1,0 a1,1 a1,2 a1,3 p1,0 = 9a1,0 + 7a1,1 + 10a1,2 + 7a1,3 θp1,1 + p3,1 = θ( 4a1,0 + 13a1,1 + 9a1,2 + 13a1,3 + 15a0,1 + 7a0,3) + 4a3,0 + 13a3,1 + 9a3,2 + 13a3,3 + 15a2,1 + 7a2,3

Table 10:

Instance 1

13 14 13 14 15 12 15

13 13 15 13 13 15 10

Table 1: Before permutation, the parity part from the code given in

(0) (0)

Table 2: Before permutation, the parity part from the code given in

(1) (1)

Table 3: After permutation, the parity part from the code given in

(0) (0)

Table 4: After permutation, the parity part from the code given in

(1) (1)

Table 5: Pair the data in the parity nodes

(0) (0) (1)

Table 6: Pair the data in the parity nodes

(1) (0) (1)

Table 7: ν,j,i

13 15 θp 12 12 ) + 12 12

14 θp ) +
14 12 14 θp 15 15 ) + 15 15

11 11 θp 13 15 ) + 13 15

Table 8: Instance 1

12 12 12 12 13 15

14

15 15 15 15 14 12 14

13 15 13 15 11 11

Table 9: ν,j,i

15 12 15 θp 13 14 ) + 13 14

10 θp 13 13 15 ) + 13 13 15

Table 10:

Instance 1

a2,0 a2,1 a2,2 a2,3 p2,1 + p0,1 = 3a2,0 + 7a2,1 + 13a2,2 + 3a2,3 + 6a3,0 + 14a3,2 + 3a0,0 + 7a0,1 + 13a0,2 + 3a0,3 + 6a1,0 + 14a1,2 p2,0 = 15a2,0 + 12a2,1 + 2a2,2 + 15a2,3
a3,0 a3,1 a3,2 a3,3 p3,1 + p1,1 = 4a3,0 + 13a3,1 + 9a3,2 + 13a3,3 + 15a2,1 + 7a2,3 + 4a1,0 + 13a1,1 + 9a1,2 + 13a1,3 + 15a0,1 + 7a0,3 p3,0 = 9a3,0 + 7a3,1 + 10a3,2 + 7a3,3

Fig. 4. Two instances of a (6, 4) HashTag+ code with α = 4 where θ ∈ F16 \ {0, 1}.

⌈ k
r
⌉

︷ ︸︸ ︷

Pi =









(0, 0) . . . (0, k − 1) (?, ?) . . . (?, ?)

(1, 0) . . . (1, k − 1) (?, ?) . . . (?, ?)

.

.

.
.
.
.

. . .
.
.
.

(α − 1, 0) . . . (α− 1, k − 1) (?, ?) . . . (?, ?)









.

where the values of the indexes (?, ?) are determined by a

scheduling algorithm that guarantees the code is MDS, i.e.

the entire information x can be recovered from any k out of

the n vectors ci. In addition, the algorithm ensures optimal or

near-optimal repair by scheduling the indexes of the elements

from xi into ⌈α/r⌉ rows in the r − 1 index arrays Pj where

j = 1, . . . , r − 1. �

The scheduling algorithm for Def. 1 is presented in [4], [5].

Note that in the original presentation the indexing of the

arrays is from 1 to r but in order to synchronize with the

transformation of Li et al. [9] here we use the indexing of

the arrays from 0 to r − 1. The set of all symbols in dj is

partitioned in disjunctive subsets where at least one subset has

⌈α/r⌉ number of elements. The set of indexes D = {1, . . . , α},

where the i−th index of ai,j from dj is represented by i in D,

is partitioned in r disjunctive subsets D = ∪r
ρ=1Dρ,dj

where

at least one subset has ⌈α/r⌉ elements. One subset Dρ,dj
is

assigned per disk. The indexes in Dρ,dj
are the row positions

where the pairs (i, j) with indexes i ∈ D\Dρ,dj
are scheduled

(the zero pairs are replaces with concrete (i, j) pairs). By using

the code defined in Def. 1 as a base code, we next define

HashTag+ code.

Definition 2: A (n, k)q HashTag+ linear code is a vector

systematic code defined over an alphabet Fα
q for some 4 ≤

α ≤ r⌈
n/r⌉.

The algorithm for constructing a (n, k) HashTag+ code is

given in Alg. 1.

The construction of HashTag+ codes given in Alg. 1 is

sound and there always exists a finite field Fq and a set of

non-zero coefficients from the field such that the HashTag+

code is MDS due to the following Lemma:

Lemma 1: There exists a choice of non-zero coefficients

cl,i,j where l = 1, . . . , r, i = 1, . . . , α and j = 1, . . . , k from

Algorithm 1 HashTag+ code construction

Input: (n, k) HashTag code with sub-packetization α
Output: (n, k) HashTag+ code with sub-packetization r × α

1: Construct r − 1 additional instances of a (n, k) HashTag code
with sub-packetization α;

2: Permute the data from the i-th instance in the l-th parity node

as p
(i)
l → p

(i)
l+i;

3: Compute the parity parts p
(i)
l with the rule in Eq.(2).

Fq such that the code is MDS if q ≥
(
n
k

)
rα.

Proof: It is sufficient to combine Theorem 1 from [5]

about the base HashTag codes and Theorem 2 and 3 from

[9]. Namely, Theorem 1 from [5] guarantees that the size of

the finite field for the base HashTag code is sufficient to be

q ≥
(
n
k

)
rα in order to find a HashTag MDS code. Then,

according to Theorem 2 and 3 from [9] the HashTag+ code

has optimal repair bandwidth, has optimal rebuilding access

and is a MDS code.

B. Repair of systematic nodes

Alg. 2 shows the repair of a systematic node where the

systematic and the parity nodes are global variables. A set

of ⌈α/r2⌉ symbols is accessed and transferred from all n − 1
non-failed nodes from each instance.

Proposition 1: The repair bandwidth for a single systematic

node γs is bounded between the following lower and upper

bounds:

(n− 1)

α
⌈
α

r
⌉ ≤ γs ≤

(n− 1)

α
⌈
α

r
⌉+

(r − 1)

α
⌈
α

r
⌉⌈

k

r
⌉. (4)

Proof: We read in total k⌈α
r ⌉ elements in the first for

loop of Alg. 2. Additionally, (r− 1)⌈α
r ⌉ elements are read in

Step 7 of the second for loop. Assuming that we do not read

more elements in Step 6, we determine the lower bound as

k⌈α
r ⌉ + (r − 1)⌈α

r ⌉ = (n − 1)⌈α
r ⌉ elements, i.e., the lower

bound is
(n−1)

α ⌈α
r ⌉ (since every element has a size of 1

α ). To

derive the upper bound, we assume that we read all elements

ai,j from the extra ⌈k
r ⌉ columns of the arrays P0, . . . ,Pr−1

in Step 6. Thus, the upper bound is
(n−1)

α ⌈α
r ⌉+

(r−1)
α ⌈α

r ⌉⌈
k
r ⌉.



Algorithm 2 Repair of systematic node dj
Input: j (where j = 0, . . . , k − 1);

Output: dj ;

Note: All indexes i are determined by the expression i ∈ Dρ,dj

1: for v = 0, v < r do
2: Access and transfer (k−1)⌈α/r2⌉ symbols ai,j from the v-th

instance of all k−1 non-failed systematic nodes and ⌈α/r2⌉ non-
paired symbols pi,j from the v-th instance of the parity nodes;

3: Repair ai,j from the v-th instance;
4: end for
5: for v = 0, v < r do
6: Access and transfer the symbols ai,l from the v-th instance

listed in the i−th row of the arrays P0, . . . ,Pr−1 that have not
been read in Step 2;

7: Access and transfer (r − 1)⌈α/r2⌉ paired symbols pi,j from
the v-th instance;

8: Repair ai,j by solving paired r × r linear systems of equa-
tions.

9: end for

C. Repair of parity nodes

Repair of a single parity node is given in Alg. 3.

Algorithm 3 Repair of a parity node pl where l = 0, . . . , r−1
Input: l;
Output: pl.

1: Access and transfer all symbols from instance l of the systematic
nodes and the non-failed parity nodes;

2: Repair the symbols from pl.

Without a proof (just a reference to Theorem 2 and 3 from

[9]) we give the following Proposition:

Proposition 2: The repair bandwidth for a single parity

node γp reaches the lower bound given in Eq. (1) for any

sub-packetization level α including small α, i.e.,

γp =
(n− 1)

α
⌈
α

r
⌉. (5)

D. Performance Analysis

We compare the average amount of data read and down-

loaded during a repair of a single node taking into account

all nodes (systematic and parity nodes). HashTag+ codes

outperform both Piggyback 2 and HashTag codes for any code

parameters as it is shown in Fig. 5. Compared to HashTag

codes, the lower repair bandwidth comes at the cost of an

increased sub-packetization of factor r. HashTag+ codes offer

savings of up to 40% in the average amount of data accessed

and transferred during repair compared to Piggyback 2.

III. CONCLUSIONS

We presented a general construction of a family of system-

atic MDS codes called HashTag+ codes that reaches the lower

bound of the repair bandwidth for any single failure of all

nodes when α = r⌈
n/r⌉. HashTag+ codes have a high-rate and

they have a flexible sub-packetization level (4 ≤ α ≤ r⌈
n/r⌉).

They also achieve the MSR point for repair of single parity

node for sub-packetization levels lower than or equal to the
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Fig. 5. Average data read and transferred for repair of any single node with
Piggyback 2 [3] for α = 4×(2r−3), HashTag [5] for α = 8, and HashTag+
for α = 8× r.

maximal exponential value of r⌈
n/r⌉. Additionally they are

access-optimal i.e. they access and transfer the same amount

of data.

HashTag+ codes are the first explicit construction in the

literature that repairs optimally the parity nodes even for

small sub-packetization levels. The repair bandwidth for the

systematic nodes is as close as possible to the lower bound

when α < r⌈
n/r⌉.
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