
This paper is a preprint; it has been accepted for publication in 16th IEEE International Conference
on Dependable, Autonomic and Secure Computing — DASC 2018 (DOI: 10.1109/DASC/PiCom/Data
Com/CyberSciTec.2018.00127).

IEEE copyright notice
c© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

ar
X

iv
:1

90
3.

04
79

3v
1

 [
cs

.C
R

]
 1

2
M

ar
 2

01
9

WiP: Are cracked applications really free? An empirical analysis on Android devices

Konstantinos-Panagiotis Grammatikakis†, Angela Ioannou‡, Stavros Shiaeles∗ and Nicholas Kolokotronis†

†Department of Informatics and Telecommunications, University of Peloponnese, 22131 Tripolis, Greece
Email: kpgram@uop.gr, nkolok@uop.gr

‡School of Pure and Applied Sciences, Open University of Cyprus, Nicosia 2220, Cyprus
Email: angela.ioannou@st.ouc.ac.cy

∗Centre for Security, Communications and Networks Research, Plymouth University, Plymouth PL4 8AA, UK
Email: stavros.shiaeles@plymouth.ac.uk

Abstract—Android is among the popular platforms running on
millions of smart devices, like smartphones and tablets, whose
widespread adoption is seen as an opportunity for spreading
malware. Adding malicious payloads to cracked applications,
often popular ones, downloaded from untrusted third markets
is a prevalent way for achieving the aforementioned goal. In
this paper, we compare 25 applications from the official and
third-party application stores delivering cracked applications.
The behavioral analysis of applications is carried out on three
real devices equipped with different Android versions by using
five indicators: requested permissions, CPU usage, RAM usage
and the number of opened ports for TCP and HTTP. Based
on these indicators, we compute an application intention score
and classify cracked applications as malicious or benign. The
experimental results show that cracked applications utilize on
average more resources and request access to more (dangerous)
permissions than their official counterparts.

1. Introduction

This decade, we saw the development of more powerful
and compact computing devices, like mobile phones, tablets,
ultra portable computers and home appliances, whose capa-
bilities were once possible only on personal computers. At
the same time, the high degree of network connectivity and
the provisioning of high-speed broadband services led to
the development of novel services that take advantage of
these new capabilities, hence transforming these common
devices into smart devices. According to the Pew Research
Center, 77% of the total surveyed population in the United
States owns a smartphone and 53% owns a tablet [13]. In
addition to the traditional role of smart devices as a medium
of communication and media consumption, with the advent
of constant Internet connection capabilities many traditional
services, such as financial or remote administration services,
are now being carried out through mobile platforms. The
popularity of the Android operating system (OS) grew with
the popularity of smart devices, capturing the largest share

This work was supported by CYBER-TRUST project, which has received
funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement no. 786698.

of the mobile computing devices market, 74.39% according
to [18], while also leading the personal computing devices
market as a whole with a share of 40% [17]. This widespread
adoption of smart devices and the Android OS in particular,
along with the increasing value of the services and applica-
tions provided, makes them a valuable target for malicious
actors.

There are millions of applications available for the An-
droid OS through the official application store (estimated
around 3.5 mil [19]) and third-party application stores. The
fact that the Android OS allows the installation of appli-
cations coming from third-party markets or other generally
untrusted sources, also known as sideloading, in conjunction
with the sheer number of available applications, makes
malware installation a viable attack vector.

In this paper we use the term malware in order to denote
malicious software, which is a type of computer programs,
or applications in our case, developed with the intention to
harm a computer network, system or its users [16]. Some
common malicious actions are related to abusing services,
such as cellular data connections or SMS messages, display-
ing unwanted advertisements, facilitating the formation of
botnets to launch large-scale attacks and disclosing sensitive
or personal data to third parties. The legitimate applications
whose digital rights management or copy protection controls
have been removed are referred to as cracked applications;
such versions of legitimate applications quite often carry
malicious payloads. The Google Play store is the official
application store, where the Android applications of most
software vendors are distributed from. Further, applications
obtained from the official application store are assumed to
be benign and are next referred to as official applications
when compared with their cracked counterparts.

The goal and motivation of this paper is to provide
further insight into the price that users of smart devices
actually pay by downloading cracked applications via un-
official, untrusted third-party stores. Towards this direction
a sample of 25 applications is used, where the official
and cracked versions are compared against a number of
indicators (permissions, CPU and RAM usage, as well
as, open TCP and HTTP ports). Although an analysis of
permissions requested by Android applications has been

conducted in previous works, it is known that they cannot
alone accurately identify malicious intent. Therefore, we
study the extend to which the combined indicators could
considerably increase the accuracy of classifying a cracked
application as benign or malicious. Our analysis is carried
out on the three most popular versions of the Android OS:
KitKat, Lollipop and Marshmallow. We observe that cracked
applications request for more permissions, where the extra
permissions are linked to malicious behavior, in addition to
a tendency for utilization of more resources than the official
applications. Moreover, our analysis illustrates that although
newer versions of the Android OS are more efficient in re-
source management (CPU and RAM usage), the differences
between cracked and official applications in these indicators
are noticeable. In conjunction with the number of open TCP
and HTTP ports, the set of indicators succeeds in efficiently
delivering increased detection of malicious intent.

The rest of the paper is organized as follows: related
work in the area of Android malware analysis is given in
Section 2, whilst the design of the experimental process is
presented in Section 3. The main findings of our analysis
and concluding remarks are provided in Sections 4 and 5
respectively.

2. Related work

The detection and analysis of malware on mobile devices
has been an area of highly intensive research since their
first appearance. The earliest attempts to create anti-malware
systems were based on the installation of an agent on the
mobile device, responsible for monitoring device activities
and for reporting them to a central system to be further
analyzed. One early example of such system was presented
by [4]; an agent gathered communications data with to de-
tect possible abuse of the communication capabilities of the
mobile device. A similar system, proposed by [10] requires
the agent to mirror the state of the device and its communi-
cations on a cloud-based central system to be emulated and
further analyzed. A system using crowd sourcing to gather
application activity data was presented by [3]. A signature-
based agent system was presented by [20]; the calculation
of an application malware score (AMS) was performed on
the central system by summing the permission malware
scores (PMS) —calculated from official store applications
and known malware— of each requested permission.

A behavioral analysis approach was taken by [2] whose
malware detection system relies on signatures generated by
monitoring of the actions performed by the suspect applica-
tion —via the system events and application programming
interface (API) calls— and the construction of a logical
flow diagram. Moreover, an analysis of 46 malware samples
and an evaluation of existing anti-malware solutions for the
Android, iOS and Symbian platforms was performed by [7].
It is interesting to note that none of the iOS malware samples
were approved by Apple’s App store, indicating the need and
effectiveness of human review.

In addition to the above lines of research, a permission-
based analysis of mobile applications for detecting malware

has been proposed. Towards this direction, 940 applications
were examined in [8] to determine whether the principle
of least privilege had been followed. It was found that
nearly one third of the Android applications violated the
aforementioned principle, something that was attributed to
developers misunderstanding the use of permissions and to
the lack of a clear API documentation. An extension to the
Android security enforcement system to also consider the
relationship between the requested permissions was pro-
posed by [21]. This is justified by the fact that although
individual permissions cannot indicate malicious intent, their
relationship can be used to classify an application as mali-
cious. A study of 125, 229 benign and malicious applications
was carried out by [11] using the requested permissions as
an indicator of intent. The performance of four machine
learning algorithms in terms of their detection rate draw
the conclusion that although permissions alone can be used
to quickly classify applications as malicious or benign, a
secondary analysis is required to make the final decision.
A more extensive analysis of an application’s manifest file
—based on searching for terms pertaining to permission
requests, process names and identifiers— was proposed by
[15]. Likewise, they concluded that textual analysis of the
manifest file is resource efficient and when combined with
other techniques it can improve the accuracy of the analysis.
Many works rely on binary classification to decide whether
an application is malicious or benign; although in certain
cases a higher granularity would be needed for providing a
more accurate characterization of an application. To solve
this problem, [9] proposed the use of risk scoring functions
to calculate an overall value that is subsequently used to
characterize an application. A permission-based system was
presented by [12] considering only permissions that are
rarely requested by malicious or benign applications and
using machine learning to differentiate between the two
classes.

Along with the development of anti-malware systems,
the problem of classifying malware and security threats for
mobile platforms has also been considered. An analysis of
1, 260 Android malware samples was conducted by [22]
using an evolutionary-based approach. It was found that
about 86% of the samples were repackaged and therefore
they highlighted the need for reviewing the applications in
Android application stores (not only the official one), just
as [7] proposed. Quite recently, [14] conducted a more thor-
ough review of the existing literature, from 2008 to 2016,
where taxonomies on many different areas and approaches
used in the literature for Android malware analysis were
presented.

3. Proposed methodology

In order to study the differences in the behavior between
benign applications downloaded from the official application
store and the cracked ones, a sample of n = 25 applications
was used as a proof of concept —that is, to demonstrate that
cracked applications often carry malicious payloads with the
intention to harm the mobile device where they are installed

or its user. The applications in our sample, which are listed
alphabetically in Table 1, were randomly selected from two
third-party stores1 and were tested on the three Android
OS versions with the largest market share: KitKat, Lollipop
and Marshmallow. Instead of analyzing the behavior of the
sample applications in a simulated environment, the setup
of the experimental process involved using three Samsung
Galaxy mobile devices
• S3 neo with Android v4.4.2 (KitKat),
• S5 with Android v5.0 (Lollipop), and
• S7 with Android v6.0 (Marshmallow)

in order to study the applications’ behavior in real life use
case scenarios and avoid detection of the simulated process
by potential malicious payloads; they often exhibit different
behavioral patterns if simulated environments are detected.

TABLE 1. LIST OF APPLICATION SAMPLES.

Name # Name
1a 360 Security – Antivirus Free 14a Lunchbox
2b 3C Toolbox 15a Mean Spheres Attack
3a 3D Charts 16b Mobile Security & Antivirus
4a 4Shared 17a Piques
5b 9GAG 18a Root Browser
6a Audio Manager 19b Root Tool Case
7a Calorie Counter 20a Run Cow Run
8a Clean Master – Free Antivirus 21b Smart IPTV
9b Dual Sim Selector 22a Solar System Scope

10a Enemy Strike 23a Spy Mouse
11a Fillshape 24b Unit Converter
12a John NES – NES Emulator 25a Vector
13a Link2SD

a Obtained from the official store and CrackAPK.com
b Obtained from the official store and AppCake.net

Our approach is based on assumptions about the be-
havioral patterns exhibited by applications. In particular,
official applications are considered to be benign by default,
as their intentions are stated on their official store and
consent is given at install-time; the same holds with cracked
applications, which are assumed to be benign unless proven
otherwise. Cracked applications displaying significant be-
havioral deviations from the official ones are considered to
be malicious. It is noted that the differences in an indicator
alone may not suggest malicious behavior, since small dif-
ferences could be well attributed to the deletion or insertion
of bytecode by the patching process; on the other hand,
deviations in many indicators increase the possibility of ma-
licious intentions. The requested permissions exhibit varying
degrees of correlation to malicious intent —as evidenced
in the literature [7], [9], [12], [22]— and their study can
classify an application as malicious or benign.

Malware analysis is usually performed either manually
by a security analyst, or automatically by special software,
and there are three prevalent approaches: static, dynamic
and hybrid [14], [16]. Static methods focus on characteristics
such as an application’s binary code, structure and metadata,
while dynamic approaches aim at analyzing an application’s

1. Cracked applications were downloaded from CrackAPK.com and
AppCake.net, which both accept user–uploaded applications.

behavior during its execution. Hybrid techniques combine
both static and dynamic aspects to get a more complete view
of the suspect application; our approach can be classified as
such, since we measure both static and dynamic indicators.
Due the need for analyzing both the official and the cracked
version of each application on three Android OSs, we need
to choose indicators that may be measured accurately and
efficiently. In particular, the indicators used in our study for
each application i = 1, . . . , n are the requested permissions
pi, CPU usage ci, RAM usage ri, as well as the number of
ports opened for TCP and HTTP communications that are
denoted by ti and hi respectively.

The first indicator, the requested permissions pi, can be
obtained by the application manifest file. A total of m = 16
permissions were tracked, which are listed in Table 2, being
the union of those requested by the applications; thus we let
pi = (pi1, . . . , pim), where pij ∈ {0, 1} indicates if the jth
permission is requested by the ith application. Permissions
are requested by an application to obtain access to hardware
resources, e.g. the microphone or camera, and to restricted
API functions by declarations in the manifest file [6]. They
are granted at install-time or at run-time (from version 6.0,
Marshmallow and later) and are classified in three protection
levels [1]: normal, dangerous and special. The manifest
file AndroidManifest.xml is found inside the Android
package (APK) file, which constitutes the main way that all
applications are distributed and installed on the Android OS.
We used the Show Java application on the mobile devices
to unpack and extract the files contained in APK files.

TABLE 2. MEASURED PERMISSIONS (android.permission.*).

Name # Name
1a INTERNET 9c MEDIA_CONTENT_CONTROL
2b ACCESS_COARSE_LOCATION 10b READ_SMS
3b ACCESS_FINE_LOCATION 11b RECEIVE_SMS
4b CAMERA 12b SEND_SMS
5a BLUETOOTH 13b WRITE_CONTACTS
6b READ_EXTERNAL_STORAGE 14b CALL_PHONE
7b READ_CONTACTS 15b RECORD_AUDIO
8b WRITE_EXTERNAL_STORAGE 16a VIBRATE

a Classified as Normal
b Classified as Dangerous
c Classified as Special

CPU and RAM usage measurements can be obtained by
the Android OS application monitoring services (the means
of access differs between Android OS versions). The usage
of CPU and RAM may indicate differences in the bytecode
or the memory consumption patterns between the official
and a cracked version. The values reported by the Android
OS on each mobile device were used.

The number of open TCP and HTTP ports was obtained
by packet inspection of the network traffic generated by each
application. The hypertext transfer protocol (HTTP) is often
utilized by malware for communicating with a command and
control server to receive new commands for data extraction
or to download files on the infected devices. It is commonly
used by legitimate applications to download resources and
to use APIs available through the Internet. This makes less

suspicious the use of HTTP and in addition HTTP traffic is
widely allowed to pass through the network firewalls. The
transport control protocol (TCP) —which is widely used
for providing, at layer 4 of the open systems interconnection
(OSI) model, connection-oriented and reliable data stream
services that an application requires for sending and receiv-
ing error–free data— was monitored to capture suspicious
connections established by malicious payloads having been
included in cracked applications. We have used “Wireshark”
on a computer on the same network with the mobile devices
to capture and analyze the generated network traffic.

3.1. Application intention score

Based on the above, an application is characterized by a
tuple ai = (pi, ci, ri, ti, hi), i = 1, . . . , n, where aoi and aci
are used to differentiate between the official and the cracked
versions’ profiles. Since permissions exhibit varying degrees
of correlation to malicious intent [7], [9], [12], [22], a
number of k = 3 permission groups Πl, for l = 1, . . . , k,
were defined to simplify the analysis. Group Π1 contains the
permissions considered to be highly indicative of malicious
behavior, i.e. those in the set {1, 10, . . . , 16}. The group
Π2 includes the permissions {6, 7, 8} that could suggest
malicious intention and have a smaller correlation com-
pared to the permissions in the first group. Finally, the
group Π3 has the remaining permissions {2, . . . , 5, 9} that
are commonly requested from both malicious and benign
applications. As in [9], we define a mapping that provides
an overall value characterizing an application’s intentions;
this is called application intention score s ∈ [−1, 1] and is
determined by

si =

k∑
l=1

wl δil, i = 1, . . . , n (1)

where wl is the weight assigned to the permission group Πl,
with w1 + · · ·+wk = 1, and δil ∈ {−1, 0, 1}. The term δil
represents the group difference score of the ith application

δil = sgn

∑
j∈Πl

(
poij − pcij

) (2)

where sgn(·) is the signum function for which we have that
sgn(0) = 0 by convention. Note that δil < 0 if and only if
the cracked application requests more permissions than the
official one. Moreover, we define L : [−1, 1]→ L as

L (s) =


`1 : “malicious” , if s < −0.4

`2 : “rather malicious” , if −0.4 ≤ s < 0

`3 : “rather benign” , if 0 ≤ s ≤ 0.4

`4 : “benign” , otherwise

(3)

mapping the application intention score onto a set of classes
or labels L = {`1, . . . , `4} characterizing cracked apps with
respect to the difference in the requested permissions. Using
this classification, we next seek for correlation with the other
indicators measured in this analysis.

4. Experimental results

In this section, we present the results of our analysis for
the sample applications used. The requested permissions per
application (official and cracked ones) are listed in Table 3.

TABLE 3. PERMISSIONS REQUESTED PER APPLICATION.

anrdoid.permission.*
App 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 �× �× �× �× �× �× �× × × × × × ×
2 �× �× �× �× �× � �× × × ×
3 × × × × × × � × ×
4 �× �× �× × × � × � × ×
5 �× × × �×
6 �× �× �× �× × × � × ×
7 × × × �× × × � × ×
8 �× �× × × �×
9 × �× × �×

10 �× × × × × � × � × ×
11 × × × × × × � × ×
12 �× × × × × × � × ×
13 × × × × × × � × ×
14 �× × × × × × � × ×
15 × × × × × × � × ×
16 �× �× �× �× × �× × �× × × ×
17 × × × × × × � × ×
18 �× × × × × × � × ×
19 × × × �×
20 �× × × × �× �× × ×
21 �× × ×
22 × �× �× × × × × ×
23 �× �× �× × × × × ×
24 �× × ×
25 �× × × × × × � × ×

Overall
� 16 7 7 6 1 2 6 2 19 0 0 0 0 0 0 0
× 24 22 22 20 1 21 4 21 6 3 3 3 1 1 16 16

� Requested by the official application
× Requested by the cracked application
�× Requested by both application types

The weights that have been empirically assigned in (1)
are equal to w1 = 0.6, w2 = 0.3, and w3 = 0.1. By comput-
ing the application intention score, the cracked applications
of Table 1 are classified according to the mapping L , and
the results obtained are as follows:
• `1 contains 1, 3–4, 6–7, 10–18, 22–23, and 25.
• `2 contains 2, 19, and 20.
• `3 contains 5, 8, and 9.
• `4 contains 21 and 24.

In general, we see that the cracked applications tend to
request more permissions than the official applications, with
an overall average 7.36 versus 2.64 permissions. We note
that nineteen cracked applications requested permissions
10–16 and eight cracked applications requested Internet
access (permission 1) even though their official versions
did not; all of them are classified as malicious or rather
malicious. Also permissions related to SMS messaging (10–
12) were requested together as a set; this pattern was also ob-
served with permissions 6 and 8 that are related to read/write
access to external storage.

The measured CPU usage (%) and the measured RAM
usage (MiB) across all Android OS versions are presented in

0

1

2

3

4

5

6

application

C
PU

us
ag

e
(%

)

1 2 3 4 5 6 7 8 9 101112131415161718192021222324251 2 3 4 5 6 7 8 9 10111213141516171819202122232425

official:
cracked:

app average
app average

overall average
overall average

Figure 1. The usage of CPU per application.

0

1

2

3

4

5

6

7

application

R
A

M
us

ag
e

(M
iB

)

×10

1 2 3 4 5 6 7 8 9 101112131415161718192021222324251 2 3 4 5 6 7 8 9 10111213141516171819202122232425

official:
cracked:

app average
app average

overall average
overall average

Figure 2. The usage of RAM per application.

Figures 1 and 2 respectively. In general, cracked applications
tend to utilize slightly more CPU and RAM resources than
their official counterparts. The overall CPU usage average
is 3.25% for cracked applications in contrast to 2.93% for
the official applications; moreover, the overall RAM usage
average is 42.65 MiB and 40.80 MiB for the cracked and
the official applications respectively. In all figures, the box
plots () indicate the minimum and maximum values among
the Android versions considered. We noticed that, with very
few exceptions, the maximum (resp. minimum) values for
both CPU and RAM usage were attained on KitKat (resp.
Marshmallow) implying that possible use of these indicators
in newer versions of the Android OS is rather hard due to
the more efficient use of the available resources.

The number of the open ports for TCP and HTTP per
application across all Android OS versions are presented in
Figures 3 and 4 respectively. Clearly, cracked applications in
most cases open more ports for both protocols than official
applications. The overall average of the TCP ports opened
is 131.19 and 102.15 for cracked and official applications
respectively, whereas the overall average of the HTTP ports

0

1

2

3

4

5

application

T
C

P
po

rt
s

op
en

ed

×100

1 2 3 4 5 6 7 8 9 101112131415161718192021222324251 2 3 4 5 6 7 8 9 10111213141516171819202122232425

official:
cracked:

app average
app average

overall average
overall average

Figure 3. The number of TCP ports opened per application.

0

2

4

6

8

10

application

H
T

T
P

po
rt

s
op

en
ed

×10

1 2 3 4 5 6 7 8 9 101112131415161718192021222324251 2 3 4 5 6 7 8 9 10111213141516171819202122232425

official:
cracked:

app average
app average

overall average
overall average

Figure 4. The number of HTTP ports opened per application.

opened is 39.92 and 20 for cracked and official applications
respectively.

The average usage overheads that are measured by using
cracked applications, across all the Android OS versions, are
presented in Table 4 for each application class. We observe
that cracked applications, classified as malicious according
to (3), in most cases utilize significantly more resources and
request more permissions linked to malicious behavior (see
group Π1) than cracked applications having been classified
as benign; this illustrates the existence of a clear difference
between these two extreme ends. Furthermore, the overhead
incurred by cracked applications classified as rather benign/
malicious confirm the uncertainty of our classification; more
precisely, rather malicious apps utilize less CPU and RAM
resources, whereas rather benign apps generate significantly
less network traffic as evidenced by the additional TCP and
HTTP ports opened. These differences seem to confirm the
existence of correlation between the classification used and
and the four new indicators. However, due to the fact that
the applications’ sample was small —just used to establish
a proof of concept— further and more extensive testing of

TABLE 4. AVERAGE USAGE OVERHEAD PER APPLICATION CLASS.

malicious rather malicious rather benign benign
CPU (%) 0.43 −0.01 0.24 0.06

RAM (MiB) 1.81 0.91 2.03 2.84
TCP ports 41.29 14.78 −12.11 8.00

HTTP ports 23.02 10.34 12.78 18.67

Positive values indicate increased resource usage by cracked applications

cracked applications should be performed to prove positive
impact in the detection of malware for the Android OS.

5. Concluding remarks

An empirical analysis of cracked applications running on
Android platforms was carried out in this paper. The sample
set consisted of 25 applications whose cracked and official
versions were compared against a number of indicators: the
requested permissions, CPU usage, RAM usage, as well as,
the number of ports opened for TCP and HTTP. Following
the introduction of an application intention score function,
which relies on the permissions requested by the application,
cracked applications were classified into groups associated
with varying likelihoods of carrying malicious payloads. The
extent at which the information provided by other indicators
can increase the accuracy of classification is considered.

Although any deviations in CPU and RAM usage (resp.
in the number of TCP and HTTP ports opened) alone are
often not indicative of malicious behavior, when paired with
reliable malware detection methods their accuracy can be
considerably increased. Our preliminary results across all
the tested Android OS versions show that cracked applica-
tions request on average more permissions, tend to utilize
slightly more CPU and RAM resources and open more TCP
and HTTP ports than official applications; the classification
resulted in about 80% of the cracked applications to be clas-
sified as malicious or rather malicious. These findings sug-
gest that cracked applications have questionable intentions,
that users should be vigilant when installing cracked and
untrusted applications, and that human review is required in
both official and third-party application stores.

Possible directions for future work include the increase
of the sample size in order to obtain statistically robust
results and yield more accurate information about how
permissions and values in the rest of the indicators are
distributed for each application type (cracked and official
ones). Differences in the distributions can further be used
to design accurate application intention score functions and
help detect malicious payloads in cracked applications.

References

[1] Android Developers, Permissions Overview. Accessed: 28 Feb. 2018.
Available: https://goo.gl/A7QG1J.

[2] A. Bose, X. Hu, K. G. Shin, and T. Park, “Behavioral detection of
malware on mobile handsets,” in proc. 6th Int’l Conf. Mobile Systems,
Appl. and Services — ACM MobiSys ’08, pp. 225–238, 2008.

[3] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid:
behavior-based malware detection system for Android,” in proc.
1st ACM Wkshp Security and Privacy in Smartphones and Mobile
Devices — ACM SPSM ’11, pp. 15–26, 2011.

[4] J. Cheng, S. H. Wong, H. Yang, and S. Lu, “Smartsiren: virus
detection and alert for smartphones,” in proc. 5th Int’l Conf. Mobile
Systems, Appl. and Services — ACM MobiSys ’07, pp. 258–271, 2007.

[5] D. Dagon, T. Martin, and T. Starner, “Mobile phones as computing
devices: the viruses are coming!,” IEEE Pervasive Computing, vol.
3, no. 4, pp. 11–15, 2004.

[6] N. Elenkov, Android Security Internals: An In–depth Guide to An-
droid’s Security Architecture, No Starch Press, 2015.

[7] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey
of mobile malware in the wild,” in proc. 1st ACM Wkshp Security
and Privacy in Smartphones and Mobile Devices — ACM SPSM ’11,
pp. 3–14, 2011.

[8] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in proc. 18th ACM Conf. Computer and
Communications Security — ACM CCS ’11, pp. 627–638, 2011.

[9] C. S. Gates, N. Li, H. Peng, B. Sarma, Y. Qi, R. Potharaju, C. Nita-
Rotaru, and I. Molloy, “Generating summary risk scores for mobile
applications,” IEEE Trans. Dependable and Secure Computing, vol.
11, no. 3, pp. 238–251, 2014.

[10] A. Houmansadr, S. A. Zonouz, and R. Berthier, “A cloud-based
intrusion detection and response system for mobile phones,” in proc.
41st IEEE/IFIP Int’l Conf. Dependable Systems and Networks Wkshps
— DSN-W ’11, pp. 31–32, 2011.

[11] C. Y. Huang, Y. T. Tsai, and C. H. Hsu, “Performance evaluation on
permission-based detection for Android malware,” in proc. 2012 Int’l
Computer Symp. — ICS ’12, Adv. Intelligent Systems and Appl., vol.
2, pp. 111–120, 2013, Springer.

[12] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an, and H. Ye, “Significant per-
mission identification for machine learning based Android malware
detection,” IEEE Trans. Industrial Informatics, 2018.

[13] Pew Research Center, Mobile Fact Sheet. Accessed: 19 Feb. 2018.
Available: https://goo.gl/eN2Vwf.

[14] A. Sadeghi, H. Bagheri, J. Garcia, and S. Malek, “A taxonomy and
qualitative comparison of program analysis techniques for security
assessment of Android software,” IEEE Trans. Software Engineering,
vol. 43, no. 6, pp. 492–530, Jun. 2017.

[15] R. Sato, D. Chiba and S. Goto, “Detecting Android malware by
analyzing manifest files,” Proc. Asia-Pacific Adv. Network, vol. 36,
no. 17, pp. 23–31, 2013.

[16] M. Sikorski and A. Honig, Practical Malware Analysis: The Hands-
on Guide to Dissecting Malicious Software, No Starch Press, 2012.

[17] StatCounter, Operating System Market Share Worldwide: Jan. 2017 to
Jan. 2018. Accessed: 18 Feb. 2018. Available: https://goo.gl/6TMpYi.

[18] StatCounter, Mobile Operating System Market Share Worldwide:
Jan. 2017 to Jan. 2018. Accessed: 18 Feb. 2018. Available:
https://goo.gl/siuLHR.

[19] Statista, Number of Available Applications in the Google Play
Store: Dec. 2009 to Dec. 2017. Accessed: 19 Feb. 2018. Available:
https://goo.gl/XPNc2D.

[20] K. A. Talha, D. I. Alper, and C. Aydin, “APK auditor: permission-
based Android malware detection system,” Digital Investigation, vol.
13, pp. 1–14, 2015.

[21] W. Tang, G. Jin, J. He, and X. Jiang, “Extending Android security
enforcement with a security distance model,” in proc. 2011 Int’l Conf.
Internet Technology and Appl. — iTAP ’11, pp. 1–4, 2011.

[22] Y. Zhou and X. Jiang, “Dissecting Android malware: characterization
and evolution,” in proc. IEEE Symp. Security and Privacy — IEEE
SP ’12, pp. 95–109, 2012.

	1 Introduction
	2 Related work
	3 Proposed methodology
	3.1 Application intention score

	4 Experimental results
	5 Concluding remarks
	References

