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Abstract—This paper presents the first initial results of using
radar raw I & Q data and range profiles combined with Long
Short Term Memory layers to classify human activities. Although
tested only on simple classification problems, this is an innovative
approach that enables to bypass the conventional usage of
Doppler-time patterns (spectrograms) as inputs of the LSTM
layers, and adopt instead sequences of range profiles or even
raw complex data as inputs. A maximum 99.56% accuracy and
a mean accuracy of 97.67% was achieved by treating the radar
data as these time sequences, in an effective scheme using a deep
learning approach that did not require the pre-processing of the
radar data to generate spectrograms and treat them as images.
The prediction time needed for a given input testing sample is also
reported, showing a promising path for real-time implementation
once the LSTM network is properly trained.

Index Terms—radar, deep learning, Human Activity Recogni-
tion (HAR), LSTM

I. INTRODUCTION

Automatic human monitoring, to discriminate between dif-
ferent activities of daily life (ADL) and detect critical events
such as falls, attracted significant interest in the research com-
munity due to the rise of health conditions and multimorbidity
related to the general ageing of the population. Assisted living
technologies address this problem by making use of different
devices, such as wearable, camera based, RGB-Depth and
radar sensors [1]. Radar has been recently suggested in this
context, as it can provide the advantage of contactless and
non-intrusive monitoring, with no compliance required from
the end-users and reduced risks for privacy as plain optical
images are not recorded [2].

In the context of assisted living, classification of different
human indoor activities is important to monitor the wellbeing
of vulnerable people (for example the presence of important
activities such as personal hygiene, or food preparation and
intake), and detect possible anomalies in activity patterns
that may be linked to worsening health conditions. This
classification is covered extensively in the literature using

in most of the cases analysis of micro-Doppler signatures,
which originate from the periodic micro-motions of the limbs
and torso of the humans, inducing frequency modulation
in the main backscattered radar signal [3]. Each activity
will generate a characteristic micro-Doppler signature, as the
person will perform specific movements of torso, arms, and
legs for different activities. Short-Time Fourier Transform
(STFT) is used commonly to analyse these signatures in a
time frequency domain; a process which requires to choose
different parameters such as the type of window to calculate
individual Fast Fourier Transforms (FFTs), the percentage
of window overlap, and the number of FFT points. This
type of pre-processing requires computational resources and
fine-tuning of the related parameters, as well as imposing
trade-offs in time and frequency resolutions when STFT is
used. Furthermore, handcrafted feature samples are usually
extracted from the spectrograms to be used as inputs to the
classification algorithms, requiring even more fine-tuning of
the parameters involved, and the selection of different set of
features for various scenarios to achieve optimal classification
results [4], [5].

Deep Learning techniques have shown great potential in
classifying human activities bypassing the manual tuning
of feature extraction algorithms. Previous works [6], [7]
used Convolutional Neural Networks (CNN) and Deep Auto-
Encoders (AEs) to process spectrograms of different human
activities to classify, essentially casting this classification
problem as an image recognition problem. Basically, each
spectrogram is treated as a matrix of pixels and used as
inputs to CNN and AE based networks. In order to reduce the
radar-data pre-processing load and extract information from
other radar domains, range profiles were used to identify seven
different motions using CNNs [8]. However, even in this case
the range profiles were organised as Range-Time matrices, and
treated as images (matrices of pixels) before feeding them into
neural networks.



In this paper, we present initial results for a binary clas-
sification problem with a new prediction for every 0.5 s of
recorded activities, using Long Short Term Memory (LSTM)
layers that use range profiles and raw I & Q radar data as
inputs to the network. This innovative approach enables to
bypass both generation of spectrograms or other Doppler-time
matrices through the application of time-frequency distribu-
tions, and the manual extraction of handcrafted features from
the spectrograms. This can be illustrated in Fig. 1, which
indicate the presence of our work with red circle among the
existing ones in the literature. CNN & LSTM refer to [13],
where hand gesture recognition is performed using range-
Doppler inputs to CNN and LSTM networks. Additionally,
Stacked Auto Encoders (SAE) were utilized with spectrograms
as mentioned in [7]. Recurrent Neural Networks (RNNs) are

Fig. 1. Radar framework process for classification of human movements.

suitable for this task, treating the series of received radar pulses
as a time sequence, a time series of samples to process, rather
than an image. RNNs have the ability to maintain memory
while iterating through the sequence elements, whereas CNNs
and the other densely connected networks treat each input
independently. However, RNNs can struggle to learn long
sequences, hence their LSTM variant is used in this work
to address this issue [9]. LSTM have been briefly explored
to classify different radar classes through spectrograms [10],
but, to the best of our knowledge, the use of range profiles
and direct, raw I & Q data presented here is an innovative
approach. Furthermore, the significance of using directly the
I & Q data of the backscattered radar signal is revealed, as
the proposed network scheme can provide a class prediction
every 0.5 s of received data once the network has been
properly trained. This is a promising result for future real-
time implementations of the proposed method.

Using the aforementioned two representations of sequential
data, range profiles and raw I & Q data, different network
topologies are investigated and their prediction time required
is considered. This research is opening the path for real-time
classification, avoiding any cumbersome pre-processing for
time-frequency transforms and feature extraction.

II. DATA AND REPRESENTATIONS

The dataset containing two movements ‘walking’ and ‘sit-
ting & standing’ was constructed using an off-the-shelf Fre-
quency Modulated Continuous Wave (FMCW) radar. Its car-
rier frequency was set at 5.8GHz, bandwidth at 400MHz
and sweep time at 1ms resulting in 128 samples per sweep.
Five subjects contributed, where each action was recorded
continuously for 60 s. In total 19 recordings were collected, 10
of them refer to ‘walking’ and the rest to ‘sitting & standing’.

For the first type of representation, backscattered signals
processed with an FFT to obtain the range profiles and each
profile was limited to 35 range bins to keep in track the actual
information of the performed action. Each input sample to
LSTM layer is instructed to have a specific format which is
characterized by the batch processed size, the time steps and
the number of features. Our aim was to predict a class of
action every 0.5 s, thus each time-sequence sample consisted
of 500 range profiles. In that way 2,280 samples were obtained
and each one represent 0.5 s of recorded action, with 500 time
steps (range profiles) and 35 features (range bins).

Second type of representation is the I & Q data for the
same recordings. Each time-sequence sample of 0.5 s amounts
64,000 time steps and only two features, the quadrature
components from the two radar ADC (Analogue to Digital
Converter) channels. Therefore the second representation is
characterized by 2,280 samples.

In Fig. 2 the range profiles for two successive movements
(walking and sitting & standing) as well the raw I & Q
representation of the same movements are illustrated.

(a) (b)

(c)

Fig. 2. (a) Range profiles processed for walking and sitting & standing
movements for 60 s each. (b), (c) illustrate I & Q data extracted from the two
ADC channels for walking and sitting & standing movements respectively.
The patterns that exist in (a), (b) and (c) are exploited through the LSTM
layers.

The network investigation was performed using as backend
tensorflow gpu, version 1.4 in a single NVIDIA Pascal 1080.



III. LSTM NETWORKS & INVESTIGATION

The first type of experiment that was performed is common
to both representations, setting a common ground of compar-
isons between the classification accuracy and the selected type
of data. A stratified 5-fold method was used, mainly due to low
number of samples and the possible expected variance in the
classification accuracy result on the selected test set. For both
data types, the samples were shuffled in a stratified manner
and 80% was used for training and the rest 20% for testing,
under the 5-fold scheme. The neural network model for the
range profiles had two layers of 35 LSTM units each, using
the RMSprop optimizer with learning rate of 0.001. The batch
size equals to one, stating that each movement is independent
from the other and the number of epochs was set to 50. On the
other hand, for the I & Q data, two layers of four LSTM units
were used, with the same optimizer, learning rate and batch
size whereas the number of epochs was set to 10 this time due
to the high number of time steps. Note that for the I & Q data,
fewer LSTM units were tested manually, however they resulted
in under-fitting during the training procedure. In both network
models, the final layer has a sigmoid activation function. The
mean test classification accuracy and the standard deviation
of the results for both representations in the same activities is
summarized in Table I.

As can be seen from Table I, this method indicates the po-
tential for using directly the I & Q data for predicting every
0.5 s, which scored higher accuracy than the range profiles.
In addition, the standard deviation of the five test accuracies
quantify: about 1-2%, indicating small variance between ran-
dom choices of test sets. For sake of clarity, the 20% of data
that was used for testing was not used during the training
phase (comes from unseen movements from the 5 subjects
which represents 456 samples).

TABLE I
STRATIFIED 5-FOLD RESULTS FOR TWO-LAYER LSTM NETWORKS:

Metrics Range profiles I & Q data
LSTM units 35 4

Mean Test Accuracy 94.16% 97.67%
Standard Deviation 1.14% 2.02%

The next series of experiments are related with optimized
neural network architectures for both representations and in-
vestigation of the prediction time per sample, considering a
real-time implementation.

Regarding the range profiles data, hyperparameter opti-
mization was performed with a two-layer architecture, split-
ting the dataset to 64% training, 16% validation and 20%
testing. Dropout [11] between layers was added to increase
the generalization capability of the model. This optimization
was achieved using the Hyperopt library in Python and the
algorithm of Tree Parzen Estimators [12]. The characteristics
of the optimized network architecture with two layers were
37 LSTM units in each layer, Dropout 0.42359 and 0.24449,
the learning rate 0.00043 and the total number of parameters

Fig. 3. Optimized LSTM network architecture for range profiles sequences.

equals to 22, 238 for the model. The optimized network
architecture for the range profiles is shown in Fig. 3.

Afterwards, the optimized architecture of two layers was
used to train a model on 80% of data and tested with the
remaining 20%; the same samples were used for testing in
the 5-fold experiment. The result of testing in 20% of unseen
movements after 100 epochs of training was 97.58% and the
confusion matrix is illustrated in Fig. 4.

Fig. 4. Normalized confusion matrix for optimized range profiles network.

It is important to mention that the prediction time per sample
of unseen movement with that network architecture was 2 ms.

The same process of optimization was followed also for
a three-layer network, an optimization procedure which lasted
28.8 hours but resulted in a classification accuracy of 93.85%.
Hence, the two-layer network, for this binary problem using
range profiles was found to give the highest accuracy and
any more complex network approach, anticipating to learn



more abstract geometric presentations of inputs, resulted in
overfitting.

Considering the raw I & Q data, the dataset of 2,280
samples was split to 64% training, 16% validation and to the
remainder 20% (used also in the 5-fold experiment for testing).
The architecture of the network with same characteristics as in
the first experiment was used to train the model for 10 epochs
and is described in Fig. 5.

Fig. 5. LSTM network architecture for I & Q data sequences.

At the end of the training procedure, the weights of the
model with best validation accuracy were saved and compiled
to predict the class of 20% of unseen movements. Due to the
high number of time steps (64,000) for each time-sequence
sample, the training time was 16.41 hours. The classification
accuracy in the test set using the weights of the model that
achieved the highest validation accuracy was found to be
99.56% and the confusion matrix is presented in Fig. 6.

Fig. 6. Normalized confusion matrix for I & Q data network.

The LSTM layers of the proposed network architecture
achieved a correct generalization for all the 456 unseen
movements of ‘walking’ and ‘sitting & standing’ except from
two time-sequence samples. This result demonstrated that this
type of Deep Learning is able to train backscattered radar data

as time sequences. In that way further pre-processing is not
required to first visualize the micro-Doppler signatures to then
manually or automatically extract features.

However, considering a real-time implementation of human
monitoring, the prediction time per sample using the raw
I & Q data was 2 s. This comes from the fact that each
movement is presented with 64,000 time steps and no un-
dersampling was performed during the pre-processing phase.
As a result, the network is predicting every 0.5 s of movement
with a delay of 2 s. If we suppose that a carer is monitoring
an elderly patient for a potential fall, a delay of 2 s is not
crucial, acknowledging that the system is predicting the class
of the action every 0.5 s.

Nonetheless, this type of network can be used in many other
applications that up to now target micro-Doppler signatures
had to first be extracted in order to perform classification.
Looking ahead, the delay of 2 s may be too important for
some applications and monitoring requirements and will need
to be decreased.

IV. CONCLUSION

The experimental results introduced in this paper are be-
lieved to present an innovative approach for radar-based classi-
fication in the context of assisted living, using LSTM layers as
an alternative to image processing via CNNs, and using range
profiles and raw I & Q radar data as inputs to the classification
stage. This enables to bypass cumbersome pre-processing with
the possible trade-offs and loss of information they may cause
such as FFT and time-frequency transforms. These preliminary
results show a great potential of using directly the raw I & Q
data, as the classification accuracy achieved a maximum of
99.56%, using 64% of data for training, whereas for the
same activities, range profiles attained 97.58%, with 80% of
samples for training. This proves that LSTM layers, integrated
into a neural network, can learn good representations of the
radar data treating them as sequences, rather than images as
it is currently explored with CNNs. In this way, the need
for pre-processing of radar data is reduced, and so it’s the
computational delay related to that. Additionally, with the
proposed scheme, prediction of the class is performed every
0.5 s giving the advantage for continuous monitoring as the
time of radar observation grows.

The problem of a long prediction time per movement is
reported, when using raw radar data. In future work, it is
anticipated this delay will be decreased under 1 s, with ad-hoc
network architectures optimized for the specific classification
scenario. Furthermore, we will focus on how to detect multiple
activities while exploring the balance between long predic-
tion time and classification accuracy. The trade-off between
testing prediction time and classification accuracy will also
be explored, comparing the proposed approach with more
conventional supervised learning techniques and the use of
CNNs with image-processing inspired approaches.

.
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