

 AVAILABILITY MODELING AND ASSURANCE

 OF MAP-REDUCE COMPUTING

 By

 ZUQIANG KE

 Bachelor of Engineering in Computer Science and

Technology

 Shanghai Jiao Tong University

 Shanghai, China

 1987

 Submitted to the Faculty of the

 Graduate College of the

 Oklahoma State University

 in partial fulfillment of

 the requirements for

 the Degree of

 MASTER OF SCIENCE

 December, 2017

ii

 AVAILABILITY MODELING AND ASSURANCE

 OF MAP-REDUCE COMPUTING

 Thesis Approved:

 Dr. Nohpill Park

 Thesis Adviser

 Dr. Eric Chan-Tin

 Dr. David Cline

iii

Acknowledgements reflect the views of the author and are not endorsed by committee

members or Oklahoma State University.

ACKNOWLEDGEMENTS

It would not have been possible to write this thesis without the help and support of the

people around me, and I only can mention some of them here.

Primarily, to my advisor Dr. Nohpill Park for supporting and encouraging me during my

graduate studies here, particularly to him for allowing me to ask questions and

challenging me to go beyond myself. His guidance helped me to overcome many

difficulties during this thesis research. I am grateful to him for keeping trust in my

abilities until the completion of the thesis.

Next, I would like to thank Dr. Eric Chan-Tin and Dr. David Cline for kindly agreeing to

serve on my thesis committee. I sincerely acknowledge them for providing insightful

comments on my work.

I would not have come this far without the unconditional love, support and sacrifices of

my father Jintai Ke, my mother Yingzi Zheng. In spite of being thousands of miles away,

they gave me the strength to see through the completion this thesis.

Finally, this thesis is dedicated to my wife, Hongyu Wang, and to my daughter, Yiling Ke

for always offering their love and support.

iv

Name: ZUQIANG KE

Date of Degree: DECEMBER, 2017

Title of Study: AVAILIBILITY MODELING AND ASSURANCE OF MAP-REDUCE

COMPUTING

Major Field: COMPUTER SCIENCE

Abstract: This thesis proposes a new analytical model to evaluate the availability of Map-

Reduce computing on a Hadoop platform. Map-Reduce computing is represented by a

queueing model in order to trace flow of Map-Reduce jobs of their arrivals and

departures in the course of computation. The objective of this analytical model is to

evaluate the probability for a Map-Reduce computation to be available at an instant of

time, referred to as availability. The set of variables taken into account in this model lists

the number of Map-Reduce jobs, the number of servers (or referred to as the worker

nodes in this thesis) engaged, along with a few constants such as job arrival/completion

rates and the worker node failure/repair rates. The proposed model provides a

comprehensive yet fundamental basis to assure and ultimately optimize the design of

Map-Reduce computing in terms of availability with reference to its performance in a

simultaneous manner. Parametric simulations have been conducted and demonstrated

efficacy of the proposed model in assessing the availability and the cost for achieving the

availability with respect to throughput as well as turnaround time.

v

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

II. PRELIMINARIES AND REVIEW ...4

III. PROPOSED AVAILABILITY MODEL ...8

 3.1 Job Arrival Model ..11

 3.2 Job Departure Model..13

 3.3 Repair Process ..24

 3.4 The Availability Model ..25

 3.5 Solving the Model ..30

IV. SIMULATIONS ...38

V. CONCLUSION AND DISCUSSIONS ..44

REFERENCES ...46

vi

LIST OF TABLES

Table Page

 1 Key steps for solving availability model ...10

 2 Characters of Map-Reduce job execution ..13

vii

LIST OF FIGURES

Figure Page

 1 Map-Reduce Framework ...5

 2 Map-Reduce Workload ..5

 3 Hadoop Distributed File System (HDFS) Data Distribution7

 4 A Finite Length Queue with a Master Node and n Worker Nodes11

 6 CPU Time-Sharing Model ...15

 7 CPU Time-Sharing State Diagram...15

 8 Map-Reduce Job Departure State Diagram ..23

 9 Node Data Replication and Failover Process ...25

 10 Node Failure and Repairing State Diagram ...27

 11 State Diagram of Availability Map-Reduce Computing30

 12 Trends of the Availability ..39

 13 Trends of the Throughput ..40

 14 Throughput versus the Availability Trends ...41

 15 Trends of the Job Turnaround Time ..42

1

CHAPTER I

INTRODUCTION

It is expected to be extensively exercised to lease a space and its service on a cloud, today

and in the near future. Cloud system is built of millions of inexpensive disks in the form

of data centers [15]. Data centers are the primary resources and cost to facilitate massive

computations, namely big data computing; and thus how to maximize the efficiency or in

other words how to minimize the amount of engaged resources is the key to the success

of big data computing. Map-reduce computing is a type of big data computing and will be

the primary computational model in this work.

In fact, the effectiveness and efficiency of big data computing is determined by the

availability of the nodes in the cloud. As the clouds and the data centers are primarily

built of inexpensive disk racks, and further as the higher availability is realized the less

amount of resources required for computation, ultimately optimizing the cost for data

centers can be done by minimizing the amount of computational resources. Therefore,

availability will ultimately determine the quality of cloud service by minimizing

downtime of service, especially in mission and safety critical sectors.

In this context, availability of Map-Reduce computing is the primary interest and

concern. The specific research problem to be addressed and resolved in this thesis is how

2

to model and assure the availability of Map-Reduce computing in a theoretical manner

yet with an extensive and practical set of variables and constants.

There has been few adequate yet practical availability model found to the best of our

knowledge. The best and citable research work is the queueing-based model as presented

in [1]. In [1], it has presented their proposed model to evaluate the performance of the

system by using two variables, one for the number of requests (or jobs) in the queue and

the second variable determines which queue the request(s) is (are) being handled by

either LB (Load Balancer) or VMs (Virtual Machines) during the computation.

Evidently, Map-Reduce job workload and the worker node availability are not the

interests to the authors of [1], however, the model demonstrated an efficacy of queueing

model to capture the behavior of the typical cloud application.

The proposed availability model in this thesis leverages queueing theory [19] and

Discrete Time Markov Chain to define the impact factors of various distributed and

parallel architectures in a unified specification, and uses the probabilistic analysis and

statistics to analyze the complexity of Map-Reduce computing. This model introduces a

new tuple of variables such as number of Map-Reduce jobs and number of servers (or the

worker nodes) engaged (or failed) in the computation, which demonstrates an effective

yet practical capability to model and assure the behavior of the computation specifically

in the availability context while it can still provide the capability to assess the

performance of the system along the way. Note that our proposed model can be solved

in �(��), where � is either the number of Map-Reduce jobs or number of the worker

nodes. Also, note that the increase of the order of model from �(��) as in [1] is

inevitable due to an extra variable incorporated. However, this overhead is the achievable

3

minimum in order to solve the availability problem. We also provide the mathematical

functions to predict turnaround time for jobs and number of jobs in the platform as well

as the job departure rate (mean of throughput). Parametric simulations have been

conducted in order to observe the trends of the availability and the impact of the

availability on the performance, particularly throughput and turnaround time, based on

the proposed analytical model and the impact of the number of the worker nodes in Map-

Reduce computing.

4

CHAPTER II

PRELIMINARIES AND REVIEW

The framework of Map-Reduce performs task scheduling and monitoring and re-

executing failed tasks [20]. It consists of � worker nodes (or slaves), each of which

operates on a number of CPUs and disks [20], as illustrated in Figure 1. The master node

typically runs two daemons: (1) the JobTracker that schedules and manages all of the

tasks belonging to a running job; and (2) the NameNode that manages the HDFS

namespace by providing a filename-to-block mapping, and regulates access to files by

clients (i.e., the executing tasks) [17]. Each worker node runs two daemons: (1) the Task

Tracker that launches tasks on its local node, and tracks the progress of each task on its

node; and (2) the DataNode that serves data blocks (on its local disk) to HDFS [17]. The

worker node is a shared resource, which supports large number of tasks to share the

computing resource concurrently.

5

Figure 1 Map-Reduce Framework: [20]

A Map-Reduce job consists of a group of Map and Reduce tasks performing some data-

intensive computation [20]. The Map task executes a user-defined map function for each

key/value pair in its input [20]. The Reduce task is executed in a shuffle, sort and a

reduce phase [20]. During the shuffle and sort phase, the Reduce task fetches, merges,

and sorts the outputs from completed map tasks. Once all the data is fetched and sorted,

the Reduce task calls a user-defined function for each input key and list of corresponding

values [20]. The procedure is illustrated Figure 2 as follows.

Figure 2 Map-Reduce workload: [20]

6

A Map-Reduce job reads one or more input files and produces one output file [20]. Each

file is logically partitioned by defining the key range and is processed by each worker

node [20]. Each partition can be further divided into sub-partitions of equal size, called

splits. After the partition has been split, �	 map tasks will be generated by a pre-defined

function map(). Since a number of threads can be created and be available in the worker

nodes to execute the tasks in parallel, Map-Reduce framework define the thread number

	 by given the variable ���
�	 [20]. For each split register, it executes the function map()

and produce one or more output registers [20]. Map-Reduce sorts and stores output

registers into a temporary file in the local file system [20].

A reduce task is responsible for processing a range of keys that have been generated by

the map task [20]. One reduce task has two phases, namely, shuffle and reduce. Map-

Reduce framework generates ��� shuffle tasks, each one responsible for processing the

results of a map task, and run
� threads in parallel and transfers the data from the

temporary file that have been produced by the maps that matches the key range of reduce

to which the shuffle belongs. In the shuffle phase, a partial sort is performed, and the

registers are written into an output file in the local file system of worker node for reduce

phase [20]. As soon as all partial sorts completed, a final sort is performed, which merges

the temporary files produced by the sort and shuffle [20]. Finally, �� reduce tasks will be

generated by a pre-defined function reduce(), and the reduce task runs on
� threads that

is given by Map-Reduce framework parameter ���
�� in parallel to read this merged file,

and write the results into HDFS [20].

Map-Reduce has a master-slave design for its storage system [27]. In the storage system,

Name node handles the metadata operations, while data node handle the read/writes

7

initiated by clients [27]. Files are divided into fixed-sized blocks, each stored at a

different data node that is connected to the worker node. Files are read-only, but append

operations may be performed in some implementations [17]. The storage systems use

replication for reliability and load balancing purposes. Hadoop Distributed File System

supports a configurable number of replicas per file; by default, each block of a file is

replicated three times. The procedure of replica placement is shown in Figure 5 as

follows.

Figure 3 Hadoop Distributed File System (HDSF) data distribution

The first replica of a block goes to the node writing the data; the second, to a random

node in the same rack; and the last, to another random node [27]. This design provides a

good balance between being insensitive to correlated failures (e.g., whole rack failure)

and minimizing the inter-rack data transmission [27].

8

CHAPTER III

PROPOSED AVAILABILITY MODEL

Queueing theory is an appropriate methodology to model the flow of the Map-Reduce

computation as is to be investigated in this research [1]. Our proposed research will be

centered around the availability model to be developed, and it will be a highly complex

queueing model. The availability model will ultimately serve as a basis for how to guide

and design the testing, diagnosis and error-tolerant execution of map-reduce

computations.

The motivation of our work is that to the best of our knowledge, there is no evident

justification for the replication factor to be set at 3 [2]. In other words, there is no

evidence that the availability peaks out at 3 or what so ever. Either under- or over-

shooting the availability (i.e., under- or over-replication of data [14]) could result in a

disastrous consequence especially in healthcare-related computational systems in which

they are shooting at four 9’s below the decimal point for the availability (i.e., availability

0.9999 or higher), in other words about 7 minutes of downtime of the system per month

in case of under-shooting; and may also result in resource waste such as triplex data

centers in case of extreme over-shooting (i.e., over-replication). As such, there are

various systems that require an extremely high availability such as mission, safety and

deadline-critical real time systems, to mention a few. Therefore, there is an exigent need

9

for a solid theoretical foundation to facilitate identification of the optimal level of

error/fault-tolerance [3,4,5,6] that is not supposed to be either too high to waste the

resources nor too low to degrade the availability of the system. Further, the model can

monitor and facilitate the testing, diagnosis and error-tolerance towards its theoretical

optimality. Ultimately, the model will allow a simultaneous evaluation of the

performance (e.g., turnaround time and throughput) as well as the availability, thereby

making it possible to identify the theoretical break-even point between performance and

availability.

A generic and naive definition of the availability is
������������� [6], where MTTF and

MTTR denote mean time to failure and mean time to repair, respectively, which can be as

a single-variate model. However, it is seriously constrained from any extensive multi-

variate analysis to take such variables as the number of map processes, reduce processes,

failure rate of the name node and the rate to stay operational provided a certain number of

nodes with spares into account, to mention a few. However, this model may serve for a

comparison purpose as the baseline model.

In [1], a sound analytical model has been developed to evaluate a simple cloud system.

The state in [1] is defined by a double-tuple, that is the number of processes and the

location of the process. The proposed model incorporates an extra key variable in order to

make it traceable of the availability of the system. Having the extra variable raises the

complexity of the availability by an order of magnitude, from quadratic to cubic, which

appears quite a manageable cost for the extra gain to be made.

10

There has been extensive research conducted on the performance of Map-Reduce

computing in particular [7,8,9]. There have been various fault tolerance schemes

proposed [10,11,12,13], however, few adequate research have been reported at the

fundamental and theoretical level to address and resolve the availability issues.

The challenge to develop an efficient and reasonably accurate analytical availability

model is that it must capture, with reasonable accuracy, the various factors that will

influence the stability of a Map-Reduce computing. Comparing to the analytical model

[1], the availability model is more complicated and cumbersome, because there are a

necessity 3-tulpes random variable that is required to define a Map-Reduce state space

and a very complex Map-Reduce workload. There are the following four steps as shown

in the Table 1, that illustrates the development process of the proposed availability

model:

Table 1: Key steps for solving proposed availability model.

Step Name Actions

1 Job arrival model: To analyze Map-Reduce job arriving process, then

propose a suitable and reasonable job arrival

model.

2 Job departure model To analyze Map-Reduce job workload, then

propose an approximate analytical model for

Map-Reduce job service time

11

3 Node repair process To analyze Map-Reduce resilience strategy, then

propose a queueing model to evaluate the node

availability.

4 Map-Reduce availability

model

To propose an availability model, then analyze

and solve the model.

3.1 Job Arrival Model

Map-Reduce job arrival model is defined for the availability model where it can be

considered as a stochastic process for counting the random job arrival events. This arrival

process is shown in Figure 4: the job arriving from an Ethernet is queued in the master

node and then the first job is assigned to the worker node. In the worker node, the job will

be split into several map tasks and then follow the shuffle and reduce tasks. After all the

tasks generated by a job are completed, the job is de-queued in the master node.

Figure 4 A finite length queue with a Master node and � Worker nodes

12

Assuming that the model is a stationary time series model and there is no relationship

between arrival jobs, Therefore, we have a constant value of the mean of the job arriving

rate � = lim�→� ∑ � � = #
! "��#$"��� .

By observing the arrival job to the master node for the time interval(0, '], the time

interval (') can be divided into � subintervals of length ' �⁄ . Since the job arrival is

independent, then for a sub-interval ∆' = ' �⁄ , + jobs arrival is like the � sub-intervals as

building a sequence of Bernoulli trials with the probability of success
 = �' �⁄ . It

follows the probability of + job arrivals in a total of � sub-interval each with a

duration ' �⁄ , and then we have the probability as following:

,-(�)(�(') = +) = .�+/ (�'�)0(1 − �'�)�30 = �(� − 1) … (� − + + 1)+! �0 (�')0(1 − �'�)�30

= �� (� − 1)� … (� − + + 1)� (�')0+! (1 − �'�)�30

According to CISCO article “Troubleshooting Ethernet Collisions” [24], if more than one

messages in transmission at the same time (collision in sub-interval: lim�→� ' �⁄), the

collision messages will be retransmitted. Therefore, ∆' = ' �⁄ should be as small as

possible, in order to make sure there is at most one job arrive in the sub-interval.

Therefore, have the probability as:

,-(�)(�(') = +) = lim�→� .�+/ (�'�)0(1 − �'�)�30 = (�')0+! lim�→�(1 − �'�)�

Since, lim �→7(1 + ℎ)9 �⁄ = :, we set −�' �⁄ = ℎ, then have:

13

,(� = +) = (�')0+! lim�→� ;<1 − �'� =3 �>�?3>� = (�')0+! @lim�→7(1 + ℎ)9 �⁄ A3>� = (�')0+! :3>�
Bℎ:C: + = 0,1,2 … (3.1)

Apparently, it is a Poisson distribution. Therefore, Poisson process reflects the process of

Map-Reduce job arrival theoretically. It is also confirmed that the job arrivals be well

modeled by Poisson process in the wide-area traffic. According to the experimental

report [28]: “We find that user-initiated TCP session arrivals, such as remote login and

file-transfer, are well-modeled as Poisson processes with fixed hourly rates, but that other

connection arrivals deviate considerably from Poisson.” and the fact that Map-Reduce job

arrivals are client-initiated TCP connections, Poisson process is a good model for

counting the number of the job arrivals.

3.2 Job Departure Model

The departure model can be considered as a renewal process and can be used to predict

the independent, identically distributed and nonnegative random completion time of a

Map-Reduce job. The Map-Reduce job execution has following characters as the Table 2:

Table 2. Characters of Map-Reduce job execution

ID Character

1 Jobs are executed across multiple worker nodes: the map phase is partitioned

into the map tasks and the shuffle and reduce phases are partitioned into the

reduce tasks

14

2 The worker node automatically executes map and reduce tasks in parallel with

time-sharing CPU schedule

3 The job has a different number of Map-Reduce tasks in terms of different sizes

of input files

4 The data block for every Map-Reduce task has the same size

By studying the characters of the job execution, the following problems need to be

solved:

1. Since Map-Reduce tasks are executed in a time sharing and parallel model due to

multi-user operation system. The probability density function of the task service time

is: G(H) = ∑ I#J#:3KL��#M9 N�O ∑ I#�#M9 = 1. Apparently, it is not an exponential

distribution; see [23, Page 446].

2. Since Map-Reduce job will be broken into many map tasks and then each map task

can lead Map-Reduce framework to generate the reduce task, no single task departure

rate can precisely represent a whole Map-Reduce job departure rate.

3. Since all the reduce tasks are made by Map-Reduce framework based on the results of

the map tasks, the whole job execution flow is in a time sequence order, it is a typical

PH distribution; see [25, Page 33-60].

For the first problem, let’s consider the map tasks are running on a time-sharing CPU

schedule as Figure 6:

15

Figure 6 CPU time-sharing model

In the Figure 6, assume that the data node I/O service time is exponentially distributed

with a constant rate � and the size of data block for splitting map task can be small

enough so that the map tasks can complete within two quantum CPU times. Therefore,

there are two phases hyper-exponential CPU service time, each one has the constant rate

J9 and J� and the same chance to gain CPU resource in each phase. Then we have the

two-tuples (_, `) task’s state, where _ is number of tasks in the phase 1, and ` is number of

tasks in the phase 2. Then the state space and state diagram are as following:

a(0,0), (1,0), (0,1), (2,0), (0,2), (1,1)]

Figure 7. CPU time-sharing task workload state diagram

16

Since there is no dependency between the quantum CPU times, all inter-quantum times

are exponentially distributed. Therefore, there is an embedded Markov Chain. The

balance equations are as following:

�
(0,0) = J9
(1,0) + J�
(0,1);
(J9 + �)
(1,0) = J9
(2,0) + �I9
(0,0) + J�2
(1,1);
(J� + �)
(0,1) = J�
(0,2) + �I�
(0,0) + J92
(1,1);
J9
(2,0) = �I9
(1,0); J�
(0,2) = �I�
(0,1);

J9 + J�2
(1,1) = �I9
(0,1) + �I�
(1,0)

By solving the equations, we have:

(1,0) = �I9J9
(0,0);
(0,1) = �I�J�
(0,0);

(0,2) = (�I�J�)�
(0,0);
(2,0) = c�I9J9 d�
(0,0);

(1,1) = 2 �I9J9
�I�J�
(0,0)

Since,

,(0) =
(0,0); ,(1) =
(0,1) +
(1,0); ,(2) =
(2,0) +
(0,2) +
(1,1);
Then the solved model is as following:

17

,(1) = � .efKf + egKg/
(0); ,(2) = (�(efKf + egKg))�
(0).

This result is as the same as the solution of M/M/1/FCFS queue. It seems that the result

of M/M/1/FCFS can be used to solve M/M/1/PS model approximately. This hypothesis

needs to be proved in a more general situation, such as � map tasks sharing a CPU

resource with the quantum oriented Round Robin discipline, where 0 < � < ∞.

Proof. Let � map tasks sharing the CPU resource, each task perceiving CPU to be slower

by a factor � due to the quantum size trending to zero, then the state space is as

following:

{(�9, ��): �9, �� ≥ 0, � = �9 + ��, 0 ≤ � ≤ ∞}

Where �9 is number of the map task in the phase 1 and �� is number of the map task in

the phase 2, and � = �9 + �� for the total number of the map tasks in CPU queue. For

the probability ,(�9, ��) of tasks in CPU being in state (�9, ��), we have the equations

for total rate leaving and entering the state as following:

op'Nq CN': q:Nr_�s t'N': (�9, ��) = uv
w �,(�9, ��) 'Nt+ q:Nr_�s x,yKf�f�f��g ,(�9, ��) 'Nt+ q:Nr_�s
ℎNt: 1 Kg�g�f��g ,(�9, ��) 'Nt+ q:Nr_�s
ℎNt: 2

op'Nq CN': :�':C_�s t'N': (�9, ��)
= uv

w �I9,(�9 − 1, ��) 'Nt+ :�':C_�s
ℎNt: 1�I�,(�9, �� − 1) 'Nt+ :�':C_�s
ℎNt: 2J�(�� + 1)�9 + �� + 1 ,(�9, �� + 1) + J9(�9 + 1)(�9 + �� + 1) ,(�9 + 1, ��) �:B 'Nt+ :�':C_�s x,y

18

From observing the previous mathematical derivation of solving the balance equations,

the hypothesis solution is as following:

,(�9, ��) = c�9 + ���9 d z9�fz��g,(0,0) Bℎ:C: z9 = �I9J9 , z� = �I�J� , I9 + I� = 1 (4.0)

In order to justify this hypothesis, we substitute the equation (4.0) into the total rate

entering states (�9, ��), and get the equations as following:

'Nt+ :�':C_�s
ℎNt: 1 = �I9 c�9 + �� − 1�9 − 1 d z9�f39z��g,(0,0)

= c�9 + ���9 d z9�fz��g,(0,0) �I9z9
�9�9 + �� = ,(�9, ��) J9�9�9 + �� = 'Nt+ q:Nr_�s
ℎNt: 1

'Nt+ :�':C_�s
ℎNt: 2 = �I� c�9 + �� − 1�9 d z9�fz��g39,(0,0)

= c�9 + ���9 d z9�fz��g,(0,0) �I�z�
�9�9 + �� = J��9�9 + �� ,(�9, ��) = 'Nt+ q:Nr_�s
ℎNt: 1

�:B 'Nt+ :�':C_�s x,y
= c�9 + �� + 1�9 d z9�fz��g�9,(0,0) J�(�� + 1)�9 + �� + 1
+ c�9 + �� + 1�9 + 1 d z9�f�9z��g,(0,0) J9(�9 + 1)(�9 + �� + 1)
= c�9 + ���9 d z9�fz��g,(0,0) �9 + �� + 1�� + 1 z� J�(�� + 1)�9 + �� + 1
+ c�9 + ���9 d z9�fz��g,(0,0) �9 + �� + 1�9 + 1 z9 J9(�9 + 1)(�9 + �� + 1)
= (�I9 + �I�),(�9, ��) = �,(�9, ��) = 'Nt+ q:Nr_�s x,y

19

The equations clearly show that the hypothesis solution is one of the right solutions.

From solving the balance equations in Figure 7, it also proved that this solution is the

unique solution. Then let’s solve the total probability ,(�) of state (�9, ��).

Since � = �9 + ��, with Binomial theorem [26, page 306-309], we have:

P(�) = | ,(�9, � − �9) = | c ��9d z9�fz��3�f,(0,0) = (z9 + z�)��
�fM7

�
�fM7 ,(0,0)

Since z9 + z� = >efKf + >egKg = � ∑ eLKL�#M9 and ,(0) = ,(0,0), the solution is as:

P(�) = �� c| I#J#
�
#M9 d� ,(0),

Let’s solve the case that is even more general: } quantum with � map tasks sharing a

CPU. Base on the pervious solution, there is a hypothesis as following:

,(�9, ��, … , �) = c ��9�� … �	d z9�fz��g … z	�~,(0,0)
Bℎ:C: z9 = �I9J9 , z� = �I�J� , z	 = �I	J	 , | N#

	
#M9 = 1, � = �9 + ⋯ + �	

By substituting the above equation into all the entering rates of state (�9, ��, … , �) and

CPU, the equations show that all the entering rates of state (�9, ��, … , �) and CPU

equal to all the leaving rates of state (�9, ��, … , �) and CPU. Therefore, it proved that

this equation is one of the right solutions and is the unique solution in the Markov Chain.

Since,

20

,(�) = | ,(�9, ��, … , �) = | c ��9�� … �	d z9�fz��g … z	�~,(0,0)�f�⋯��~M��f�⋯��~M�

By Multinomial theorem [26, Page 310-318], we have:

,(�) = �� c| I#J#
	
#M9 d� ,(0,0)

Let
9K = ∑ eLKL	#M9 , ∑ I# = 1�#M9 and z = >K, we have: ,(�) = z�(1 − z) (4.1)

Observing the equation (4.1), it is the same as the solution of M/M/1/FCFS queueing

model .That proves that we can use the model of M/M/1/FCFS to approximately solve

the departure model of the map or reduce task, which is running on a multiuser operating

system. ■

According to the workflow of Map-Reduce, the input file size will affect the departure

time of a Map-Reduce job. A bigger size of input file will generate a larger number of

map tasks. Thanks to the fact that the limiting probability of M/G/1/PS is independent of

the job size distribution (it depend only on its mean) and it is called an insensitivity

property; see [22, Page 389-390]. Therefore, the previous solution can also be used to

solve the Map-Reduce job with different input file sizes

It is necessary to add up all the map/reduce tasks’ completion time within a Map-Reduce

job, since the job departure time is Map-Reduce job service time instead of a signal task’s

completion time. The time for serving the total map tasks in a job is ∑ �#	�#M9 and the

time for completing all reduce tasks in a job is ∑ �#��#M9 .

21

Since the stationary time series, a constant ensemble mean of completion time for a job in

map phase is as following:
o�
�3	 = lim�→� J(') = lim	→� ∑ H�} = lim-���→� ∑ �#	�#M9��
�
	 Bℎ:C: � ≤ ∞; 0 ≤ �#	 < ∞

, and the independent character of the completion time of the map task, ∑ �#	�#M9 in

interval (0, '] can be formulated as a recursive equation = ℎ(') + � ℎ(' − �)�(�)O��7 .

Therefore, we have:

| �#	
�

#M9 = lim�→� � o	(' − �)O�	(�) = � o	(∞)O�	(�)�
7

�
7 = o	(∞)�	(∞)

o�
�3	
	 = ∑ �#	�#M9��
� = o	(∞)�	(∞)��
� = o	"$��	;
	 = �	��
�

where o	(') = � H'	(H)OH�7 is expected completion time of map tasks; �	(') is

expected number of completed map tasks (renewal function; see [25 Page 62]) in time ';

o#	 = The execution time of _th map task;

�	 = The average number of map tasks for a job;

o	"$� = The average execution time of a map task;

�	��
� = The number of configured map slots.

The mean of Map service time for a job and rate of job (map phase) are as:

o�
�3	 = o	"$� × �	�	��
� ; J	 = 1o�
�3	

22

A constant mean of completion time for a job in reduce phase is as following:

o�
�3� = lim�→� J(') = lim-���→�(∑ �#��9#M9��
�
� + ∑ �������M9��
�
�) Bℎ:C: �1, �2 ≤ ∞; 0 ≤ �#� , ���� < ∞

and

∑ �#��9#M9��
� = 1��
� lim�→� � o�(' − �)O��(�)�
7 = o�(∞)��(∞)��
� = o�"$���

 ∑ �������M9��
� = 1��
� lim�→� � o��(' − �)O���(�)�
7 = o��(∞)���(∞)��
� = o��"$����

where o�('), ��('), o��('), ���(') functions of expected completion time of tasks and

expected number of completed tasks in time ';

o#� , o��� = The execution time of _th reduce sub-task, `th shuffle sub-task;

�� , ��� = The average number of reduce sub-tasks for a job, shuffle sub-tasks for a job;

o�"$�, o��"$� = The average execution time of a reduce sub-task, a shuffle sub-task;

����
� = The number of configured reduce slots.

We have Mean of Reduce service time and rate of job (reduce phase) as:

o�
�3� = o�"$� × ������
� + o��"$� × �������
� ; J� = 1o�
�3� ;
By Map-Reduce job workload, every map task has a map phase and every reduce task has

shuffle and reduce phases. Since the size of the data block can be configured as a fixed

23

size of chunks for the map phase with the same data searching algorithm and the standard

hardware performance, the average execution time for the map task (o	"$�
) is determined.

Since number of shuffle sub-tasks is depend on the results of the map tasks and number

of reduce sub-tasks is depend on the merger results of the shuffle sub-tasks, with the

same data sorting algorithm and the standard disk data access and CPU performance, the

average execution time for shuffle sub-task (o��"$�
) and reduce sub-task (o�"$�

) are

determined too. The configurable parameter of number slots in parallel (���
�) is used to

determine that thread number
	 and
� for parallel running the map tasks and reduce

tasks respectively. Therefore, the rate of the completion time J	 and J� are determined.

Since the reduce task depends on the result of the map task, it is necessary to put these

two different kinds of tasks into a renewal process with the sequence order. The departure

time of a Map-Reduce job cannot be exponentially distributed. However, by separating

the job departure time into two individual phases and connecting them in a series, the

state transition diagram (Figure 8) shows us that there is an embedded Markov Chain.

Figure 8 Map-Reduce job departure states diagram

Figure 8 also clearly shows us the departure model of Map-Reduce job is a typical hypo-

exponential distribution. Then we conclude the departure model as:

24

��(�) = ; 1 − J�:3K~�J� − J	 − J	:3K��J	 − J� Bℎ:C: J	 ≠ J�1 − :3K~�(1 + J	H) Bℎ:C: J	 = J� (�CqN�s 2)

�(o)������� = 1J = 1J	 + 1J� ; Bℎ:C: z = � c 1J	 + 1J�d < 1

Since the departure model is a hypo-exponential distribution that combines several

exponential distributions in a sequence order, there is an embedded Markov Chain.

Therefore, the whole service time of Map-Reduce job is a PH distribution that can be

viewed as the distribution of the time until absorption in suitably defined Markov

processes; see [25, Page 61-79], and it is fully qualified to map this job departure model

onto the Markov Chain.

3.3 Repair Process

The node repair process is defined on our availability model where it can be considered

as a birth-death process [23, Page 365-387]. It is used to predict the degree to which a

worker node cluster in a specified operable and committable state at the start of a mission

when the mission is called for at a random time interval (0, ']. It provides the ratio of

total time the worker node cluster is capable of being used during a given interval to the

length of the interval.

Map-Reduce provides scalable, fault-tolerant and rack-aware worker node designed to be

deployed on commodity hardware [17]. It is designed with hardware failure in mind and

built for large datasets, with a fixed length of data block. It is optimized for sequential

operations and rack-aware cross-platform as well as heterogeneous cluster [17]. Data in a

Map-Reduce is broken down into smaller units (called blocks) and distributed throughout

25

the cluster. Each block is duplicated twice (for three copies), with the two replicas stored

on two worker nodes in a rack somewhere else in the cluster [27]. Since the data has a

default replication factor of three, it is a relatively higher available and fault-tolerant. If a

copy is lost (because of a worker node failure, for example), Map-Reduce will

automatically replicate it elsewhere in the cluster, ensuring that the three fold replication

factor is maintained [27]. In Map-Reduce, the data is transmitted in the form of small

packages between the worker nodes, which improves the throughput of data access [17].

Figure 9 shows the worker node and the data failover process. In the node repair

procvess, the nodes can be repaired when they are broken. After the node is repaired

completely, the node will be restored to be as good as new.

Figure 9 Worker node data replication and failover processes

3.4 The Availability Model

Since we are interested in that the worker nodes are running on a stable situation, we

assume that the failure rate s(') of the worker node is a constant value that is

independent of the worker node age '. Then we have the failure rate of the worker

node G. We also assume that any two of the worker nodes would not fail at the exactly

26

same time. Moreover, any failure of the worker node would not affect the failure of

others. With the previous assumptions and the same idea that we have proved in the job

arrival model, it can be sure that the arrival of failed worker nodes is a Poisson

distribution.

Since the worker nodes are running in the cluster and all the “spare” nodes are in active

model, the failover time is relatively much small. Therefore, we have the reason to

assume that the switching time that the tasks from failure node move to the “active” spare

node is zero in this paper.

In case of the low bound of node repairing performance, we assume that the repair rate

will keep in the lowest performance. Therefore, the repair rate is a constant value C. Since

the repair time of the worker node would not depend on the repairing history of other

failed worker nodes due to the lowest repair performance for every broken node, the

repair time is exponential distribution for sure.

Since the node repair time is exponential distribution and inter-node failure time is

exponential distributed too, the transition of the nodes failure and repairing states can be

mapped to the Markov Chain. Since all good nodes will fail and all failure nodes can be

repaired and back to work by our assumption, this Markov Chain should be irreducible.

Since the total number of the worker nodes should be countable, we have the total

number of the worker nodes as a finite number �. We have the worker nodes failure and

repairing state diagram as following:

27

Figure 10 Worker node failure and repairing state diagram

Since this state diagram is an irreducible Markov Chain, total rate leaving state _ = total

rate entering state _. Then we have the balance equations as following:

�G,(0) = C,(1)

,(+) = (� − +)GC ,(+ − 1)

C,(�) = G,(� − 1) Bℎ:C: 0 < + < �

The equations solved, we have:

,(+) = � (� − +)GC ,(0)�39
0M7

= cGCd0 �!(� − +)! ,(0) Bℎ:C: 0 ≤ + ≤ �

For normalizing the equation:

,(0) + ,(1) + ⋯ + ,(+) + ⋯ + ,(�) = 1

Then we have:

,(0) | �!(� − +)!�
0M7 cGCd0 = 1,

28

,(0) = 1∑ �!(� − +)!�0M7 (GC)0

,(+) = cGCd0 �!(� − +)! � 1∑ �!(� − +)!�0M7 (GC)0�

= cGCd0 �!(� − +)!∑ �!(� − +)!�0M7 (GC)0 (5.1)

Availability of the worker nodes in Map-Reduce cluster is as following:

� = | ,!"#����(+)�39
0M7 = 1 − ,!"#����(t) = 1 − ,�
��(0) = 1 − cGCd� t!

∑ t!(t − +)! cGCd0�0M7

Bℎ:C: ,(+) = ,!"#����(+) = ,�
��(� − +)

The proposed availability model of Map-Reduce computing is a 3-tuple state

space (_, `, +), where _ is the number of Map-Reduce job; ` indicates the phases of the job

(map phase, reduce phase); and + is the number of failure nodes such that 0 ≤ + ≤ �,

where � the maximum possible number of the worker nodes in a Map-Reduce computing.

There are spare nodes that can replace any failed node associated with either a job in a

map phase or in a reduce phase. It is assumed that Map-Reduce computing is a multi-

server (node) queueing model, and all the Map-Reduce jobs are served in FCFS schedule.

Each state is represented by a random variable �#,�,0.

29

A 3-dimension state transition diagram is designed as Figure 11, with a state definition of

{_, `, +} with a state space of (0,1,2, … , }) × (0,1) × (0,1,2, … �) where 0 < }, 0 < �

and }, � are countable. For every element in this state transition diagram, ,(_, `, +) =
,(� = _, � = `, � = +) denotes a random event that there are _ number of Map-Reduce

jobs in the queue; ` presents the phase type (0: map; 1: reduce); and + is the number of

failure nodes while one of the job in map/reduce phase is being served at a long instant of

time ' = '9.

Since we already proved the solutions and assumed the parameters in the job arrival

model and the job departure model as well as node repair process, then all parameters

used in our availability model can be defined as follows:

1. �: job arrival rate; it follows a Poisson distribution.

2. J	, J�: each virtual task service rate for the job map phase and reduce phase,

respectively and their inverse, that is, the times, are exponentially distributed.

3. G: each node failure rate; it follows a Poisson distribution.

4. r: each node repair rate for the node repair and the repair time is exponential
distribution

Then, we conclude that the following states transition of Map-Reduce computing has all

the properties that a typical Markov Chain has:

30

Figure 11 State diagram of availability Map-Reduce computing

3.5 Solving the Model

From the state diagram, we observe that there are several embedded Markov chains in

there. Therefore, we have the balance equations as following:

(� + �G),(0,0, �) = J�,(1,1, �) + C,(0,0, � − 1) (6.1)

(J	 + � + �G),(1,0, �) = �,(0,0, �) + 2J�,(2,1, �) + C,(1,0, � − 1) (6.2)

(J� + � + �G),(1,1, �) = J	,(1,0, �) + C,(1,1, � − 1) (6.3)

(2J	 + � + �G),(2,0, �) = �,(1,0, �) + 3J�,(3,1, �) + C,(2,0, � − 1) (6.4)

(_J	 + � + �G),(_, 0, �) = �,(_ − 1,0, �) + (_ + 1)J�,(_ + 1,1, �) + C,(_, 0, � − 1)
Bℎ:C: 3 ≤ _ ≤ � − 1 (6.5)

(�J	 + � + �G),(_, 0, �) = �,(_ − 1,0, �) + �J�,(_ + 1,1, �) + C,(_, 0, � − 1)

31

 Bℎ:C: � − 1 ≤ _ (6.6)

(� + C),(0,0,1) = J�,(1,1,1) + 2G,(0,0,2) (6.7)

(J	 + � + C),(1,0,1) = �,(0,0,1) + J�,(2,1,1) + 2G,(1,0,2) (6.8)

(J� + � + C),(1,1,1) = J	,(1,0,1) + 2G,(1,1,2) (6.9)

(J	 + � + C),(2,0,1) = �,(1,0,1) + J�,(3,1,1) + 2G,(2,0,2) (6.10)

(J	 + � + C),(_, 0,1) = �,(_ − 1,0,1) + J�,(_ + 1,1,1) + 2G,(_, 0,2)
 Bℎ:C: 3 ≤ _ ≤ � − 1 (6.11)

(_J	 + � + (� − +)G + C),(_, 0, � − +)
= �,(_ − 1,0, � − +) + (_ + 1)J�,(_ + 1,1, � − +) + C,(_, 0, � − + − 1)
+ (� − + + 1)G(_, 0, � − + + 1)

(_J� + � + (� − +)G + C),(_, 1, � − +)
= �,(_ − 1,1, � − +) + _J	,(_, 0, � − +) + C,(_, 0, � − + − 1)
+ (� − + + 1)G(_, 0, � − + + 1)

 Bℎ:C: 3 ≤ _ ≤ � − + N�O 0 < + ≤ � − 2 (6.12)

((� − +)J	 + � + (� − +)G + C),(_, 0, � − +)
= �,(_ − 1,0, � − +) + (� − +)J�,(_ + 1,1, � − +) + C,(_, 0, � − + − 1)
+ (� − + + 1)G(_, 0, � − + + 1)

32

((� − +)J� + � + (� − +)G + C),(_, 1, � − +)
= �,(_ − 1,1, � − +) + (� − +)J	,(_, 0, � − +) + C,(_, 0, � − + − 1)
+ (� − + + 1)G(_, 0, � − + + 1)

 Bℎ:C: � − + ≤ _ N�O 0 < + ≤ � − 2 (6.13)

Since the probability failure of the worker nodes is independent to the probability of the

number of Map-Reduce jobs in a Map-Reduce computing, �#,�,0(') can be modeled as a

joint probability. Hence, a series product of two independent probabilities can be

assumed: one is the probability of Map-Reduce jobs that are served in either map phase

or reduce phase on the condition of a certain number of nodes (e.g., � − +); another is the

probability to have the same number of nodes(e.g., � − +) in the system such that

,(_, `, +) = ,(_, `) ∗ ,���$��(� − +) = ,(_, `) ∗ ,!"#����(+).

In order to solve ,(_, `), we have the following balance equations:

When the number of nodes is �:

�,(0,0) = J�,(1,1) (6. N1)

(J	 + �),(1,0) = �,(0,0) + 2J�,(2,1) (6. N2)

(J� + �),(1,1) = J	,(1,0) (6. N3)

(2J	 + �),(2,0) = �,(1,0) + 3J�,(3,1) (6. N4)

(_J	 + �),(_, 0) = �,(_ − 1,0) + (_ + 1)J�,(_ + 1,1)

(_J� + �),(_, 1) = �,(_ − 1,1) + _J	,(_, 0)

33

 Bℎ:C: 3 ≤ _ ≤ � − 1 (6. N5)

(�J	 + �),(_, 0) = �,(_ − 1,0) + �J�,(_ + 1,1)

(�J� + �),(_, 1) = �,(_ − 1,1) + �J	,(_, 0)

 Bℎ:C: � − 1 ≤ _ (6. N6)

When the number of nodes is 1:

�,(0,0) = J�,(1,1) (6. N7)

(J	 + �),(1,0) = �,(0,0) + J�,(2,1) (6. N8)

(J� + �),(1,1) = J	,(1,0) (6. N9)

(J	 + �),(2,0) = �,(1,0) + J�,(3,1) (6. N10)

(J	 + �),(_, 0) = �,(_ − 1,0) + J�,(_ + 1,1)

(J� + �),(_, 1) = �,(_ − 1,1) + J	,(_, 0)

 Bℎ:C: 0 ≤ _ (6. N11)
When + number of nodes have failed:

(_J	 + �),(_, 0) = �,(_ − 1,0) + (_ + 1)J�,(_ + 1,1)

(_J� + �),(_, 1) = _J	,(_, 0) + �,(_ − 1,1)

 Bℎ:C: 3 ≤ _ ≤ � − + − 1 N�O 0 < + ≤ � − 2 (6. N12)

((� − +)J	 + �),(_, 0) = �,(_ − 1,0) + (� − +)J�,(_ + 1,1)

34

((� − +)J� + �),(_, 1) = �,(_ − 1,1) + (� − +)J	,(_, 0)

 Bℎ:C: � − + ≤ _N�O 0 < + ≤ � − 2 (6. N13)

From (6.a1) to (6.a3), we have:

,(1,1) = �J� ,(0,0)

,(1,0) = (J� + �)J	 ,(1,1) = �(J� + �)J�J	 ,(0,0)

,(2,1) = (J	 + �),(1,0)2J� − �,(0,0)2J�

From (6.a7) to (6.a11), we have:

,(1,1) = �J� ,(0,0)

,(1,0) = (J� + �)J	 ,(1,1) = �(J� + �)J�J	 ,(0,0)

,(2,1) = (J	 + �),(1,0)J� − �,(0,0)J�

From (6.a12) to (6.a13), we have:

,(_, 0) =
u©
v
©w(_J� + �)_J	 ,(_, 1) − �_J	 ,(_ − 1,1) Bℎ:C: 3 ≤ _ ≤ � − + − 1; 0 < + ≤ � − 2 ((� − +)J� + �)(� − +)J	 ,(_, 1) − �(� − +)J	 ,(_ − 1,1) Bℎ:C: � − + ≤ _; 0 < + ≤ � − 2

35

,(_, 1) =
u©©
v©
©w(_J	 + �)(_ + 1)J� ,(_ − 1,0) − �(_ + 1)J� ,(_ − 2,0) Bℎ:C: 3 ≤ _ ≤ � − + − 1; 0 < + ≤ � − 2ª(� − +)J	 + �«(� − +)J� ,(_ − 1,0) − �(� − +)J� ,(_ − 2,0) Bℎ:C: � − + ≤ _; 0 < + ≤ � − 2

Note that it is without loss of generality, assumed that there is no dependency between

Map-Reduce jobs and the worker node failures as proved by substituting the solutions

,(_, 0) and ,(_, 1) into equations from (6.1) to (6.13), where it can be shown that those

equations also hold.

The boundary probability ,(}, 0), ,(}, 1) as following:

,(}, 0) = uv
w �}J	 ,(} − 1,0) Bℎ:C: } ≤ � − + − 1; 0 < + ≤ � − 2�(� − +)J	 ,(} − 1,0) Bℎ:C: � − + ≤ }; 0 < + ≤ � − 2

,(}, 1) =
u©©
v©
©w (} − 1)J	 + �}J� ,(} − 1,0) − �}J� ,(} − 2,0) Bℎ:C: } ≤ � − + − 1; 0 < + ≤ � − 2ª(� − +)J	 + �«(� − +)J� ,(} − 1,0) − �(� − +)J� ,(} − 2,0) Bℎ:C: � − + ≤ _; 0 < + ≤ � − 2

Since ,(_, 0) and ,(_, 1) are the probabilities of _ number of Map-Reduce jobs with (� −
+) number of available nodes in the system, where + the total number of failed nodes

(can be denoted in this thesis by,���$��(� − +) pC ,!"#����(+)), by normalization, we

obtain the following:

,(0,0) + |ª,(_, 0) + ,(_, 1)« = ,���$��(� − +) = ,!"#����(+)	
#M9

36

,(0,0) = ,!"#����(+) − |ª,(_, 0) + ,(_, 1)«	
#M9

Note that as ,(_, 0) and ,(_, 1) are the probabilities under the condition of + number of

failed nodes,

,(0,0) + ∑ ª,(_, 0) + ,(_, 1)«	#M9,!"#����(+) = 1

Then, the following holds:

,(0,0) = ,!"#����(+) − |ª,(_, 0) + ,(_, 1)«	
#M9

Since we already solved ,(+) = ,!"#����(+) in node resilience model (5.1) as follows:

,(+) = ,!"#����(+) = ,�
��(� − +) = cGCd0 × �!(� − +)!∑ �!(� − +)!�0M7 (GC)0

We have:

,(0,0) = ,�
��(� − +) − |ª,(_, 0) + ,(_, 1)«	
#M9

Finally, we solve the 3-tuple analytical availability model as following:

,(_, `, +) = ¬,(_, 0),�
��(� − +),(_, 1),�
��(� − +) Bℎ:C: 0 ≤ _ < }, 0 ≤ + ≤ �, ` ∈ (0,1)

,(}, `, +) = ¬,(}, 0),�
��(� − +),(}, 1),�
��(� − +) Bℎ:C: 0 < }, 0 ≤ + ≤ �, ` ∈ (0,1)

37

Bℎ:C: z = �(J	 + J�)(� − +)J	J� < 1 (6.14)

Using equation (6.14) and little’s law, we can obtain the useful functions as following:

1. Mean of throughput (departure rate) in the cluster where number of the worker nodes

= � − +:

�� = | J�,(_, 1, +) = | J�,(_, 1)	
#M9

	
#M9

(GC)0 t!(t − +)!∑ t!(t − +)! (GC)0�0M7

Bℎ:C: 0 ≤ _ < }, 0 ≤ + ≤ � N�O �(J	 + J�)(� − +)J	J� < 1

2. Mean of jobs in the cluster where number of the worker nodes = � − +:

�® = |(_,(_, 0, +) + (} − _),(} − _, 1, +))	
#M9

= |(_,(_, 0) + (} − _),(} − _, 1))	
#M9

(GC)0 t!(t − +)!∑ t!(t − +)! (GC)0�0M7

Bℎ:C: 0 ≤ _ < }, 0 ≤ + ≤ � N�O �(J	 + J�)(� − +)J	J� < 1

3. Mean of the turnaround time:

o� = �®�� = ∑ ª_,(_, 0) + (} − _),(} − _, 1)«	#M9 ∑ J�,(_, 1)	#M9

Bℎ:C: 0 ≤ _ < }, 0 ≤ + ≤ � N�O �(J	 + J�)(� − +)J	J� < 1

38

CHAPTER IV

SIMULATIONS

Parametric simulations have been conducted in order to observe the trends of the

availability and the impact of the availability on the performance, particularly throughput

and turnaround time, based on the proposed analytical model.

It is assumed that the maximum number of spare nodes (�) is set to 10 for practical

purposes (note that simulation results become invisible beyond �= 10 as far as any

change in availability trend is concerned, in other words due to convergence), and

}=500, � = 3.0/s, J	 = 3.5/s, J� = 3.5/s. Five different failure/repair (i.e.,
!�) ratios are

simulated such as 0.1, 0.5, 0.8, 1.0 and 2.

39

Figure 12 Trends of availability

The plots above demonstrate the availability trends versus the number of available nodes

(i.e., +) at different
!� ratios. Just as expected the availability with higher

!� ratios picks up

more quickly than the ones with lower
!� ratios at a given + value. Further, it is observed

that as the value of + increases the gap between availability plots narrows. This implies

this simulation repair process has more significant effect as fewer number of nodes are

engaged and available. However, notice that there is no bouncing point observed other

than convergence. It might be possibly argued that there is a missing variable or the

availability is somehow dragged down when + value picks up.

In order to look at the impact of the cost of availability (i.e., the higher availability

exercised the higher cost of resources required) on the performance, a throughput

analysis has been conducted and the results are shown as follows.

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

A
v
a
lia

b
ili

ty

Number of nodes (k)

f/r = 2.0

f/r = 0.5

f/r = 1.0

f/r = 0.1

f/r = 0.8

Avaliability

40

Figure 13 Trends of throughput

With + as a common variable in the two independent probability terms in the proposed

availability model, it is demonstrated that the throughput trends concur with the variable

+ when it increases. This is made possible due to the repair process to pick up failed

nodes back into the loop.

In order to further observe the direct impact of availability on the throughput at different

!� ratios, the following plots are drawn with + = 0, 1, 3 and 5. Each plot in the graph

below demonstrates the throughput trends versus their corresponding availability at

various + values

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0 1 2 3 4 5 6 7 8 9 10

T
h
ro

u
g
h
p
u
t
(j

o
b
s/

se
co

n
d
)

Number of nodes (k)

f/r = 1.0

f/r = 0.8

f/r = 0.5

f/r = 0.1

f/r = 2.0

Throughput

41

Figure 14 Throughput versus availability trends

The plot above reveals the trends of throughput versus the availability trends with

different number of failure nodes (i.e., +). It is observed that when + = 0, the availability

stretches out from about 0.79 to converge 1.0 and the throughput stretches out from 1.38

to 1.72 as !� stretches from 2.0 down to 0.1 (specifically, the slope, i.e.,

(∆throughput/∆availability), is 1.62); when k = 1, the availability from 0.952 to 1.0, and

the throughput from 1.65 to 1.73 ((∆throughput/∆availability), is 1.666); when + = 3, the

availability from 0.9954 to 1.0, and the throughput from 1.7275 to 1.7345

((∆throughput/∆availability), is 1.52); and when k = 5, the availability from 0.9995 to

 1.2

 1.32

 1.44

 1.56

 1.68

 1.8

 0.7 0.73 0.76 0.79 0.82 0.85 0.88 0.91 0.94 0.97 1

T
h

ro
u

g
h

p
u

t
(j

o
b

s/
s)

Availability (k = 0)

f/r = 0.1

f/r = 0.5

f/r = 0.8

f/r = 1.0

f/r = 2.0

Throughput

 1.62

 1.656

 1.692

 1.728

 1.764

 1.8

 0.94 0.946 0.952 0.958 0.964 0.97 0.976 0.982 0.988 0.994 1

T
h

ro
u

g
h

p
u

t
(j

o
b

s/
s)

Availability (k = 1)

f/r = 0.1

f/r = 0.5

f/r = 0.8

f/r = 1.0

f/r = 2.0

Throughput

 1.727

 1.729

 1.731

 1.733

 1.735

 1.737

 0.995 0.9955 0.996 0.9965 0.997 0.9975 0.998 0.9985 0.999 0.9995 1

T
h

ro
u

g
h

p
u

t
(j

o
b

s/
s)

Availability (k = 3)

f/r = 0.1

f/r = 0.5

f/r = 0.8

f/r = 1.0

f/r = 2.0

Throughput

 1.733

 1.7334

 1.7338

 1.7342

 1.7346

 1.735

 0.999 0.9991 0.9992 0.9993 0.9994 0.9995 0.9996 0.9997 0.9998 0.9999 1

T
h

ro
u

g
h

p
u

t
(j

o
b

s/
s)

Availability (k = 5)

f/r = 0.1

f/r = 0.5

f/r = 0.8

f/r = 1.0

f/r = 2.0

Throughput

42

1.0, and the throughput from 1.7335 to 1.7345 ((∆throughput/∆availability), is 2.0).

Notice that the trends are inconsistent as far as the slopes are concerned and as the +

value picks up from 0, 1, 3 to 5, the trends are neither monotonic increase nor decrease.

In order to further observe the impact of availability on the job turnaround time at

different map/reduce service time J	, J� ratios, the following plots are drawn with

number of nodes in the cluster from 0 to 10. Each plot in the graph below demonstrates

the turnaround time trends versus their corresponding number of the worker nodes

values.

Figure 15 Trends of the job turnaround time

The plots above demonstrate the turnaround time trends versus the number of the worker

nodes at different J	, J� ratios. It is observed that the turnaround time will linearly

decrease by increasing number of the worker nodes in Map-Reduce computing. However,

the slop (∆turnaround/∆k) is (141-137.8)/8 = 0.4 for the service rates J	, J� = 3.5/t. In

other words, when the number of worker nodes begin to saturate, for example, two nodes

 130

 133

 136

 139

 142

 145

 148

 151

 154

 157

 160

 0 1 2 3 4 5 6 7 8 9 10

T
u
rn

a
ro

u
n
d
 T

im
e
 (

se
co

n
d
s)

Number of Nodes

rate = 3.5

rate = 3.4

rate = 3.3

rate = 3.2

rate = 3.1

Turnaround Time

43

are already be able to keep the system in a stable (
>(K~�K�)(�30)K~K� = �>K�(973°)K�g = >K� = �.7�.9 < 1)

in our cases, adding more spare worker nodes could not give us much more performance

improvement. In this case where each of the rates is 3.5/s, we only gain the performance

improvement ratio by 0.3 (0.4/average turnaround time=137.8x4x0.4 ≈ 0.3%) per node.

From Figure 12, we also know that the availability has almost reached 100% when the

number of nodes + is 3 and the repairing speed is faster than the node failure. Therefore,

it seems not worth providing the number of spare nodes more than three in order to

improve the performance 0.3%/node in this case. Maybe this conclusion can explain that

Hadoop Map-Reduce framework suggested the default replication factor to be 3 rather

than 4 or 10.

44

CHAPTER V

CONCLUSION AND DISCUSSIONS

This paper has presented an analytical model to evaluate the availability and performance

of Map-Reduce computing on a Hadoop architecture.

The proposed model involves a set of variables, simulation of the number of Map-Reduce

jobs, and the number of the worker nodes engaged as well as a few constants such as job

arrival, and departure rates, node failure and repair rates. The proposed availability model

provides a comprehensive yet theoretical basis to assure and optimize the design of Map-

Reduce computing in particular terms of availability and with reference to the

performance (particularly, throughput, turnaround time) as well.

Parametric simulations have been conducted and it demonstrates efficacy in assessing the

availability, and it has been observed that the availability with higher
!� ratios picks up

more quickly than the ones with lower
!� ratios at a given + value; the throughput trends

concur with the availability trends as the + value (the number of available nodes) picks

up. This is made possible by the repair process to pick up failed nodes back into the loop;

and the trends are inconsistent as far as the slopes (∆throughput/∆availability) are

concerned and as the + value picks up from 0, 1, 3 to 5. The last parametric simulation is

45

performed for obtaining the job turnaround time at different map/reduce service time

J	, J� ratios and various number of the worker nodes. The results show that it may not

be worthwhile to prepare more than two spare nodes for backing up a worker node in the

cluster.

46

REFERENCES

[1] K. Salah and R. Boutaba, ”Estimating Service response Time for Elastic Cloud

Applications”, IEEE1st International Conference on Cloud Networking, 2012.

[2] ”Bigdata High Availability (HA) Architecture”, Blazegraph (white paper).

[3] Jiang, Li; Xu, Qiang; Eklow, Bill, ”On effective TSV repair for 3D-stacked ICs”,

Design, Automation& Test in Europe Conference & Exhibition (DATE), 2012

[4] Ljung, Lennart. ”Model error modeling and control design.” (2000).

[5] Huang, Tian, David J. Whitehouse, and Derek G. Chetwynd. ”A unified error model

for tolerancedesign, assembly and error compensation of 3-DOF parallel kinematic

machines with parallelogramstruts.” CIRP Annals-Manufacturing Technology 51.1

(2002): 297-301.

[6] Shin, Kang G. ”Error Detection Process? Model, Design, and Its Impact on Computer

Performance.” IEEE transactions on computers 6 (1984): 529-540.

[7] Wasi-ur-Rahman, Md, Xiaoyi Lu, NusratSharmin Islam, Raghunath

Rajachandrasekar, and DhabaleswarK. Panda. ”High-Performance Design of YARN

MapReduce on Modern HPC Clusters withLustre and RDMA.” In Parallel and

Distributed Processing Symposium (IPDPS), 2015 IEEE International,pp. 291-300.

IEEE, 2015.

47

[8] Yu, Xiaolong, and Wei Li. ”Performance modeling and analysis of

mapreduce/hadoop workloads.” In Local and Metropolitan Area Networks

(LANMAN), 2015 IEEE International Workshop on, pp. 1-6.IEEE, 2015.

[9] Chao, Shen, Tong Weiqin, and SaminaKausar. ”Predicting the Performance of

Parallel ComputingModels using Queuing System.” In Cluster, Cloud and Grid

Computing (CCGrid), 2015 15th IEEE/ACM International Symposium on, pp. 757-

760. IEEE, 2015.

[10] Lin, Jian, Fan Liang, Xiaoyi Lu, Li Zha, and Zhiwei Xu. ”Modeling and

Designing Fault-ToleranceMechanisms for MPI-Based MapReduce Data Computing

Framework.” In Big Data Computing Serviceand Applications (BigDataService),

2015 IEEE First International Conference on, pp. 176-183.IEEE, 2015.

[11] Lin, Chi-Yi, Ting-Hau Chen, and Yi-No Cheng. ”On Improving Fault Tolerance

for HeterogeneousHadoop MapReduce Clusters.” In Cloud Computing and Big Data

(CloudCom-Asia), 2013 InternationalConference on, pp. 38-43. IEEE, 2013.

[12] Wang, Hao, Haopeng Chen, and Fei Hu. ”ReCT: Improving MapReduce

performance under failureswith resilient checkpointing tactics.” In Big Data (Big

Data), 2014 IEEE International Conference on, pp. 27-32. IEEE, 2014.

[13] Marynowski, Joo Eugenio, Altair OlivoSantin, and Andrey Ricardo Pimentel.

”Method for testing thefault tolerance of MapReduce frameworks.” Computer

Networks (2015).

[14] Dogra, Naveen, and Sarbjeet Singh. ”A Survey of Dynamic Replication Strategies

in Distributed Systems.” International Journal of Computer Applications 110.11

(2015).

48

[15] Ahuja, Mini Singh, Randeep Kaur, and Dinesh Kumar. ”Trend Towards the Use

of Complex Networksin Cloud Computing Environment.” International Journal of

Hybrid Information Technology8.3 (2015).

[16] R. Lammel, “Google’s Map-Reduce programming model—Revisited,” Sci.

Comput. Program., vol. 70, no. 1, pp. 1-30, 2008

[17] Apache Hadoop[Online]. Available: http://hadoop.apache.org./

[18] J. Dean and S. Ghemawat. “Map-Reduce Simplified data processing on large

clusters,” Commun. ACM, vol. 51. No. 1, pp. 107-113, 2008

[19] G. Bolch S. Greiner and H, Meer, Queueing networks and Markov chain, 1st edn,

Wiley, 1998

[20] E. Vianna G. Comarela and T. Pontes, “Analytical Performance Model for Map-

Reduce Workloads” Int J parallel Prog (2013) 41:495-525.

[21] C. Paul and M. Andrew, Introduction Time Series with R, Springer, 2009.

[22] M. Harchol-Balter, Performance modeling and design of computer systems,

Cambridge University Press, 2013

[23] K. S. Trivedi, Probability & Statistics with Reliability, Queuing, and Computer

Science Applications, Prentice-Hall, inc., 1982

[24] CISCO Troubleshooting Ethernet Collisions[Online] Available:

https://www.cisco.com/c/en/us/support/docs/interfaces-modules/port-adapters/12768-

eth-collisions.html

[25] G. Latouche and V. Ramaswami, Introduction to matrix Analytic Methods in

Stochastic Modeling, ASA-SIAM. Philadelphia, 1999

49

[26] J. Gallier, Discrete Mathematics, Springer, 2011

[27] Hadoop achitechural overview [Online]. Avaliable: https://www.datadoghq.com

/blog/hadoop-architecture-overview/

[28] V. Paxson and S. Floyd, “Wide-area Traffic: The Failure of Poisson Modeling,”

IEEE/ACM Transactions on Networking, pp.226-244, June 1995.

VITA

Zuqiang Ke

Candidate for the Degree of

Master of Science

Thesis: AVAILIBILITY MODELING AND ASSURANCE OF MAP-REDUCE

COMPUTING

Major Field: Computer Science

Biographical:

Education:

Completed the requirements for the Bachelor of Engineering in computer

science and technology at Shanghai Jiao Tong University, Shanghai, China in

September, 1987.

Completed the requirements for the Master of Science in computer science at

Oklahoma State University, Stillwater, Oklahoma in December, 2017.

