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Abstract—We are living in the era of Big Data and witnessing
the explosion of data. Given that the limitation of CPU and I/O
in a single computer, the mainstream approach to scalability is
to distribute computations among a large number of processing
nodes in a cluster or cloud. This paradigm gives rise to the

term of data-intensive computing, which denotes a data parallel
approach to process massive volume of data. Through the
efforts of different disciplines, several promising programming
models and a few platforms have been proposed for data-
intensive computing, such as MapReduce, Hadoop, Apache
Spark and Dyrad. Even though a large body of research
work has being proposed to improve overall performance
of these platforms, there is still a gap between the actual
performance demand and the capability of current commodity
systems. This paper is aimed to provide a comprehensive
understanding about current semantics-aware approaches to
improve the performance of data-intensive computing. We first
introduce common characteristics and paradigm shifts in the
evolution of data-intensive computing, as well as contemporary
programming models and technologies. We then propose four
kinds of performance defects and survey the state-of-the-art
semantics-aware techniques. Finally, we discuss the research
challenges and opportunities in the field of semantics-aware
performance optimization for data-intensive computing.

Keywords-Data-Intensive Computing; Big Data; Performance
Optimization; Semantics-Aware; Compiler-based; MapReduce;
Spark; Hadoop;

I. INTRODUCTION

With data explosion in many areas, such as scientific

experiments, telescopes, e-commerce, social media [13] and

financial service data, people are facing critical problems on

data processing and analytics. In many instances, science

is falling far behind reality in the capabilities of exploring

the valuable knowledge from enormous volume of data.

Consequently, we need to investigate and develop novel

techniques to excavate data-intensive issues [46], [47]. Jim

Gray [23] declared that “the techniques and technologies for

such data-intensive science are so different that it is worth

distinguishing data-intensive science from computational

science as a new, fourth paradigm for scientific exploration”,

in contrast to the prior three, empirical science, theoretical

science, and computational science.

Through the efforts of different disciplines, a few promis-

ing programming models and platforms have been proposed

for data-intensive computing, such as MapReduce [15],

Hadoop [5], Apache Spark [55], Dryad [26], Pregel [33],

and Dremel [35]. However, performance limitation is always

an encumbrance of these platforms even they can support

processing massive scale of data. In order to improve overall

performance of these platforms, researchers and participants

have been developing a bunch of optimization techniques

via various methodologies from different dimensions, such

as improving query processing and data management in a

distributed file system, applying machine learning technolo-

gies for determining an optimal parameter configuration for

systems and reducing data movement, enhancing memory

management to minimize the amount of data shuffling be-

tween two different stages and lessen the memory pressures

based on program analysis techniques.

There is a large body of research work involved in perfor-

mance optimizations based on semantics-aware technology.

The semantic information of data has a great effect on data

management issues such as data capture and data store;

the structure information also affects data partitions. For

now, the common algorithms for partitioning are based on

hash and range functions. In the world of program analysis,

the philosophy behind code guides the behavior of system

performance. For example, in a data-driven application,

filtering and removing unused data before a shuffling op-

eration is crucial for system performance since this kind

of optimization can reduce the amount of data shuffling.

Even though it is evident that scaling out (i.e., adding more

nodes, a.k.a., horizontally) is a fast way to improve system

performance, improving performance of each individual

node, i.e., scaling up vertically, is another option to improve

system performance. Memory management is also a critical

issue, especially for in-memory systems. How to optimize

data structure and manage objects efficiently is a major

challenge that we confront in a data-intensive computing

system. The interactions among data, code and system are

made up of a comprehensive methodology of data-intensive

computing system, which is crucial to the performance of

http://arxiv.org/abs/2107.11540v1


these platforms. Unfortunately, there is still a gap between

actual demand and system performance. In this study, we

survey semantics-aware approaches to optimize the overall

system performance.

The rest of paper is organized as follows. In Section II, we

introduce the common characteristics and several influential

paradigm shifts in the evolution of data-intensive computing.

The contemporary programming models and technologies

are reviewed in Section III. Section IV concentrates on

performance defects of data-intensive computing from the

perspective of semantics-aware technology. The current re-

search challenges and opportunities are discussed in Section

V. Finally, conclusions are presented in Section VI.

II. BACKGROUND: CHARACTERISTICS AND PARADIGM

SHIFTS

A. Common Characteristics

In comparison with other forms of computing, there are

several crucial characteristics of data-intensive computing

systems [38], [50].

1) Move code to data: The generation of an enormous

amount of data has led to the proliferation of data-

intensive applications. In the data-intensive comput-

ing ecosystem, distributed file systems [45] split data

among machines so that many processing nodes can

work simultaneously. In this scenario, a program or

algorithm is transferred to nodes where data reside,

and avoid moving data to computing nodes as much as

possible, which is also know as “move code to data”.

Obviously, the key to achieve high performance in data-

intensive computing is to minimize the amount of data

shuffling between two different stages.

2) Programming model: Data-intensive computing sys-

tems leverage a machine-independent approach to par-

tition a problem into concurrent tasks, each of which

is expressed in terms of high-level operations on data

[8]. To counterbalance overall performance of appli-

cations, the runtime system transparently orchestrates

scheduling, execution, load balancing, communications,

and movement of programs and data across distributed

computing nodes. Therefore, we need programming

models and language tools to formalize data flows and

transformations in assimilating new dataflow program-

ming languages and sharing libraries of common data

manipulation algorithms such as join or sort operations.

3) Reliability and availability: Data-intensive computing

systems with hundreds or thousands of processing

nodes are more sensitive to hardware failures, commu-

nications errors and software bugs. In order to enable

systems to continue operating properly in the event

of failures, data-intensive computing systems should

be fault-tolerant. For example, there should be a data

replication mechanism in the storage system to recover

data when data is missing. The runtime systems have an

ability to store intermediate processing results on disk

or in memory and monitor status of computing nodes

to recover from an incomplete processing automatically

and transparently.

4) Inherent scalability: The mainstream approach to scal-

ability is to distribute computation among a large

number of processing nodes in clusters or in cloud.

Data-Intensive computing systems can be scaled out

horizontally for accommodating massive volumes of

data in which computations on data can be distributed

to processing nodes.

B. Paradigm Shifts

With the increasingly expanding of datasets, there is an

increasing amount of diversified challenging issues regarding

processing massive volume of data for many decades. Since

data size increases much faster than computing resources.

In order to cope with these issues, paradigm shifts rapidly

[10].

1) A shift in processor technology: Even though the clock

cycle frequency of processors was doubling approxi-

mately every 18 months following Moore’s law, be-

cause of power supply constraints, the clock speed

highly lags behind. Alternatively, people made an effort

to increase numbers of cores in a single processor to

make application run in parallel [4], [7]. Unfortunately,

with the limitation of hardware technologies, it is very

hard to embed as much number of cores in a single pro-

cessor as we want. Hence, scientists started to initiate

data-intensive computing, in which a series of jobs are

distributed to different computing nodes containing the

needed raw data. Even though data-intensive computing

has been proposed and studied for a few years, it is still

a big challenge for data processing system to optimize

parallelism across nodes in a cluster.

2) A shift in I/O subsystem: Data-intensive computing has

been changing the way to capture and store data [43],

which includes data storage device, architecture, as well

as data access mechanism. In the initial, hard disk

drive (HDD) with slower random I/O performance is

used to store persistent data. In order to make data

accessed easily and promptly for further analysis, data

processing engine formats data and uses specialized

query processing techniques to alleviate this limitation.

With the development of storage technologies, solid-

state drive (SSD) and phase-change memory (PCM)

help mitigate the difficulty, but which are far from

enough. There are severe drawbacks and limitations

among existing storage architectures when it comes to

data-intensive computing systems. For example, how

to store and access data efficiently in a distributed

file system is still a challenge issue for data-intensive



computing frameworks. In consequence, a newer stor-

age subsystem needs to be redesigned for large-scale

distributed systems.

3) A shift in scientific investigation: Contemporary scien-

tific research demands new data mining tools, novel

mathematical and statistical techniques, advanced ma-

chine learning algorithms as well as other data analyti-

cal disciplines, to facilitate the process of data-intensive

computing problems [10]. For example, it is very dif-

ficult for many traditional methods that perform well

on small data to scale up on massive data. We should

take data-intensive computing problems, such as het-

erogeneity, noise accumulation, spurious correlations

and incidental endogeneity, into consideration to design

effective statistical and machine learning methods for

harnessing data-intensive computing issues, in addition

to balancing the statistical accuracy and computational

efficiency [17].

III. METHODOLOGY: PROGRAMMING MODELS AND

PROCESSING TECHNOLOGIES

With massive data generated from various fields, it is

necessary to develop novel programming models and pro-

cessing technologies to cope with data-intensive computing

issues. From the perspective of different disciplines, there

is a wide variety of programming and platforms that have

been developed to meet their specific purposes. However,

they cannot match practical needs. In this section, we

survey contemporary programming models and processing

technologies on data-intensive computing systems.

A. Programming Models

Data-intensive computing needs programming models to

handle enormous volume of data efficiently. A programming

model represents a style of programming and interface

paradigm for developers to encode applications, as well

as provides a way to control scheduling, execution, load

balancing, communications, and movement of programs and

data across distributed computing nodes. Academia and

industries have been proposing and developing a set of data-

intensive programming models, as illustrated in Table I. In

this section, we will discuss and compare two major pro-

gramming models for data-intensive computing, MapReduce

and Functional Programming.

1) MapReduce is a framework for programming com-

modity computer clusters to perform large-scale data

processing in a single pass [15]. For a single MapRe-

duce job, programmers implement two basic procedure

objects, Mapper and Reducer, to present users’ logical

plan on dataset. The functionality of Mapper object per-

forms filtering and sorting operations on input dataset

and generates a series of intermediate data with key-

value pair format as the inputs of Reducer objects.

Reducer method performs an aggregate operation, such

Programming

model
Features Examples

MapReduce

1. A simple paradigm with functionalities of Map and Re-

duce.

2. Key-value pairs provides good support of parallelization

and scalability.

3. Parallelable and scalable to hundreds or thousands of

processing nodes.

4. Tolerate machine failures gracefully.

MapReduce

Hadoop

Functional

Programming

1. Specify semantic logic of computation declaratively.

2. A philosophical match between functional programming

and parallelism based on immutable feature.

3. Use tail-recursive approaches to reduce intermediate data

and variables shared in different loops.

4. The features of high-order functions and type inference

are convenient to implement machine learning algo-

rithms.

5. Process the input data as streams format.

6. Lambda expressions provides a good way to define data

operation functions.

Spark

Flink

SQL-Based

1. Support declarative programming paradigm.

2. One of the most popular programming model for data-

centric applications using data-driven operations.

3. Standard protocol supports interoperability between dif-

ferent platforms and frameworks.

HiveQL

CasandraQL

SparkSQL

Drill

Actor Model
1. A message-oriented architecture for communicating.

2. Stateless and isolation among different actors.

3. Support concurrency based on actor mechanisms.

Akka

Storm

S4

Statistical and

Analytical

1. Support declarative programming paradigm.

2. A comprehensive and encapsulated API in function for-

mat.

3. Matrix-based data structure in computations.

R

Mahout

Dataflow-Based

1. Provide a trackable state during execution since programs

are treated as connections of tasks in combination with

control logic.

2. Flexible ways of definition, such as graph-based manner

and Hash tables.

Oozie

Dryad

Bulk

Synchronous

Parallel

1. Message-based communication that reduces the effort for

users to handle low-level parallel communications.

2. A barrel-based synchronization mechanism that guar-

antees consistency and fault tolerance in an easy and

understandable way.

Giraph

Hama

High-Level DSL 1. Provide Domain Specific Language (DSL) model to spec-

ify data-intensive applications.

Pig Latin

Jaql

AQL

LINQ

Table I
TAXONOMY OF PROGRAMMING MODELS ON DATA-INTENSIVE

COMPUTING

as counting the number of students in each queue and

yielding name frequencies. Apache Hadoop [5] is an

open-source implementation of Google’s MapReduce

paradigm [15]. In the Hadoop ecosystem, platform uses

a distributed file system, called Hadoop Distributed File

System (HDFS) [45], to provide high throughput access

to massive data. Fault-tolerance and dynamic scalability

support adding or removing computing nodes without

altering the existing systems and programs, which

makes it one of most widespread systems in the data-



intensive ecosystem.

2) Functional Programming is a style of programming

that supports immutable state, higher order functions,

type inference, the processing of data as streams,

lambda expressions, and concurrency through software

transactional memory. Because of these features, it is

becoming a novel paradigm for the next generation

of data-intensive computing systems [60]. Declarative

manner in functional programming provides an easier

and more convenient way for users to specify the

semantic logic of computation, rather than the control

flow of procedures. In principle, states in a functional

program are immutable, which means that states cannot

be modified, i.e., no side effects. The features of

high order functions, which define a program in a

functional manner and take one or more functions as

arguments, are convenient for algorithm design when

passing functions as parameters. For example, when

designing a machine learning algorithm, it is feasible to

pass different regularizes, update rules, or even learn-

ing algorithms altogether as function parameters. Type

inference system also gives programmers a way to im-

plement algorithms efficiently since it is not necessary

to pay special attentions to type information. There is a

great deal of platforms adoring functional programming

languages, for example, Apache Spark [55] and Flink

[3] utilize features of functional language to facilitate

developers to design data-intensive applications in an

easy and declarative way.

B. Processing Technologies

It is crucial to explore a series of tools to solve data-

intensive issues. To the best of our knowledge, there is a

wide variety of classifications based on different dimensions

[10], [29], [30]. In this paper, we concentrate on the follow-

ing four classes, i.e., query processing, batch processing,

stream processing, and interactive processing.

1) Batch processing is an execution of a bunch of jobs

in a program that take a set of data files as input,

process the data, and produce a list of output data

files. In recent years, there are many batch processing

systems proposed, such as MapReduce [15], Hadoop

[5], Spark [55] and Pregal [33]. These systems analyze

large dataset in batches in a distributed and parallel

fashion. In particular, Apache Spark [55] is a fast and

general engine for large-scale data processing that sup-

ports scalability and fault tolerance of MapReduce [15].

Apache Spark introduces a distributed memory abstrac-

tion, named Resilient Distributed Datasets (RDD) [54],

to support in-memory computations across multiple

nodes in a fault-tolerant manner.

2) Streaming processing is a real-time system that pro-

cesses continuous input of data. In a real-time system,

data processing requires fast response, which means

the rate of processing should be not slower than the

rate of incoming data. Data-intensive streaming plat-

forms include Storm [49], Spark Streaming [56], S4

[40], etc. Spark Streaming is an internal component of

Apache Spark that enables scalable, high-throughput,

fault-tolerant processing of live data streams. Data

can be taken from many sources like Kafka, Flume,

Kinesis, or TCP sockets, and can be processed using

complex algorithms expressed with high-level functions

like map, reduce, join and window. Finally, results are

output to file systems, databases, or live dashboards.

3) Query processing is a platform that can translate user

queries into data retrieval and processing operations,

and execute these operations on one or multiple nodes.

Many distributed computing platforms like Hive [48],

Pig Latin[44], and Spark SQL [6] are query process-

ing systems. In these frameworks, programmers use a

declarative manner to specify their jobs, which are then

translated into appropriate optimized operations. Spark

SQL is built atop of Apache Spark to integrate rational

processing with Spark’s functional programming API

and MLlib [36] to work with structured and semistruc-

tured data using either SQL or DataFrame API. In

Spark, DataFrame is a distributed column-based collec-

tion of data. In comparison with a table in a relational

database or a data frame in R/Python, it is similar

to both conceptually, but with richer optimizations

under the hood. DataFrames can be constructed from

a wide array of sources such as structured data files,

tables in Hive, external databases, or existing RDDs.

Additionally, Spark has a catalyst layer to optimize the

execution plan of SQL queries.

4) Interactive processing is a system that gives users a

way to undertake their own analysis in an interactive

manner [12]. In an interactive analytical processing

framework, users can interact with systems directly, and

review, compare, and analyze the input data in tabular

or graphic format. Google’s Dremel [35], Apache drill

[22] and Apache Spark [55] are distributed systems for

interactive analysis of data-intensive computing. One of

Spark’s most compelling features is its capability for

interactive analytics. Through this feature, developers

can incorporate a variety of Spark libraries, such as

Spark Streaming for visualizing streaming, machine

learning algorithms [36] for iterative tasks, and GraphX

[51] for displaying graph analyses.

IV. PERFORMANCE DEFECTS

The availability of massive volume of data has led to the

proliferation of data-intensive applications. The mainstream

approach to scalability and expandability is to distribute data

and computation to a large number of machines so that

multiple processing nodes can work simultaneously. In order

to process growing datasets efficiently, there exists a large



body of techniques [16], [18], [19], [20], [24], [25], [32],

[39], [52], [53], [57] that spans a variety wide of disciplines

to improve data-intensive computing system performance. In

this paper, we survey promising semantics-aware approaches

to optimize the performance from the perspective of program

analysis.

A. Data Access

With the dramatic increase of data size, scientists and

engineers take great efforts to deal with data-intensive issues.

Apart from considerable computational needs, tremendous

I/O operations are also required. There are several ways to

improve I/O performance. One of the promising methods is

to reduce disk access during execution. This can be achieved

by two approaches: 1) caching the frequently used data in

memory instead of disks; 2) restructuring application code

in a way that maximizes data reuse. An approach [28] to

improve I/O performance is by reducing disk access through

a new concept called disk reuse maximization. In this

compiler-based approach, it uses a polyhedral tool to analyze

data dependencies in the application code to maximize data

reuse in a given set of disks as much as possible before

moving them to other disks. Another approach [9] shows a

new way of moving computations near to data in order to

minimize data movement by decoupling I/O to address the

I/O bottleneck issues via using compiler technologies.

B. Memory Management

In order to speed up development cycle and provide a

friendly application interface, most data-intensive systems

are developed in managed languages, such as C# and Java.

Even though, there is an automatic memory management

for some programming languages. Memory management

in a data-intensive system is often prohibitively expensive.

For instances, allocating and de-allocating a set of data

objects would consume a huge of memory, which leads

to poor performance of runtime system. In this scenario,

systems could incur a high memory management overhead to

allocate and release memory, and prolong the execution time.

The computation on a worker node often suffers extensive

memory pressure, i.e., the heap’s limit is reached and more

memory is required. Data-intensive applications may crash

because of out-of-memory errors. The execution time can

also be affected by garbage collection (GC), which is another

challenging issue for performance optimization. In order

to fix out or alleviate memory pressure, several memory

optimization approaches have been proposed. FACADE [42]

is a novel compiler framework, which tries to automatically

transform data paths of an existing data-intensive application

to generate highly-efficient data manipulation code. In FA-

CADE, the number of runtime heap objects created for data

types in each thread is (almost) statically bounded, which

reduces memory management cost and improves scalability.

In [41], a garbage collector called Yak is designed to

provide high throughput and low latency for all JVM-based

languages. In Yak, the management heap is divided into

a control space (CS) and a data space (DS) based on the

observation that there is a clear distinction between a control

path and a data path in a typical data-intensive system.

C. Data Shuffle

In oder to remedy the drawback of CPU clock frequency,

computations and data can be distributed on a larger number

of commodity computers to improve the performance of

data-intensive applications [15], [58]. In such data parallel

programs, data shuffling among computers can dominate the

whole program performance. In recent years, how to reduce

data shuffling is an active research area [14], [21], [59].

In [59], a few useful properties for User Defined Function

(UDF) are identified to reason about data-partition properties

across phases. [21] proposes a series of semantics-aware

optimizations on data-intensive program’s procedural code,

such as data filtering, eliminating unnecessary code and data

and calculating small derived values earlier, to minimize the

amount of data-shuffling between the pipeline stages of a

distributed data parallel program.

D. Data Analysis

In data-intensive computing, it is crucial to generate an

efficient execution plan based on properties of code, data

and platform. It may lead to a poor performance by using a

fixed priori experience about these properties to determine

execution plans, as most current platforms do. Moreover, it

is difficult to extract and estimate these properties according

to the highly distributed nature of data-intensive computing

frameworks and the freedom that allows users to use UDF

to represent a series of data operations. In [1], a framework,

namely RoPE (Reoptimizer for Parallel Executions), is pro-

posed to collect code and data properties by piggybacking

on job execution. Then it determines execution plans by

feeding these properties to a query optimizer component. In

[27], a framework called MANIMAl automatically analyzes

MapReduce programs and applies appropriate data-aware

optimizations to the programs.

V. RESEARCH CHALLENGES AND OPPORTUNITIES

Data-intensive computing is playing a critical role in

transforming economies and delivering a new wave of pro-

ductive growth [34]. While data-intensive computing brings

many attractive benefits, it is also facing grand challenges

[2], [10], [29], [30], [31], [37] and research opportunities. To

tackle data-intensive computing problems, most difficulties

lie in data capture, storage, searching, sharing, analysis, and

visualization [11]. We classify these challenges into three

categories: data management, data analytics, and infrastruc-

ture issues.



A. Data Management

Data management confronts many issues about massive

amount of heterogeneous and complex data.

1) Data Representation: Because of diverse data sources,

datasets often include certain levels of heterogeneity

such as type, structure, semantics, organization, gran-

ularity, and accessibility. The target of data represen-

tation is to make data more meaningful for computer

analysis and user interpretation. It is inefficient for users

to do analytics from an improper data representation

since it may reduce the value of original data. There-

fore, there should be a competent data representation

to reflect structure, hierarchy, and variety of the data to

enable efficient operations on different datasets.

2) Data Reduction and Compression: How to remove

redundant data in raw datasets and compress them

without losing potential value is critical to reduce

overhead and improve overall system performance. Due

to the enormous size of raw datasets, it is necessary to

reduce this huge volume of data into a manageable size

for a storage system. In addition, it is also necessary to

remove duplicated data for processing data efficiently.

Although there are already data reduction methods such

as dimension reductions techniques to reduce data size,

there are many research opportunities on redundancy

elimination and compression-based reduction.

3) Data Life-Cycle Management: The amount of digital

data increases at an unprecedented rate, so one of the

urgent challenges is that there is no suitable storage

system to support accessing the huge size of data in

an efficient way. Generally speaking, the value behind

data depends on data freshness, hence it is critical to

design algorithms to decide which data shall be kept

and which data shall be discarded. Besides that, a

novel storage system is needed to support accessing,

searching, moving, and sharing data in an efficient and

scalable way.

B. Data Analytics

1) Expandability and Scalability: The first impression of

data-intensive computing is the massive size of data.

Therefore, the most important challenge is how to

scale up analytical algorithms to process more complex

datasets and scale out horizontally to support increas-

ingly expanding datasets.

2) Timeliness: For those real-time data-intensive appli-

cations, like navigation, social networks, Internet of

Thing, it is critical for data-intensive computing system

to ensure the timeliness of response when the volume of

data to be processed is very large. Search is a frequent

operation to find elements that meet a specified crite-

rion. The complexity of time and space for the search

algorithm on massive volume of data is a challenging

issue, especially for real-time systems.

3) Data Privacy and Security: With the proliferation of

online and mobile services, privacy and security con-

cerns are emerging regarding accessing and analyzing

personal information. It is important to enhance systems

to eliminate privacy leakage and security issues without

impeding analyses and affecting system performance.

This requires a comprehensive solution including net-

work, software system, and data.

C. Infrastructure Issues

1) Computer Architecture: In recent years, scientific com-

puting turns to use co-processors (accelerators) to com-

bat limitation of CPU. For example, graphics process-

ing units (GPUs) has been widely used to speed up

numerical computation in many areas such as scientific

modeling and machine learning. However, it is not easy

to implement applications and gain ideal performance

speedup on GPU. On the lower level of programming

models, CUDA provides an efficient way to enable

performance acceleration on Nvidia GPUs. On the

higher level of programming platforms, Tensorflow is

one of the most popular libraries to enable machine

learning to utilize powerful GPUs. To compare with

GPUs, Intel Xeon Phi Many Integrated Core (MIC)

is a homogeneous architecture with more cores and

hardware threading than in a regular processor. A

key advantage of MIC is to support general parallel

programming models and languages, such as OpenMP

and pThread, to run on many cores.

2) Storage System: How to efficiently store and access

massive volume of data is still a critical issue for indus-

try and academia. For the existing storage architectures,

there are some severe drawbacks and limitations to

support data-intensive computing systems very well.

For example, even though the development of solid-

state drive (SSD) and phase-change memory (PCM)

helps mitigate the difficulties, these newer technologies

fail to deliver equal speed for random and sequential

I/O access, which leads to think over how to design

a novel layered storage subsystem for data-intensive

computing systems.

3) Data Transmission: The key point to improve the

performance of data-intensive computing system is how

to minimize data shuffling between two different stages,

which depends on the network bandwidth and data

volume transmitted between stages. From this point

of view, network capacity is one of bottlenecks in

data-intensive computing systems, especially when the

volume of communication is heavy. Considering the

network bottlenecks, researchers have been proposing

a great deal of approaches to improve the efficiency

of data transmission, such as restructuring application

code in a way to maximize data reuse, optimizing the

execution plans to filter or remove unused data before



shuffling operations. But it is still a challenging issue

to understand the semantics of application code and

data, which may facilitate potential optimizations on

software-defined environment.

4) Energy Management: As data volume and analytics

demand expand dramatically, there is an increasing

consumption on energy. Especially in IoT devices

with limited energy supply, this issue is becoming

more critical. Such a kind of energy consumption in

large scale computing systems has attracted growing

attentions. Therefore, a system-level power control and

management mechanism is needed for data-intensive

computing systems without affecting their extensibility

and accessibility.

5) Multi-Discipline: It is apparent that data-intensive ana-

lytics is an interdisciplinary field that requires expertise

from different domains to collaborate to mine hidden

values. Hence, a sophisticated cooperation among var-

ious disciplines is needed to explore technologies in

data analytics. Scientific workflow management sys-

tems provide a good way to connect multiple domain

experts in the support of composing and executing a

series of computational or data manipulation steps in a

scientific application.

VI. CONCLUSIONS

In order to tackle massive volume of data, a wide variety

of data-intensive computing systems have been proposed.

Regarding the performance optimization of these platforms,

scientists and researchers from various disciplines have

developed a large body of techniques to improve overall

performance of systems. However, there are still perfor-

mance defects among these systems. In order to provide

a comprehensive understanding of data-intensive comput-

ing, especially semantics-aware methods to improve system

performance, in this study we give a thorough overview

including common characteristics and paradigm shifts in

th evolution, the promising programming models and tech-

nologies, a classification of performance defects from the

perspective of semantics-aware approaches, as well as re-

search challenges and opportunities. While the approaches

mentioned in Section IV have been demonstrated to be

effective, there is still much room to explore and improve

system performance. For example, a major issue is network

communication and data shuffling. In our future research, we

will investigate a systematic approach based on semantics-

aware technology to reduce communication between nodes

and minimize the amount of data shuffling between pipelined

stages. In addition, we will enhance execution plans and

conduct in-situ optimization based on semantics extracted

from data, code, and system profiling.
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