
Edge-supported Microservice-based
Resource Discovery for Mist Computing
Arash Sattari, Rouhollah Ehsani, Teemu Leppnen, Susanna Pirttikangas and Jukka Riekki

Center for Ubiquitous Computing,
University of Oulu, Finland

{arash.sattari, rouhollah.ehsani, teemu.leppanen, susanna.pirttikangas, jukka.riekki}@oulu.fi

Abstract—Mist computing extends the Internet of Things
computing infrastructures to the IoT devices at the edges of the
networks. The dynamic characteristics of the IoT environments
and resource limitations of the devices introduce challenges to the
orchestration of the mist platform resources. In this paper, we
present a hybrid resource discovery solution for mist, based on
the IETF CoRE Resource Directories deployed as containerized
Microservices to the supporting edge devices. This way the di-
rectory instances can be deployed on-demand as part of the edge
platform, where each instance serves a mist network connected
to the hosting edge device. This enables low latency resource
queries at one-hop distance for the mist applications. At the edge
layer, the directories form a distributed discovery infrastructure,
connecting resources in disparate mist networks with each other
and cloud and edge applications. A real-world prototype of
such discovery infrastructure is implemented, based on low
resource edge devices hosting the directory instances and low-
power embedded devices as the mist resource servers and clients.
The prototype is evaluated with latency and power consumption
measurements, where the results show that discovery latency is
as low as half a millisecond with a low power consumption.

Index Terms—Distributed Resource Directory, Container, En-
ergy Efficiency, Low Latency, Fog Computing

I. INTRODUCTION

Mist computing [1] extends the Internet of Things (IoT)
computational infrastructures from the cloud through the edge
to the connected IoT devices at the extreme endpoints of net-
works. The cloud provides high availability of computational
resources and large-scale data for IoT applications, whereas
the edge layer, exemplified by fog computing platforms, add
computational layers between the cloud and the data produc-
ing devices. This lowest layer, consisting of these resource-
constrained IoT devices, is considered as the mist layer. Such a
hierarchical three-tier IoT platform aims to reduce the massive-
scale data transfer load on the networks and provides real-time
capabilities in close proximity of the users. Data processing
already at the data sources in the mist layer increases the
energy efficiency of the mist devices and addresses privacy

This paper has been accepted for publication in the IEEE International
Conference on Pervasive Intelligence and Computing (IEEE PICom
2020), August 17-21, Online, 2020.

©2020 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

concerns, as only the relevant data is shared and transmitted
upstream.

Challenges lie in the nature of the mist layer, built on con-
strained IoT devices, a mixture resources based on low-power
embedded systems and mobile devices with integrated sensors
and actuators. Such devices can only perform lightweight data
processing and need to rely on different operational modes
to reduce their power consumption. Moreover, the devices
operate on constrained wireless networks with a variety of op-
timized low power communication technologies and protocols.
In such an open environment, the role of a mist computing
platform is to discover, integrate, assemble and manage the
available resources for the provisioned IoT applications.

Resource discovery on the IoT device level has been ad-
dressed before [2], [3], with client-server solutions provided as
system services and multicast-based direct discovery between
devices. However, multicasting in these constrained device
networks is challenging due to device limitations and increased
energy consumption. In the client-server solutions, a limiting
factor is the resource query processing overhead. Here, the
Internet Engineering Task Force (IETF) has proposed Con-
strained RESTful Environments (CoRE) framework for IoT
application development, including Resource Directory (RD)
specifications, that address low power operations on the IoT
devices [4].

This paper presents, as the first contribution, distributed
resource discovery solution for mist computing platforms that
employs edge devices to host IETF CoRE RD instances in
the proximity of the mist devices. This way the edge devices,
such as gateways and proxies that the mist devices inherently
are connected to, realize low latency resource discovery with-
out the limitations of the mist devices. The virtualized RD
instances, implemented as containerized Microservices that
follow the CoRE specifications, are deployed on-demand and
managed as system services provided by the edge platform.
Moreover, the RD instances at the edge layer form a horizontal
distributed peer-to-peer (P2P) resource discovery infrastruc-
ture, which in turn enables the cloud and edge applications to
discover mist resources. The second contribution of the paper
is a real-world evaluation of the power consumption of the
containerized Microservice-based RD instances. To the best
of our knowledge, such evaluation has not been presented in
the previous work on IoT resource discovery.

The rest of the paper is organized as follows. In Section 2,



the background in IoT device resource discovery is presented.
In Sections 3 and 4, the proposed resource discovery solution
is described in detail and a real-world prototype is evaluated
with regard to the discovery latencies and power consumption
at the edge devices. In Section 5, the evaluation results and
implications of the presented solution are discussed. Section
6 concludes the contributions of the paper.

II. BACKGROUND

IoT resource discovery solutions are categorized into
directory-based and directoryless [2]. In the directoryless solu-
tions, devices interact directly with each other over predefined
patterns, e.g. with multicast/broadcast and discovery or peer-
to-peer (P2P) protocols, or by introducing resource crawlers.
Due to computing and connectivity limitations, it is difficult
for IoT devices to handle a large number of direct resource
queries. Furthermore, discovery becomes more complicated if
the devices are mobile or rely on radio duty cycling or sleep
modes to save power.

In the directory-based solutions, selected system compo-
nents maintain online resource directory instances. These
solutions have been further categorized into centralized and
distributed [3]. The centralized solutions face the problem of
maintaining (large-scale) directories in an inherently dynamic
IoT system in real-time, without a priori knowledge of the
resource demand and resulting network traffic. In the dis-
tributed solutions, multiple devices act as resource directories
for location-specific real-time discovery, avoiding a single
point of failure and facilitating, for example, self-configuration
and -organization. Distributed solutions importantly address
scalability, exemplified by P2P architectures for discovery such
as [5]. However, the overhead of network traffic and query
processing load still must be taken into account. A way to
reduce the processing overhead is to use caching of query
results, as in [5].

In addition, hybrid IoT resource discovery solutions, such
as [7], vary the discovery method between the directoryless
and directory-based approaches. If an initial centralized RD
instance cannot be found in a location, the devices switch to
multicast mode to advertize and discover resources. A benefit
of the hybrid approach are extended deployment options and
dedicated RD instances for specific purposes.

The IETF CoRE framework provides standardization for
CoRE RD1, targeted for low-power IoT devices in constrained
networks, that maintains runtime information of available
system resources. The devices communicate with Constrained
Application Protocol (CoAP), where the resource descriptions
and queries are based on the CoRE Web Link format2. The
CoRE resource descriptions contain resource address (URI)
and resource metadata, such as semantic resource type, media
type, interface description and resource size.

The CoRE RD has been further optimized for constrained
environments. The authors in [7] implement additional pa-
rameters into the CoRE resource description and utilize duty

1https://datatracker.ietf.org/doc/draft-ietf-core-resource-directory/
2https://tools.ietf.org/html/rfc6690

cycling in the IoT devices with the aim to improve energy
efficiency. In [8]–[10], the CoRE resource descriptions and
queries are extended with semantic and contextual information
as additional search attributes. Moreover, the authors in [10]
integrate resource discovery into the device network protocol
stack atop CoAP and propose CoAP FETCH method to re-
trieve and filter resource descriptions. A structured document,
based on the Open Connectivity Foundation (OCF) modeling
language, is used for resource descriptions atop CoRE speci-
fications in [11]. In [5], [6], [12], [13], distributed CoRE RD
P2P overlays are presented. A hierarchical resource discovery
scheme is proposed in [14], where resources are found by
traversing the hierarchy of gateways presenting IoT devices.
In large-scale distributed IoT applications, search engines and
layered resource discovery frameworks, as in [15], [16], pro-
vide discovery services with structured document and linked
open data. In [17], both centralized and distributed service
discovery solutions utilize network routers as CoRE RD peers
that also perform discovery load balancing. A comparison of
the IoT resource discovery solutions is presented in Table I.

Although the resource discovery and orchestration in the
cloud and edge platforms is out of the focus of this paper,
solutions for service discovery have been presented for central-
ized cloud-based IoT systems, for virtualization infrastructures
[18], and for Microservices [19], [20]. Commonly, the resource
requirements in edge applications are considered known a
priori [2], where scalability is achieved through deploying
more service or application instances to the platform. However,
mist and fog applications predominantly rely on the resources
available in a physical location.

III. HYBRID RESOURCE DISCOVERY FOR MIST

Mist platforms rely on an assembly of a heterogeneous
set of constrained devices, in terms of both computation and
communication, that share their resources on an open and
dynamic IoT environment. In such a dynamic environment,
the resource registration and runtime updates, exemplified by
periodic advertising, introduce inevitable communication and
computation overhead for the platform operation. Therefore,
small overhead of resource registration and discovery is re-
quired, where resource descriptions should be lightweight, for
low power operations. In open IoT environments, standardized
resource description formats and discovery protocols provide
interoperability in large-scale.

Furthermore, particularly in mist computing, the platforms
cannot rely solely on the local information for efficient
operation. Support for device mobility and additional data
sources, outside the local mist network and across the IoT
system architecture, and for evolving application scenarios are
needed. Here, domain-specific RD instances utilizing semantic
information can be deployed to the infrastructure, as in [8],
[9], [21].

In the light of these challenges, in this Section we discuss
how edge-supported resource discovery is beneficial for mist
and present our hybrid resource discovery solution.



TABLE I
COMPARISON OF IOT RESOURCE DISCOVERY SOLUTIONS

Reference Model Architecture Deployment Resource description Optimization Evaluation
[5], [6] Distributed P2P Peer nodes IETF CoRE Latency Real world
[7] Centralized & dis-

tributed
Hybrid Network devices IETF CoRE Extension No. of messages Simulation

[8] Centralized Client-Server Network devices Semantic IETF CoRE - Real world
[9] Centralized Client-Server Mobile devices IETF CoRE Extension No. of messages & la-

tency
Simulation

[10] Centralized & dis-
tributed

Layer Protocol Stack IETF CoRE Extension - Simulation

[11] Centralized Client-Server Server OCF RAML - Real world
[12] Distributed P2P Network devices IETF CoRE & JSON - Simulation &

Real world
[13] Distributed P2P Peer nodes IETF CoRE & RELOAD - Simulation &

Real world
[14] Centralized Hierarchy Network devices IETF CoRE Extension - -
[15], [16] Distributed Layer Middleware IETF CoRE & others - -
[17] Centralized & Dis-

tributed
Client-Server Network devices IETF CoRE - Simulation

This paper Centralized & dis-
tributed

Hybrid Edge device clus-
ters

IETF CoRE Power consumption, la-
tency & load balancing

Real world

A. Edge-supported Resource Discovery

The three-tier IoT system architectures rely on the devices
on the edge layer to connect system components and transmit
data upstream and control messages downstream. The edge
devices are deployed as an integral part of the network
infrastructure and co-located with powerful servers that form
the edge computing infrastructure for edge applications. Now,
from the mist layer perspective, it is natural to request support
from the upper layer in hierarchy, where the role of an edge
device can be extended to handle the resource discovery load.

Several advantages of such edge-supported mist resource
discovery can be found. First, low latency for real-time dis-
covery can be provided with RD instances placed at one-hop
distance from the mist layer. Such RD instances, as a location-
based service, provide on-demand resource discovery and
facilitate resource provisioning and runtime reconfiguration
of the mist platform functionality. In addition, connecting
disparate mist networks, an important consideration for mist
[1], becomes straightforward through the edge layer. The
edge layer also has capacity to host additional domain- or
application-specific RD instances.

Second, the edge servers have capacity for handling nu-
merous resource queries collaboratively, with location-aware
load balancing for discovery from all the tiers. Moreover,
an edge device that connects mist devices to the edge layer,
consequently encapsulates and represents the underlying mist
platform resources and protects their security as a proxy.

Third, virtualized RD instances are straightforward to de-
ploy and orchestrate as any other edge platform software
component. When low overhead virtualization technologies,
e.g. containers, are available, instances can be deployed also
to the less powerful edge devices. Such loose coupling in-
creases edge deployment scalability, flexibility and robustness.
Importantly, low virtualization overhead of containers enables
an additional on-demand deployment scheme with low-power
edge devices that don’t have the capacity to host full-size

virtual machines.

B. Edge Service Implementation Considerations

For cloud, edge and fog application development, the Mi-
croservices paradigm has emerged from the need to modular-
ize applications into a set of small distributed components, to
the level of a single function, that then collectively implement
the application logic [22].

The benefits of the paradigm are seen in the isolated
development of the functionality, reuse, maintainability, ex-
tendability and straightforward life-cycle management [23].
Commonly, Microservices are deployed to the edge as self-
contained package, where lightweight containers are the ap-
propriate choice for running Microservices due to their low
computational overhead and portability [24]. This way, the
containerized Microservices provide more choice, flexibility
and scalability for their deployment, e.g. can be hosted in
devices with less capabilities, in comparison with virtual
machine-based applications that typically require powerful
servers. This is particularly beneficial for mist, as the layer
is based on heterogeneous resource-constrained IoT devices
that rely on optimized embedded operating systems, commu-
nication technologies and programming solutions.

Containers are deployed into the edge devices by the
platform orchestrators, typically in response to an user request
or to perform a management function such as load balancing.
Here, Kubernetes is a well-known open-source platform for
managing and orchestrating distributed software deployments
across clusters of computing nodes [18]. Each cluster, i.e. set
of worker nodes running containers, is managed by a master
node that provides system services and controls the cluster,
selects the worker nodes to run containers and facilitates
interactions with the application and service clients. Worker
nodes are responsible for running the supporting components
for container execution, checking health and reporting the
state of their containers. Kubernetes provides functionality for
service discovery and load balancing across its domain in the



Fig. 1. Hybrid resource discovery architecture.

edge layer, but our focus is in the mist layer resource discovery
under the edge devices.

Therefore, we expect that the Kubernetes worker nodes
host the Microservice-based containerized RD instances as
described in detail in the next Section.

C. Solution for Edge-supported Resource Discovery for Mist

Based on the discussion in previous Sections, we present
a hybrid resource discovery solution for mist layer that relies
on the support of the edge layer. The discovery architecture is
hybrid, since both centralized and distributed approaches are
considered simultaneously. Vertically in a bottom-up manner,
an RD instance deployed into a local edge device at one-hop
distance, such as network gateway or proxy, is a central point
for resource discovery in the local mist platform. Similarly,
in a top-down manner, the cloud and edge applications can
discover the mist resources through the RD instances. Hori-
zontally, the RD instances across the edge deployment form a
distributed discovery infrastructure for the mist applications,
enabling extended resource discovery and connections across
disparate mist networks, where mist devices still use the
services of a local RD instance. As in P2P systems, RD
instances at the edge layer are capable of exchanging resource
descriptions and queries, while balancing the discovery load
in the edge platform is handled by the orchestrators.

Following the above ideas, we design the RD instances
as containerized Microservices. Our starting point for low
overhead resource registration and discovery is the IETF CoRE
framework [4], including the CoRE RD and Proxy functional-
ities and CoAP protocol for interactions with the mist devices.
To manage and deploy containerized RD instances, Kubernetes
is employed as the edge platform management solution.

The Kubernetes-based deployment of the proposed hybrid
discovery solution is illustrated in Figure 1. A Kubernetes
master at the cloud layer configures and controls a cluster
of worker nodes at the edge devices, which form the edge
layer. Each worker node (a pod) hosts one RD and one Proxy
instance containers. We assume that the deployed RD instances
can interact with each other as a logical P2P network, as
described in detail in our previous work [5]. At the mist layer,
the devices are abstracted either as CoAP servers (CS) hosting
resources and CoAP clients (CC) accessing the resources. The
roles are interchangeable in each device for applications.

The resource registration and discovery process (Figure 2)
is the following. First, the CS needs to locate a RD instance
by sending a request, as CoAP GET message based on the
CoRE Link Format, to the local edge node. The kube-proxy
component at the edge node requests an instantiation of RD
and Proxy Microservice instances. Once a local RD instance
is available, the CS performs the registration for its resources
with a CoAP POST request following the CoRE Link Format.
Similarly, a RD instance can be located and instantiated on
worker node by receiving a request from a CC.

Once the CS resources have been registered, a CC can per-
form discovery based on the Core Link Format to describe the
query parameters, e.g. a sensor type or location. If a resource
is found, its description is returned. With this information, the
CC is able to directly interact with the CS by using CoAP.
To discover additional system resources or resources in other
mist networks, the request of a CC can be forwarded to other
RD instances through the P2P overlay on the edge layer.
Then, to interact with these remote resources, CC needs to
send the CoAP request to a local Proxy that connects with
another Proxy on the remote edge device. The CoRE Proxy
is also capable for translating the request between protocols,
e.g. CoAP to HTTP and vice versa, if required.

IV. EVALUATION

To evaluate the presented resource discovery solution, a mist
platform and a Microservice-based RD instance are imple-
mented in a real-world prototype, managed by Kubernetes.
To address the outlined mist computing challenges, the focus
of the evaluation is on the discovery latencies and power
consumption with both low resource mist and edge devices.

As the edge devices hosting the RD instances, and Ku-
bernetes master and worker nodes, two Raspberry Pi (RPi,
version 3 model B+) single-board computers are utilized.
Such devices exemplify resource-constrained edge and fog
devices, since the edge platforms are commonly based on
powerful servers with tens of cores and tens of gigabytes of
memory. Both edge devices were installed with Kubernetes
(v1.16.1) and Docker (v18.09.7). The devices were connected
through 10/100 Mbps router-switch. The CoRE RD instance
was implemented in Python using the CoAPthon library [25]
and MongoDB database for resource data storage. The corre-
sponding Docker container image uses ready-made MongoDB
image and installs python 2.7 along with required open-source
libraries (e.g. pymongo and pyserial) that are needed to run



Fig. 2. Resource registration and discovery sequence.

the instance, resulting in a total container image size of 814
MB.

As the mist devices, ESP8266 embedded devices (clocked
at 80 MHz with 4 MB of flash memory and 50 kB of RAM)
operate as both CoAP servers and clients. The devices commu-
nicate atop a public WiFi network with UDP as expected in the
CoRE framework. The servers provide inertial measurement
sensor data as their resource.

A. Real-world experiments

First, to evaluate the latencies of resource discovery atop the
presented real-world prototype, a CC sent 100-500 successive
resource queries (as CoAP messages) to the RD instance run-
ning in a Kubernetes worker node in a RPi. Figure 3 illustrates
the average response time as a function of the number of
consecutive queries. The results show that the response time is
less than half a millisecond for up to 500 successive requests
per second. However, during the measurements, a query and
response message loss from 2 to 9% was observed at the
rates from 200 to 500 requests per second. In the experiments,
the RD instance implementation is not optimized in any way,
but the software components were installed into the container
image as is.

Second, to evaluate the power consumption of running
containerized RD instance on a RPi, an additional set of
experiments were conducted. First, the power consumption of
the worker node running a RD instance Docker image (Idle
RD) without any requests was measured. The results are shown
in Figure 4 and at Table II. It was observed that the power
consumption overhead of an idle RD instance is insignificant
in relation to the base RPi power consumption.

Then, the power consumption of resource queries was
measured with different discovery request rates. Here, 10

Fig. 3. Resource query latencies.

TABLE II
EDGE DEVICE POWER CONSUMPTION MEASUREMENTS

Power Consumption (mW)
Measurement Container Bare-metal
Idle RD 2148 2102
Active RD (10 req/sec) 2278 2164
Active RD (100 req/sec) 2361 2283

and 100 queries per second exemplify a relatively busy RD
instance. As shown in Figure 4 and in Table II, a significant
difference in power consumption is observed.

Lastly, to see the overhead of hosting an RD instance
with and without Kubernetes, similar set of measurements
was repeated with RD implementation on a ”bare-metal” RPi
running Debian linux.

B. Analysis of results

The evaluation with low resource edge devices shows that
latency (i.e. response time) of less than half a millisecond is
achieved up to 500 requests per second when both the CC
and CS are in the same mist network. Ideally, such request
latency means that the RD instance is capable of handling
around two thousand queries per second. However, due to the
constrained networks, a significant message loss is experienced
(up to 9%), which reduces the request handling throughput in
the prototype.

In comparison with the results presented in the previous
studies with IoT resource discovery, the results demonstrate
lower query latencies. In [5], with CoRE RD-based resource
discovery in P2P network, latencies of different types of
queries between 20 - 120 ms were reported in a real-world
prototype. In addition, the effect of caching of query results
was studied in [5], [6], resulting 97% reduction (from 640
ms to 20 ms) in query latency. Web browser based CoRE
RD semantic resource discovery latencies in the range of 10
ms were reported in [8]. With contextual resource queries,
latencies from 200 to 2500 ms based on simulation were
reported in [9]. The authors in [10] evaluated both centralized
and distributed schemes by simulation with extended CoAP
and reported latencies between 15 to 150 ms with request
rates from one to 20 per minute. With structured document-
based resource descriptions, query latencies around 400 ms
were reported in a real-world system [11]. In [13] resource



Fig. 4. Power consumption of the edge device (i.e. Kubernetes worker node) in different scenarios.

lookup delays in the range of several seconds in a real-world
prototype were reported, but including the communication
setup time. Lastly, simulated query latencies above one second
were reported in [17].

Regarding the power consumption measurements, the fol-
lowing can be said. With 10 requests per second (Table
II), the power consumption of an active container-based RD
instance increases around 6% in comparison with an idle
RD instance. With 100 requests per second, the increase is
around 10% in comparison with the idle RD instance. The
management overhead Kubernetes, for an active containerized
RD instance in a RPi in comparison with a bare-metal RD
instance, increases its power consumption by 3.4% (78mW)
as shown in Table II when handling 100 requests per second.
In the previous work, only the authors in [7] evaluated and
reported energy savings, based on optimized advertising of
resource descriptions and duty cycling of the device radio,
but similarly with a loss in the discovery ratio of the system
resources.

Overall, in the presented solution, the resource discovery
latencies are very low with high request rate and the total
power consumption of an active RD instance is around 2.36W.
Such results show that the solution is feasible for resource
discovery in a mist computing platform even with low resource
edge devices hosting the RD instances.

V. DISCUSSION

In this paper, an edge-supported hybrid resource discovery
solution for mist computing, based on containerized Microser-
vices and standardized IETF CoRE framework, is presented.
The RD instances form a P2P overlay at the edge layer that
enables resource lookups between disparate mist networks
and information sharing for applications both horizontally and
vertically across the deployment. Such RD instances, imple-
mented as containerized Microservices, improve scalability as
on-demand deployment of the RD instances in edge and fog
deployments is straightforward with existing edge computing
platforms, such as Kubernetes. In comparison with existing

IoT resource discovery solutions, virtualization of the RD
functionality avoids the issues of fixed physical deployments
and offloads the computation and communication load of the
resource discovery from mist devices to the more powerful
edge devices and servers, at one-hop distance.

The presented solution was evaluated with a real-world
prototype. The results show that low resource edge devices,
exemplified by RPi’s, are able to host such containerized RD
instances with very low query latencies while serving several
hundred queries per second. In addition, power consumption
measurements of the active RD instance were conducted in
real-world settings, providing results that have not yet been
presented in the previous work.

For the edge platform hosting the RD instances, the P2P
interaction overhead and latencies on the core network can
be considered negligible, as providing sufficient computational
and networking capacity for services on the edge layer is the
fundamental rationale for edge computing.

However, when mist platforms scale up, it remains an
open question how well such Microservice-based collaborative
solutions are able to handle queries from thousands of devices
in real-time. Moreover, it can be envisioned that the resource
discovery load largely fluctuates in relation to the user move-
ment and resulting online application relocation (instantiation
and termination) across the edge and fog deployments.

VI. CONCLUSION

Resource discovery solutions for IoT systems have attracted
attention in recent years. However, a novel distributed com-
puting paradigm for IoT, mist computing, lacks solutions that
address the challenges in dynamic resource availability, where
a variety of low power technologies are to be utilized with mist
devices. This paper shows that energy efficient low latency
resource discovery solutions, targeted for mist computing, can
be achieved with the support of the edge layer that facilitates
both vertical and horizontal interactions for applications across
the IoT system deployments. In general, the presented hybrid
solution is also applicable for fog computing platforms, where



low resource devices are utilized at the layers of the fog
hierarchy.

Edge computing is currently considered an integral part of
the 5G standardization efforts, where our future work aims
to the development of massive-scale lightweight resource dis-
covery solutions in the context of the foreseen mist computing
paradigm.

ACKNOWLEDGEMENTS

This work is supported by the Academy of Finland 6Genesis
Flagship (grant 318927), the Infotech Oulu Research Institute
and the Jane and Aatos Erkko Foundation and the Technology
Industries of Finland Centennial Foundation.

REFERENCES

[1] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakan-
lahiji, J. Kong, and J. P. Jue, “All one needs to know about fog computing
and related edge computing paradigms: A complete survey,” Journal of
Systems Architecture, vol. 98, pp. 289–330, 2019.

[2] F. Marino, C. Moiso, and M. Petracca, “Automatic contract negotiation,
service discovery and mutual authentication solutions: A survey on the
enabling technologies of the forthcoming iot ecosystems,” Computer
Networks, vol. 148, pp. 176–195, 2018.

[3] C. N. Ververidis and G. C. Polyzos, “Service discovery for mobile ad
hoc networks: a survey of issues and techniques,” IEEE Communications
Surveys & Tutorials, vol. 10, no. 3, pp. 30–45, 2008.

[4] Z. Shelby, “Embedded web services,” IEEE Wireless Communications,
vol. 17, no. 6, pp. 52–57, 2010.

[5] M. Liu, T. Leppnen, E. Harjula, Z. Ou, A. Ramalingam, M. Ylianttila,
and T. Ojala, “Distributed resource directory architecture in machine-to-
machine communications,” in 2013 IEEE 9th International Conference
on Wireless and Mobile Computing, Networking and Communications
(WiMob), 2013, pp. 319–324.

[6] M. Liu, T. Leppänen, E. Harjula, Z. Ou, M. Ylianttila, and T. Ojala, “Dis-
tributed resource discovery in the machine-to-machine applications,” in
10th International Conference on Mobile Ad-Hoc and Sensor Systems.
IEEE, 2013, pp. 411–412.

[7] B. Djamaa, A. Yachir, and M. Richardson, “Hybrid coap-based resource
discovery for the internet of things,” Journal of Ambient Intelligence and
Humanized Computing, vol. 8, no. 3, pp. 357–372, 2017.

[8] Y. Wang and G. Wei, “An implementation of coap-based semantic
resource directory in californium,” in International Conference on Arti-
ficial Intelligence and Security. Springer, 2019, pp. 211–222.

[9] F. M. Barreto, P. A. d. S. Duarte, M. E. Maia, R. M. d. C. Andrade, and
W. Viana, “Coap-ctx: A context-aware coap extension for smart objects
discovery in internet of things,” in IEEE 41st Annual Computer Software
and Applications Conference, vol. 1, 2017, pp. 575–584.

[10] B. Djamaa, M. A. Kouda, A. Yachir, and T. Kenaza, “Fetchiot: Efficient
resource fetching for the internet of things,” in Federated Conference on
Computer Science and Information Systems. IEEE, 2018, pp. 637–643.

[11] W. Jin and D. Kim, “Consistent registration and discovery scheme for
devices and web service providers based on raml using embedded rd in
ocf iot network,” Sustainability, vol. 10, no. 12, 2018.

[12] S. Cirani, L. Davoli, G. Ferrari, R. Léone, P. Medagliani, M. Picone,
and L. Veltri, “A scalable and self-configuring architecture for service
discovery in the internet of things,” IEEE Internet of Things Journal,
vol. 1, no. 5, pp. 508–521, 2014.

[13] J. Mäenpää, J. Bolonio, and S. Loreto, “Using reload and coap for wide
area sensor and actuator networking,” EURASIP Journal on Wireless
Communications and Networking, vol. 2012, no. 1, p. 121, 2012.

[14] I. Ishaq, J. Hoebeke, J. Rossey, E. De Poorter, I. Moerman, and
P. Demeester, “Facilitating sensor deployment, discovery and resource
access using embedded web services,” in 6th International Conference
on Innovative Mobile and Internet Services in Ubiquitous Computing.
IEEE, 2012, pp. 717–724.

[15] S. K. Datta and C. Bonnet, “Search engine based resource discovery
framework for internet of things,” in 4th Global Conference on Con-
sumer Electronics. IEEE, 2015, pp. 83–85.

[16] S. K. Datta, R. P. F. Da Costa, and C. Bonnet, “Resource discovery in
internet of things: Current trends and future standardization aspects,” in
IEEE 2nd World Forum on Internet of Things, 2015, pp. 542–547.

[17] R. Ferdousi, M. Helaluddin, A. Akther, and K. M. Alam, “An empirical
study of coap based service discovery methods for constrained iot
networks using cooja simulator,” in 20th International Conference of
Computer and Information Technology. IEEE, 2017, pp. 1–6.

[18] C. Tracey and B. Burns, Managing Kubernetes. O’Reilly, 2018.
[19] C. Rotter, J. Illés, G. Nyı́ri, L. Farkas, G. Csatári, and G. Huszty,

“Telecom strategies for service discovery in microservice environments,”
in 20th Conference on Innovations in Clouds, Internet and Networks.
IEEE, 2017, pp. 214–218.

[20] F. Montesi and J. Weber, “Circuit breakers, discovery, and api gateways
in microservices,” arXiv preprint arXiv:1609.05830, 2016.

[21] C. Perera and A. V. Vasilakos, “A knowledge-based resource discovery
for internet of things,” Knowledge-Based Systems, vol. 109, pp. 122–136,
2016.

[22] B. Butzin, F. Golatowski, and D. Timmermann, “Microservices approach
for the internet of things,” in 21st International Conference on Emerging
Technologies and Factory Automation. IEEE, 2016, pp. 1–6.

[23] H. Kang, M. Le, and S. Tao, “Container and microservice driven design
for cloud infrastructure devops,” in 2016 IEEE International Conference
on Cloud Engineering (IC2E). IEEE, 2016, pp. 202–211.

[24] C. Pahl and B. Lee, “Containers and clusters for edge cloud
architectures–a technology review,” in 3rd International Conference on
Future Internet of Things and Cloud. IEEE, 2015, pp. 379–386.

[25] G. Tanganelli, C. Vallati, and E. Mingozzi, “Coapthon: Easy develop-
ment of coap-based iot applications with python,” in 2nd World Forum
on Internet of Things. IEEE, 2015, pp. 63–68.

https://www.researchgate.net/publication/340807613

	RG_edge-supported_mist_resource_discovery_v3

