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Abstract—Software systems have a strong impact on the 
energy consumption of the hardware they use. For this reason, 
software developers should be more aware of the energy 
consumed by their systems. Moreover, software systems should 
be developed to be able to adapt their behavior to minimize the 
energy consumed during their execution. This paper illustrates 
how to address the problem of developing self-adaptive energy-
efficient applications using the HADAS approach. HADAS 
makes use of advanced software engineering methods, such as 
Dynamic Software Product Lines and Aspect-Oriented Software 
Development. The main steps of the HADAS approach, both 
during the design of the application and also at runtime are 
illustrated by applying them to a running case study. 
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HADAS, Dynamic Software Product Lines, Aspect-Oriented 
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I. INTRODUCTION

The percentage of global emissions attributable to 
Information Systems is expected to further increase in the 
coming years, due to the proliferation of Internet-connected 
devices omnipresent in our daily lives [1]. Although software 
systems do not directly consume energy, they strongly affect 
the energy consumption of the hardware [2]. So developers 
should be more aware of the energy consumed by these 
systems during their usage, and try to develop energy-efficient 
applications that adapt their behavior to minimize the energy 
consumed during their execution, i.e., develop self-greening 
applications [3,4].  

Regrettably, there is a narrow view of developers and users 
about their responsibility for the energy consumed during 
application execution. They rarely address energy efficiency as 
some recent studies show [3,4], principally due to a lack of 
appropriate methodologies and tools which would help them to 
produce self-adaptable green software at runtime. Therefore, 
although software energy efficiency is becoming increasingly 
important, development processes of self-greening systems 
supported by tools are still in their infancy. There are plenty of 
approaches that present experimental results about how to 
optimize energy consumption at design time [5,6,7], but little 
effort has been made to explore reusable solutions of runtime 
energy optimizations.  

Indeed, once deployed, the energy consumed by a system 
depends on several factors, determined mainly by the usage 
context [8]. It depends, for example, on the amount of data the 
system needs to store, transfer or query, or on how the user 
interacts with the system. So, the user behavioral pattern 
impacts very strongly on the final energy expenditure of 
applications. Therefore, applications should not only be 
prepared at design time to be energy-efficient; they also need to 
be self-adaptable to the runtime context usage.  

This paper illustrates how advanced software engineering 
methods, such as Dynamic Software Product Lines (DSPLs) 
[9] and Aspect-Oriented Software Development (AOSD) [10],
can help address the problem of developing self-adaptive
energy-efficient applications. Concretely, we present the
HADAS approach for the analysis and development of self-
adaptive energy-efficient applications. HADAS proposes to
collect energy-related information at design time and use it at
runtime to adapt the application behavior to the real energy
consumption. HADAS bases on the concepts of runtime energy
hotspot and energy consuming concerns. A runtime energy
hotspot is a point in the application that under certain
conditions can consume much energy and, if these conditions
change at runtime it is possible to reduce this energy
consumption by modifying the application components. The
energy consuming concerns are the concerns that model the
runtime energy hotspots at design time. They could be designed in
different ways, with different energy consumption that depends on
some input parameters such as size of type of data. All the
alternative design solutions for every energy consuming concern
are stored in HADAS so that at design time application developers
can perform a sustainability analysis of the different variants.
HADAS then generates the initial application configuration. This
sustainability analysis will also help to identify those situations
where the energy expenditure strongly depends on some
parameters that can vary at runtime. This information will be used
by the developer to specify the self-greening rules that will trigger
a reconfiguration at runtime.

After this introduction, in Section II we discuss the main 
challenges that arise in the development of our approach. Then, 
in Sections III, IV and V we describe how HADAS addresses 
these challenges. Finally, our conclusions are presented in 
section VI. 



II. RELATED WORK

The software developer community is starting to pay more and 
more attention to the energy-efficiency concerns. Here we 
summarize some representative works. 

Empirical studies. Recent empirical studies [3,4] made at 
different stages of the software life cycle show that software 
developers do not have enough knowledge about how to reduce 
the energy consumption of their software solutions. Thus, the 
majority of developers are not aware about how much energy 
their application will consume and so, they rarely address 
energy efficiency. Even practitioners that have experience with 
green software engineering have significant misconceptions 
about how to reduce energy consumption [Error! Bookmark 
not defined.]. These studies also evidence the lack of tool 
support of green computing, not only at the code level, but also 
at higher abstraction levels – i.e. requirements and software 
architecture levels [Error! Bookmark not defined.].  

Experimental works at code level. There are plenty of 
experimental approaches that try to identify what parts of an 
application influence more in the total energy footprint of an 
application –i.e., to identify the energy hotspots [7]. These 
works propose to minimize energy consumption by focusing 
on code level optimizations. A common goal to all of them is 
the definition of energy profiles for different energy-consuming 
concerns. They usually focus on one particular energy-
consuming concern and report the energy consumption of 
different implementations [8].  

Reasoning about energy efficiency at design level. There 
are other works that demonstrate that changes at the design 
level tend to have a larger impact in energy consumption [5]. 
These works consider energy consumption as a new quality 
attribute [6]. What is important at this level is to be able to 
compare the energy consumed by different design alternatives, 
and also to be able to perform a tradeoff between energy 
efficiency and other quality attributes. There are some relevant 
approaches that focus on the design of catalogs of energy-
aware design patterns [7], as well as new architecture 
description languages that incorporate an energy profile and 
analysis support [14]. The experimental part of these works 
consists of checking at the code level the effects of applying 
specific design or architectural patterns [14].  

Energy-based reconfiguration at runtime level. Here we 
focus on proposals that are able to monitor changes on the user 
behavioral patterns and react to the effects of those changes on 
the consumption of energy. They should also be able to update 
the behavior of applications to their ‘energy usage profile’. The 
final goal is to maintain the energy consumption of the 
software system within reasonable levels. Some proposals 
monitor the energy consumption of previously identified 
energy hotspots at runtime [Error! Bookmark not defined.], 
and others build real-time profiles of energy consumption [11]. 
Moreover, there are examples of the dynamic reconfiguration 
of energy aware software in different domains. For instance, 
[12] presents DREAMS, a Dynamically Reconfigurable
Energy Aware Modular Software architecture for sensor
networks. None of them defines a generic and reusable
approach as we make.

III. CHALLENGES
This section identifies the main challenges that arise in the 

development of self-adaptive energy-efficient applications: 

Challenge 1 (C1): Providing the means to identify runtime 
energy hotspots, i.e., to identify the code pieces that consume 
more or less energy depending on the dynamically varying 
contexts. However, recent empirical studies [3,4] show that 
software developers need help to identify such energy hotspots. 
There have been recent studies that propose some green 
computing practices [8], however developers do not know how 
to apply them in their developments. The main conclusion of 
these studies is that software developers need more precise 
evidence about how to tackle the energy efficiency problem 
and some methodological and tool support to help them 
effectively address it [3,4]. 

Challenge 2 (C2):  Finding the most energy-efficient 
solution for each runtime energy hotspot is not trivial since 
there is high variability of components that implement the 
functionality required by the hotspot with different energy 
costs. For example, for the compression energy hotspot, each 
compression algorithm could consume a different amount of 
energy depending on the compression ratio and the file size. 
Thus, after identifying the energy hotspot, software developers 
need to be aware of the variability of the existing solutions, 
including the parameters that could affect the energy 
expenditure. Another important challenge is to explicitly define 
the variability of design solutions that can mitigate the energy 
consumption according to current user interaction. 

 Challenge 3 (C3): Predicting the energy expenditure of 
software energy hotspots at design time could provide hints 
about the final power consumption of the application. 
However, the energy consumption highly depends on several 
factors, and some of them will vary at runtime. So, energy 
consumption of each variant of the energy hotspots should be 
provided for application developers in a format so that they can 
easily access, compare and analyze its impact at runtime. Thus, 
the third challenge is to provide developers with tools that help 
them make a sensible eco-efficiency analysis at design time, 
about the possibilities of optimizing energy consumption at 
runtime for a given application.  

Challenge 4 (C4): The eco-efficiency analysis may result 
in more than one design solution for a given energy hotspot, 
each one fitting a distinct usage pattern. This means that the 
application needs to be able to react to changes in the usage 
patterns at runtime in order to self-adapt to the variant with 
least energy expenditure. So, an important challenge is to 
define energy reconfiguration rules to adapt the application to 
the varying usage patterns by exploiting the energy saving 
scenarios identified in the eco-efficiency analysis. There are 
some related papers that perform dynamic reconfiguration of 
energy aware software [12], but they are domain specific and 
do not provide a generic and reusable approach, which we 
consider developers need.  

Challenge 5 (C5): The energy reconfiguration rules will 
drive the application adaptation at runtime by replacing the 
modules that implement the energy consuming concerns with 
others, more energy efficient for a new execution context. The 



last challenge is to provide a non-intrusive design and 
implementation solution that endows applications with self-
greening capacities at a low energy cost. 

In the rest of the paper we will discuss how HADAS cope 
with these challenges using a running case study. 

IV. MODELLING RUNTIME ENERGY CONSUMING CONCERNS

Figure 1 presents the HADAS approach. Firstly (label 1), at
design time developers have to discover which application 
requirements may strongly impact the power consumption at 
execution time, so they can be classified as runtime energy 
hotspots (label 1.1). Likewise as designers are able to identify 
which part of the application demands a particular design 
pattern, they now have to develop the instinct to identify the 
concrete runtime energy hotspots of their applications. 
Learning to recognize energy hotspots is absolutely essential 
and helpful in any energy-aware development process. 
However, as indicated in the introduction, software developers 
do not still have the skills to identify these energy hotspots. 
Additionally, there are not catalogues of runtime energy 
hotspots, similar to the existing catalogues of design patterns. 
Trying to cope with this shortcoming, and after analyzing 
several approaches, we can conclude that many energy 
hotspots are recurrent, and appear in the majority of 
applications [12]. So, HADAS helps developers in this task by 
providing a list of the most recurrent energy hotspots. Then, 
application developers can select those energy hotspots 
identified as part of the application’s functionality (e.g. store), 
and the variants they want to explore (e.g. to store data in a 
local file or in a server). This selection is done through a set of 
forms provided by HADAS (label 1.2).  

The concerns that model the runtime energy hotspots at 
design time can be considered as energy consuming concerns, 
which could be designed in different ways. For example, there 
are different options to store data (in a data structure, cache 
memory, etc.), each with a different energy consumption that 
depends on some input parameters that can vary at runtime 
such as the size or type of data. In addition, they are usually 
scattered or crosscut several components (i.e., they are 
crosscutting concerns) [13], so it would be beneficial to model 
and implement them independently of the system’s 
functionality, to facilitate their replacement at runtime by more 
eco-efficient designs or implementations. Since these concerns 
are common to many applications we propose storing them in 
the HADAS Green Repository ready to be reused (label 1.3). 

There are plenty of studies showing that there is a high 
variability of alternative implementations and design solutions 
to many energy consuming concerns [6,7,8], and some of them 
permit their replacement at runtime to achieve energy savings. 
For this reason, HADAS follows a DSPL approach [9] to 
explicitly model the variability of energy consuming concerns, 
using a variability model, concretely CVL [14]. The motivation 
behind the use of CVL is that it easily maintains connections 
between energy consuming concern variants and the set of 
component models that implement this variant. The top of 
Figure 2 shows an excerpt of the HADAS variability model 
with some energy consuming concerns like Store, 
Communication, Compression or Security. We focus on data 

compression, one concern present in a Media Store (MS) 
application used as the case study. For the compression 
concern we include several algorithms that consume more or 
less energy depending on the file size, which usually varies at 
runtime. 

What the developer needs to know at design time are the 
options that exist to address a concrete runtime energy 
consuming concern, and the expected energy consumption of 
each of them at runtime. Energy consumption mainly depends 
on the resources that each application component is expected to 
consume (e.g., cpu cycles, and disk access) and on the 
hardware characteristics (e.g. cpu cycles/s, and MB/s.). With 
this information, it is possible to estimate the expected energy 
consumption by conducting experimental studies, or by 
simulating energy models. For HADAS, the concrete number 
of joules consumed by different energy consuming concerns 
considering specific hardware is not so important, although the 
relative energy is, to identify energy consumption trends. So, 
the intention of HADAS is to store the energy consumption 
obtained following different approaches, and provide this 
information to the developer. Certainly, we could gather results 
from many already published experimental studies, store them 
in the HADAS repository and provide advice based on these 
results.  

The energy consumption shown in this paper was 
experimentally calculated, but we have also explored the use of 
the Palladio toolset [15], an IDE perfectly well suited for 
predicting, through simulation, the energy consumed by an 
architecture design. Indeed, the component model shown in 
Figure 2 is based on the Palladio Component Model. Whatever 
the approach used to calculate the expected energy 
consumption, the effort of measuring, estimating and/or 
simulating the energy expenditure of each of the possible 
energy consuming concerns would be an intractable task for 
developers. So, the goal of HADAS is to save time for 
application developers by automating as much as possible this 
manual and tedious job and storing the results in the HADAS 
repository. 

Returning to the MS example, the energy consumption for 
each audio codec variant was experimentally calculated. At the 
bottom right of Figure 2, we show the power consumption 
graphic for compressing 9 WAV audio files of different sizes 
(from 4Mb to 512 MB) using the following audio compression 
algorithms implemented in Java: Java LAME 3.99.3 to create 
MP3 audio files using a bit rate of 128Mb, Vorbis-java 
(libvorbis-1.1.2) to compress in OGG files, and Java Speex 
Encoder v0.9.7 to compress in SPX files. The energy 
expenditure is measured with JouleMeter, a Microsoft tool that 
measures the energy of software applications running on a 
computer. We repeated each experiment several times and took 
the median in Joules that appears in the graphic. This tool has 
been calibrated using Watts’Up to obtain the real power 
consumption depending on each hardware component. All the 
experiments were conducted on a Desktop PC with Intel Core 
i7 CPU, 3.4GHz, 16 GB of RAM under Windows 10, 64 bits 
We have implemented a Python script to automate the use of 
JouleMeter in our experiments (the script is available on 
http://150.214.108.91/horcas/energy-meter.)  
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Now, imagine that we wish to calculate the energy of 
sending a compressed file through a TCP socket. This entails 
two different concerns, the compression and the 
communication concerns, which have a clear dependency 
between them. Note that by compressing the file, the number of 
bytes sent through the network is lower. In this case, HADAS 
should help the developer decide whether compressing and 
sending the compressed file through the TCP socket consumes 
more or less energy than sending the file without compression. 
In order to do this kind of reasoning, HADAS formally 
specifies the dependency relationships between energy 
consuming concerns using the cross-tree constraints supported 
by the variability model. For example, the Remote Storage 
concern depends on both the Communication and the 
Compression concerns, so we define a constraint associated 
with the Remote feature as: Remote implies Compression and 
Communication (Figure 2). With HADAS, designers do not 
need to be aware of the inter-dependencies between the 
concrete solutions of different energy consuming concerns. 
HADAS will enable and disable variants of different hotspots 
automatically, as the designer selects the desired options. In the 
example, HADAS automatically incorporates the 
Communication and the Compression concerns because they 
are also energy consuming. HADAS then helps developers 
make informed decisions about the energy consumption of the 
selected concerns, and generate the initial application 
configuration (Figure 1, label 2.2). 

V. ANALAZING AND SELECTING ENERGY-EFFICIENT 
CONFIGURATIONS 

The key to the success of self-greening applications is to 
fully exploit the energy saving possibilities arising at runtime. 
So, the main role of the HADAS Green Repository in the 
development of self-greening applications is to provide the 
necessary means to make an energy-efficiency analysis, at 
design time, about the possibilities of optimizing energy 
consumption at runtime for a given application (Figure 1, label 
2.1). This means that the HADAS Green Repository can be 
used to see whether it is worthwhile specifying a 
reconfiguration rule to replace, at runtime, a specific concern 
implementation with another after, for instance, a drastic 
change in user behavior. So, the HADAS toolkit helps 
developers carry out a comparative analysis of the power 
consumption of different solutions for a given runtime energy 
hotspot. For example, in Figure 2 we can see that for a file size 
equal to 4MB all the codecs consume similar energy, so we can 
deploy the LAME codec, but when this size increases up to 
64MB, then the codec Vorbis is greener. Since both the file 
size and quality depend on what the user needs at each 
moment, it is not enough to just generate an initial energy-
efficient application. It becomes necessary to codify 
reconfiguration rules (Figure 1, label 2.3) to replace a solution 
when the current one is no longer the most energy-efficient, 
under the current use conditions (e.g., audio codec LAME by 
Vorbis). 
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With HADAS, the developer is aware that the decision of 
choosing an audio codec can only be made considering the 
expected use of the application. This reasoning may be 
described using Event Condition Action (ECA) rules [16], a 
simple but efficient reconfiguration mechanism that consumes 
less than other computationally more complex approaches like, 
for example, optimization algorithms. In our case, the event 
will be a variation in the parameter value that affects the energy 
expenditure of a given concern (e.g., file size); the condition 
will be the concrete value that makes the current energy 
consuming concern implementation no longer optimal (e.g., 
size > 64Mb); and, the action will be to replace the current 
component configuration with a more eco-efficient solution 
(e.g., replace LAME with Vorbis).  

However, this reasoning cannot be performed in isolation 
for each energy-consuming concern, because reducing the 
energy of one concern can have a collateral effect of 
incrementing the energy expenditure of others. In the MS 
application, as we have already said, the developer is also 
interested in exploring the possibility of uploading the audio 
files to a server. In this scenario, audio files must first be 
compressed and then uploaded to a server. In this case, we 
need to know the total power consumption of compressing the 
file and sending it to the server. Note that different 

compression algorithms produce compressed files of different 
sizes, and therefore the energy consumed by the 
communication concern will be different, depending on the 
compression algorithm previously used. HADAS will help 
developers jointly reason over different concerns, by showing 
the graphics with the power consumption for the entire 
configuration. The configuration is generated according to the 
dependency relationships previously defined in CVL (Figure 
2). For our example, Figure 3 shows the power consumption 
considering the two concerns used in the remote-server 
configuration, Compression and Communication. It shows that 
for a file size of 4 MB, the energy consumption of three audio 
codecs plus communication is similar, but as the file size 
increases, the greenest codec is Speex. 

With all this information, the developer can now complete 
the reconfiguration rules for the MS. Since the majority of MS 
users will store typical song audio files of 4 MB, the developer 
can select the local feature (i.e., store audio files in the device) 
and the LAME codec (i.e., the greenest according to Figure 2) 
for the initial configuration. However, at some point some 
users may wish to store audio files with a size greater than 64 
MB (e.g., a journalist who wants to record an interview), so the 
greenest codec in this case would be Vorbis.  
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Finally, as the file size increases the device memory 
becomes full, so it is time to upload the audio files to a server. 
However, according to the results showed by HADAS (Figure 
3), the energy consumption of sending the file to the server 
increases exponentially in function of the file size, and thus, a 
greener solution is to replace the compression algorithm with 
another, with a bigger compression rate, the Speex codec. Note 
that the Speex codec is the compression algorithm that 
consumes the most if it is used locally (see Figure 2). There are 
different green solutions because the file size affects 
communication to a greater extent than it does in compression. 
So, reducing the file size as much as possible before sending it 
to the server drastically decreases the energy consumption of 
the global solution. This means that we need an additional 
reconfiguration rule that specifies that if the user or the system 
decides to upload the audio files to the cloud, the greenest 
codec is Speex. We have identified three energy saving 
scenarios at runtime, each one recommending a different audio 
codec. In the following section, we show a possible 
implementation of a self-greening application written in Java. 

VI. ENERGY-AWARE RECONFIGURATION

Once the initial system configuration has been deployed, 
the system has to monitor and reconfigure the current system, 
pursuing true energy efficiency at runtime (Figure 1, label 3). 
How can we implement a self-greening application without 
overloading the system with heavy-energy monitoring 
mechanisms? What elements should be monitored at runtime? 
How can we analyze the context to enforce a self-greening 
behavior without complicating the resulting code? 

Indeed, the greatest challenge is to define a self-greening 
mechanism that wastes the least amount of energy, so applying 
burdensome, self-adaptation approaches (e.g., manipulating 
models@runtime [15]) is not recommended. In addition, since 
eco-efficient concerns crosscut several application components 
it makes sense to follow an AOSD approach [10] to implement 
energy-related concerns separately from the application’s 
functional components, to facilitate their replacement at 
runtime. 

Since we need to observe the runtime variation of some 
parameters, the subject-observer design pattern could be a good 

option, and the use of Java events. We have found one solution, 
which is not intrusive and also eco-efficient, which is the 
AspectJ language, an Aspect-Oriented (AO) extension of Java. 
With this language, it is possible to define interception points 
in the application base code where we want to inject an extra-
functional property, like the energy consuming concerns in our 
case. Before, around or after executing these interception 
points (i.e., pointcuts in AspectJ terminology implemented as 
Java annotations) we can inject code related to self-greening 
functionality separately from the core application code. The 
AspectJ annotations are interpreted at compile time by the ajc 
compiler that weaves the “aspect” code with the application 
classes at the bytecode level, so there is no overhead at 
runtime. 

Figure 4 shows an example of an aspect-oriented design 
solution for implementing self-greening applications in 
AspectJ. One possible solution would be to implement the 
monitoring of events that trigger a reconfiguration as separated 
code which would then be injected in the base code of the 
application. At runtime, we only need to observe those 
parameters whose variation implies that the current 
configuration is no longer the most energy efficient; i.e., these 
parameters are the events that appear in the ECA rules defined 
above (the file size in our case). So, we propose implementing 
a Monitor for each of the parameters to be observed as an 
aspect, i.e., annotated with @Aspect (stereotyped as 
<<aspect>>).  

The value captured by each monitoring class is sent to the 
Analysis component that contains the ECA rules to decide 
whether or not a reconfiguration is needed. If the rules 
determine that a new configuration is greener, the Analysis 
component will send the new configuration to the 
Reconfiguration component. This component directly interacts 
with the energy consuming concerns by enabling/disabling 
them and reconfiguring their internal behavior. The runtime 
energy consuming concerns are also implemented as aspects 
(i.e., stereotype <<eco-aspect>>) and are non-intrusively 
injected into the base application code. This provides a light 
solution in terms of energy consumption and allows an easier 
reconfiguration of the energy consuming concerns, because 
aspects do not call nor are called by the base application.  
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8. }
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  && args(file)")
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12.
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1. int lastSizes = cache.stream().mapToInt(value -> value).sum();
2. int avgSize = lastSizes/cache.size();
3. if (avgSize*RATE >= AVAILABE_SPACE) {
 4.         algorithm = new CompressionSpeex();
5. reconfiguration.reconfigure("localStorage", false);
6. reconfiguration.reconfigure("remoteStorage", true);
7. } else if (avgSize <= 64) { // MB
8. algorithm = new CompressionLAME();
9. } else {  // > 64 MB
10. algorithm = new CompressionVORBIS();
11. }
12. reconfiguration.reconfigure("compression", algorithm);

...

«use»

«use»

«crosscuts»

algorithm

«use»

«use»

«crosscuts»

«use»

Figure 4. Implementation of the media store using HADAS self-greening approach 

Returning to our example, we have defined the 
MonitorFileSize that monitors the size of the audio files 
processed by the MultimediaService.saveAudio() method (line 
4 in the MonitorFileSize aspect), among others. Each new 
parameter value is stored in a cache (line 10), the Analysis 
component can have information about the most recent activity 
of the user and thereby make more accurate decisions. In our 
example, the Analysis considers the average size of the latest 
files processed (line 2 in the Analysis component) in the 
reconfiguration rules associated with the file size. The rest of 
the code of this component shows the implementation of the 
ECA rules defined in the previous step. Lines 7-8 correspond 

to the ECA rule for files stored locally and with a size less than 
or equal to 64 MB, setting the LAME codec. Lines 9-10 
implement the second ECA rule that sets the Vorbis algorithm 
for file sizes greater than 64 MB. However, when the space 
available in the local repository is almost full, the system will 
be reconfigured to store the files in a remote server and thus, 
change the compression algorithm for Speex (lines 3 to 6).  

The Reconfiguration component will activate and/or 
deactivate the appropriate concerns, changing from the local to 
the remote storage configuration (lines 1 to 3 in 
Reconfiguration component). In addition, it is responsible for 



changing the current configuration of the activated concern, for 
example, changing the compression algorithm (line 4). The 
energy consumption concerns crosscut the base application to 
inject the appropriate functionality in the correct place. For 
instance, the CompressionConcern aspect crosscuts the base 
application to compress the audio before saving it (lines 10 to 
17). 

We tested our implementation and the AspectJ mechanism 
and the results showed that the energy consumption of the 
proposed implementation is insignificant compared to the total 
amount. 

VII. CONCLUSIONS

We have presented HADAS, a self-greening approach that 
aims to optimize the energy consumption of applications at 
runtime. We have focused on those concerns whose 
consumption depends on parameters that could vary at runtime, 
according to the user interaction or on other context 
information (e.g., available memory, battery level). In order to 
specify the self-greening rules, we have developed a runtime 
energy consuming concerns repository with information about 
relative energy consumption of some recurrent concerns. The 
graphics generated by the HADAS Green Repository are used 
to analyze the possibilities of optimizing energy consumption 
at runtime. Indeed, we have shown that there are valuable 
opportunities to optimize the energy consumption at runtime 
that should not be neglected by developers. In our example, if 
the initial codec LAME is maintained and the user starts 
producing files greater than 64 MB we miss the opportunity to 
save between 48% (128 MB) and 65% (512 MB). In addition, 
if audio files have to be uploaded to a server at a certain 
moment, setting the codec to Speex could save between 52% 
(difference with LAME) or 43% (difference with Vorbis) for 
files greater than 64 MB and as the file size increases the 
saving could reach 81% (difference with LAME) or 54% 
(difference with Vorbis). 
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