
Self-Adaptive Energy-Efficent Applications:
The HADAS Developing Approach

Jose-Miguel Horcas, Mónica Pinto, Lidia Fuentes
Dpto. de Lenguajes y Ciencias de la Computación

Universidad de Málaga, CAOSD Group
Málaga, SPAIN

{horcas, pinto, lff}@lcc.uma.es

Nadia Gámez
Universidad Internacional de la Rioja

La Rioja, SPAIN
nadia.gamez@unir.net

Abstract—Software systems have a strong impact on the
energy consumption of the hardware they use. For this reason,
software developers should be more aware of the energy
consumed by their systems. Moreover, software systems should
be developed to be able to adapt their behavior to minimize the
energy consumed during their execution. This paper illustrates
how to address the problem of developing self-adaptive energy-
efficient applications using the HADAS approach. HADAS
makes use of advanced software engineering methods, such as
Dynamic Software Product Lines and Aspect-Oriented Software
Development. The main steps of the HADAS approach, both
during the design of the application and also at runtime are
illustrated by applying them to a running case study.

Keywords—energy-efficient applications, self-adaptation,
HADAS, Dynamic Software Product Lines, Aspect-Oriented
Software Development

I. INTRODUCTION

The percentage of global emissions attributable to
Information Systems is expected to further increase in the
coming years, due to the proliferation of Internet-connected
devices omnipresent in our daily lives [1]. Although software
systems do not directly consume energy, they strongly affect
the energy consumption of the hardware [2]. So developers
should be more aware of the energy consumed by these
systems during their usage, and try to develop energy-efficient
applications that adapt their behavior to minimize the energy
consumed during their execution, i.e., develop self-greening
applications [3,4].

Regrettably, there is a narrow view of developers and users
about their responsibility for the energy consumed during
application execution. They rarely address energy efficiency as
some recent studies show [3,4], principally due to a lack of
appropriate methodologies and tools which would help them to
produce self-adaptable green software at runtime. Therefore,
although software energy efficiency is becoming increasingly
important, development processes of self-greening systems
supported by tools are still in their infancy. There are plenty of
approaches that present experimental results about how to
optimize energy consumption at design time [5,6,7], but little
effort has been made to explore reusable solutions of runtime
energy optimizations.

Indeed, once deployed, the energy consumed by a system
depends on several factors, determined mainly by the usage
context [8]. It depends, for example, on the amount of data the
system needs to store, transfer or query, or on how the user
interacts with the system. So, the user behavioral pattern
impacts very strongly on the final energy expenditure of
applications. Therefore, applications should not only be
prepared at design time to be energy-efficient; they also need to
be self-adaptable to the runtime context usage.

This paper illustrates how advanced software engineering
methods, such as Dynamic Software Product Lines (DSPLs)
[9] and Aspect-Oriented Software Development (AOSD) [10],
can help address the problem of developing self-adaptive
energy-efficient applications. Concretely, we present the
HADAS approach for the analysis and development of self-
adaptive energy-efficient applications. HADAS proposes to
collect energy-related information at design time and use it at
runtime to adapt the application behavior to the real energy
consumption. HADAS bases on the concepts of runtime energy
hotspot and energy consuming concerns. A runtime energy
hotspot is a point in the application that under certain
conditions can consume much energy and, if these conditions
change at runtime it is possible to reduce this energy
consumption by modifying the application components. The
energy consuming concerns are the concerns that model the
runtime energy hotspots at design time. They could be designed in
different ways, with different energy consumption that depends on
some input parameters such as size of type of data. All the
alternative design solutions for every energy consuming concern
are stored in HADAS so that at design time application developers
can perform a sustainability analysis of the different variants.
HADAS then generates the initial application configuration. This
sustainability analysis will also help to identify those situations
where the energy expenditure strongly depends on some
parameters that can vary at runtime. This information will be used
by the developer to specify the self-greening rules that will trigger
a reconfiguration at runtime.

After this introduction, in Section II we discuss the main
challenges that arise in the development of our approach. Then,
in Sections III, IV and V we describe how HADAS addresses
these challenges. Finally, our conclusions are presented in
section VI.

II. RELATED WORK

The software developer community is starting to pay more and
more attention to the energy-efficiency concerns. Here we
summarize some representative works.

Empirical studies. Recent empirical studies [3,4] made at
different stages of the software life cycle show that software
developers do not have enough knowledge about how to reduce
the energy consumption of their software solutions. Thus, the
majority of developers are not aware about how much energy
their application will consume and so, they rarely address
energy efficiency. Even practitioners that have experience with
green software engineering have significant misconceptions
about how to reduce energy consumption [Error! Bookmark
not defined.]. These studies also evidence the lack of tool
support of green computing, not only at the code level, but also
at higher abstraction levels – i.e. requirements and software
architecture levels [Error! Bookmark not defined.].

Experimental works at code level. There are plenty of
experimental approaches that try to identify what parts of an
application influence more in the total energy footprint of an
application –i.e., to identify the energy hotspots [7]. These
works propose to minimize energy consumption by focusing
on code level optimizations. A common goal to all of them is
the definition of energy profiles for different energy-consuming
concerns. They usually focus on one particular energy-
consuming concern and report the energy consumption of
different implementations [8].

Reasoning about energy efficiency at design level. There
are other works that demonstrate that changes at the design
level tend to have a larger impact in energy consumption [5].
These works consider energy consumption as a new quality
attribute [6]. What is important at this level is to be able to
compare the energy consumed by different design alternatives,
and also to be able to perform a tradeoff between energy
efficiency and other quality attributes. There are some relevant
approaches that focus on the design of catalogs of energy-
aware design patterns [7], as well as new architecture
description languages that incorporate an energy profile and
analysis support [14]. The experimental part of these works
consists of checking at the code level the effects of applying
specific design or architectural patterns [14].

Energy-based reconfiguration at runtime level. Here we
focus on proposals that are able to monitor changes on the user
behavioral patterns and react to the effects of those changes on
the consumption of energy. They should also be able to update
the behavior of applications to their ‘energy usage profile’. The
final goal is to maintain the energy consumption of the
software system within reasonable levels. Some proposals
monitor the energy consumption of previously identified
energy hotspots at runtime [Error! Bookmark not defined.],
and others build real-time profiles of energy consumption [11].
Moreover, there are examples of the dynamic reconfiguration
of energy aware software in different domains. For instance,
[12] presents DREAMS, a Dynamically Reconfigurable
Energy Aware Modular Software architecture for sensor
networks. None of them defines a generic and reusable
approach as we make.

III. CHALLENGES
This section identifies the main challenges that arise in the

development of self-adaptive energy-efficient applications:

Challenge 1 (C1): Providing the means to identify runtime
energy hotspots, i.e., to identify the code pieces that consume
more or less energy depending on the dynamically varying
contexts. However, recent empirical studies [3,4] show that
software developers need help to identify such energy hotspots.
There have been recent studies that propose some green
computing practices [8], however developers do not know how
to apply them in their developments. The main conclusion of
these studies is that software developers need more precise
evidence about how to tackle the energy efficiency problem
and some methodological and tool support to help them
effectively address it [3,4].

Challenge 2 (C2): Finding the most energy-efficient
solution for each runtime energy hotspot is not trivial since
there is high variability of components that implement the
functionality required by the hotspot with different energy
costs. For example, for the compression energy hotspot, each
compression algorithm could consume a different amount of
energy depending on the compression ratio and the file size.
Thus, after identifying the energy hotspot, software developers
need to be aware of the variability of the existing solutions,
including the parameters that could affect the energy
expenditure. Another important challenge is to explicitly define
the variability of design solutions that can mitigate the energy
consumption according to current user interaction.

 Challenge 3 (C3): Predicting the energy expenditure of
software energy hotspots at design time could provide hints
about the final power consumption of the application.
However, the energy consumption highly depends on several
factors, and some of them will vary at runtime. So, energy
consumption of each variant of the energy hotspots should be
provided for application developers in a format so that they can
easily access, compare and analyze its impact at runtime. Thus,
the third challenge is to provide developers with tools that help
them make a sensible eco-efficiency analysis at design time,
about the possibilities of optimizing energy consumption at
runtime for a given application.

Challenge 4 (C4): The eco-efficiency analysis may result
in more than one design solution for a given energy hotspot,
each one fitting a distinct usage pattern. This means that the
application needs to be able to react to changes in the usage
patterns at runtime in order to self-adapt to the variant with
least energy expenditure. So, an important challenge is to
define energy reconfiguration rules to adapt the application to
the varying usage patterns by exploiting the energy saving
scenarios identified in the eco-efficiency analysis. There are
some related papers that perform dynamic reconfiguration of
energy aware software [12], but they are domain specific and
do not provide a generic and reusable approach, which we
consider developers need.

Challenge 5 (C5): The energy reconfiguration rules will
drive the application adaptation at runtime by replacing the
modules that implement the energy consuming concerns with
others, more energy efficient for a new execution context. The

last challenge is to provide a non-intrusive design and
implementation solution that endows applications with self-
greening capacities at a low energy cost.

In the rest of the paper we will discuss how HADAS cope
with these challenges using a running case study.

IV. MODELLING RUNTIME ENERGY CONSUMING CONCERNS

Figure 1 presents the HADAS approach. Firstly (label 1), at
design time developers have to discover which application
requirements may strongly impact the power consumption at
execution time, so they can be classified as runtime energy
hotspots (label 1.1). Likewise as designers are able to identify
which part of the application demands a particular design
pattern, they now have to develop the instinct to identify the
concrete runtime energy hotspots of their applications.
Learning to recognize energy hotspots is absolutely essential
and helpful in any energy-aware development process.
However, as indicated in the introduction, software developers
do not still have the skills to identify these energy hotspots.
Additionally, there are not catalogues of runtime energy
hotspots, similar to the existing catalogues of design patterns.
Trying to cope with this shortcoming, and after analyzing
several approaches, we can conclude that many energy
hotspots are recurrent, and appear in the majority of
applications [12]. So, HADAS helps developers in this task by
providing a list of the most recurrent energy hotspots. Then,
application developers can select those energy hotspots
identified as part of the application’s functionality (e.g. store),
and the variants they want to explore (e.g. to store data in a
local file or in a server). This selection is done through a set of
forms provided by HADAS (label 1.2).

The concerns that model the runtime energy hotspots at
design time can be considered as energy consuming concerns,
which could be designed in different ways. For example, there
are different options to store data (in a data structure, cache
memory, etc.), each with a different energy consumption that
depends on some input parameters that can vary at runtime
such as the size or type of data. In addition, they are usually
scattered or crosscut several components (i.e., they are
crosscutting concerns) [13], so it would be beneficial to model
and implement them independently of the system’s
functionality, to facilitate their replacement at runtime by more
eco-efficient designs or implementations. Since these concerns
are common to many applications we propose storing them in
the HADAS Green Repository ready to be reused (label 1.3).

There are plenty of studies showing that there is a high
variability of alternative implementations and design solutions
to many energy consuming concerns [6,7,8], and some of them
permit their replacement at runtime to achieve energy savings.
For this reason, HADAS follows a DSPL approach [9] to
explicitly model the variability of energy consuming concerns,
using a variability model, concretely CVL [14]. The motivation
behind the use of CVL is that it easily maintains connections
between energy consuming concern variants and the set of
component models that implement this variant. The top of
Figure 2 shows an excerpt of the HADAS variability model
with some energy consuming concerns like Store,
Communication, Compression or Security. We focus on data

compression, one concern present in a Media Store (MS)
application used as the case study. For the compression
concern we include several algorithms that consume more or
less energy depending on the file size, which usually varies at
runtime.

What the developer needs to know at design time are the
options that exist to address a concrete runtime energy
consuming concern, and the expected energy consumption of
each of them at runtime. Energy consumption mainly depends
on the resources that each application component is expected to
consume (e.g., cpu cycles, and disk access) and on the
hardware characteristics (e.g. cpu cycles/s, and MB/s.). With
this information, it is possible to estimate the expected energy
consumption by conducting experimental studies, or by
simulating energy models. For HADAS, the concrete number
of joules consumed by different energy consuming concerns
considering specific hardware is not so important, although the
relative energy is, to identify energy consumption trends. So,
the intention of HADAS is to store the energy consumption
obtained following different approaches, and provide this
information to the developer. Certainly, we could gather results
from many already published experimental studies, store them
in the HADAS repository and provide advice based on these
results.

The energy consumption shown in this paper was
experimentally calculated, but we have also explored the use of
the Palladio toolset [15], an IDE perfectly well suited for
predicting, through simulation, the energy consumed by an
architecture design. Indeed, the component model shown in
Figure 2 is based on the Palladio Component Model. Whatever
the approach used to calculate the expected energy
consumption, the effort of measuring, estimating and/or
simulating the energy expenditure of each of the possible
energy consuming concerns would be an intractable task for
developers. So, the goal of HADAS is to save time for
application developers by automating as much as possible this
manual and tedious job and storing the results in the HADAS
repository.

Returning to the MS example, the energy consumption for
each audio codec variant was experimentally calculated. At the
bottom right of Figure 2, we show the power consumption
graphic for compressing 9 WAV audio files of different sizes
(from 4Mb to 512 MB) using the following audio compression
algorithms implemented in Java: Java LAME 3.99.3 to create
MP3 audio files using a bit rate of 128Mb, Vorbis-java
(libvorbis-1.1.2) to compress in OGG files, and Java Speex
Encoder v0.9.7 to compress in SPX files. The energy
expenditure is measured with JouleMeter, a Microsoft tool that
measures the energy of software applications running on a
computer. We repeated each experiment several times and took
the median in Joules that appears in the graphic. This tool has
been calibrated using Watts’Up to obtain the real power
consumption depending on each hardware component. All the
experiments were conducted on a Desktop PC with Intel Core
i7 CPU, 3.4GHz, 16 GB of RAM under Windows 10, 64 bits
We have implemented a Python script to automate the use of
JouleMeter in our experiments (the script is available on
http://150.214.108.91/horcas/energy-meter.)

Runtime

Self-Greening

Design TimeApplication
Configuration

Runtime
Energy

Hotspots

1

Energy Consuming
 Concerns

Google
Forms

2

Sustainability
Analysis
W1..n

3
WY()

Modify the selected variants for
the Energy Consuming Concerns

Running
Configuration

Energy-Efficient
Configuration

Energy
Optimization Energy Analysis

Context Change Reaction
Using self-greening rules

Application Usage Observation

Changed Value for the
Parameters Affecting the

Energy Consumption

HADAS Assistant Tool

HADAS Green
Repository

1.1 1.2

2.1

2.2

2.3

3.13.2

1.3

Figure 1. The HADAS Approach

Now, imagine that we wish to calculate the energy of
sending a compressed file through a TCP socket. This entails
two different concerns, the compression and the
communication concerns, which have a clear dependency
between them. Note that by compressing the file, the number of
bytes sent through the network is lower. In this case, HADAS
should help the developer decide whether compressing and
sending the compressed file through the TCP socket consumes
more or less energy than sending the file without compression.
In order to do this kind of reasoning, HADAS formally
specifies the dependency relationships between energy
consuming concerns using the cross-tree constraints supported
by the variability model. For example, the Remote Storage
concern depends on both the Communication and the
Compression concerns, so we define a constraint associated
with the Remote feature as: Remote implies Compression and
Communication (Figure 2). With HADAS, designers do not
need to be aware of the inter-dependencies between the
concrete solutions of different energy consuming concerns.
HADAS will enable and disable variants of different hotspots
automatically, as the designer selects the desired options. In the
example, HADAS automatically incorporates the
Communication and the Compression concerns because they
are also energy consuming. HADAS then helps developers
make informed decisions about the energy consumption of the
selected concerns, and generate the initial application
configuration (Figure 1, label 2.2).

V. ANALAZING AND SELECTING ENERGY-EFFICIENT
CONFIGURATIONS

The key to the success of self-greening applications is to
fully exploit the energy saving possibilities arising at runtime.
So, the main role of the HADAS Green Repository in the
development of self-greening applications is to provide the
necessary means to make an energy-efficiency analysis, at
design time, about the possibilities of optimizing energy
consumption at runtime for a given application (Figure 1, label
2.1). This means that the HADAS Green Repository can be
used to see whether it is worthwhile specifying a
reconfiguration rule to replace, at runtime, a specific concern
implementation with another after, for instance, a drastic
change in user behavior. So, the HADAS toolkit helps
developers carry out a comparative analysis of the power
consumption of different solutions for a given runtime energy
hotspot. For example, in Figure 2 we can see that for a file size
equal to 4MB all the codecs consume similar energy, so we can
deploy the LAME codec, but when this size increases up to
64MB, then the codec Vorbis is greener. Since both the file
size and quality depend on what the user needs at each
moment, it is not enough to just generate an initial energy-
efficient application. It becomes necessary to codify
reconfiguration rules (Figure 1, label 2.3) to replace a solution
when the current one is no longer the most energy-efficient,
under the current use conditions (e.g., audio codec LAME by
Vorbis).

Optional
Mandatory

Choice

min..max Multiplicity

Security

1..*

Data Access SynchronizationNotification CommunicationStore User Interface Code Migration Fault Tolerance

Cache Storage

1..1

Remote
1..*

ExtHDCloud Remote implies
Compression and Communication

...

...

Data Image AudioVideo
1..*

1..1
LAME

...

Compression

WebSockets RMI
1..*

...RPCSockets

Server

Local

0

20

40

60

80

100

4 16 32 64 128 256 512

Energy (J)

File size (MB)

Energy Consumption
(Compression algorithms)

VORBIS (OGG)

LAME (MP3, 128 kpbs)

Speex

Vorbis jSpeexFlac Constraints

Figure 2. Models of the HADAS Repository and Power Consumption graphic of audio codecs

With HADAS, the developer is aware that the decision of
choosing an audio codec can only be made considering the
expected use of the application. This reasoning may be
described using Event Condition Action (ECA) rules [16], a
simple but efficient reconfiguration mechanism that consumes
less than other computationally more complex approaches like,
for example, optimization algorithms. In our case, the event
will be a variation in the parameter value that affects the energy
expenditure of a given concern (e.g., file size); the condition
will be the concrete value that makes the current energy
consuming concern implementation no longer optimal (e.g.,
size > 64Mb); and, the action will be to replace the current
component configuration with a more eco-efficient solution
(e.g., replace LAME with Vorbis).

However, this reasoning cannot be performed in isolation
for each energy-consuming concern, because reducing the
energy of one concern can have a collateral effect of
incrementing the energy expenditure of others. In the MS
application, as we have already said, the developer is also
interested in exploring the possibility of uploading the audio
files to a server. In this scenario, audio files must first be
compressed and then uploaded to a server. In this case, we
need to know the total power consumption of compressing the
file and sending it to the server. Note that different

compression algorithms produce compressed files of different
sizes, and therefore the energy consumed by the
communication concern will be different, depending on the
compression algorithm previously used. HADAS will help
developers jointly reason over different concerns, by showing
the graphics with the power consumption for the entire
configuration. The configuration is generated according to the
dependency relationships previously defined in CVL (Figure
2). For our example, Figure 3 shows the power consumption
considering the two concerns used in the remote-server
configuration, Compression and Communication. It shows that
for a file size of 4 MB, the energy consumption of three audio
codecs plus communication is similar, but as the file size
increases, the greenest codec is Speex.

With all this information, the developer can now complete
the reconfiguration rules for the MS. Since the majority of MS
users will store typical song audio files of 4 MB, the developer
can select the local feature (i.e., store audio files in the device)
and the LAME codec (i.e., the greenest according to Figure 2)
for the initial configuration. However, at some point some
users may wish to store audio files with a size greater than 64
MB (e.g., a journalist who wants to record an interview), so the
greenest codec in this case would be Vorbis.

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

4 16 32 64 128 256 512

Energy (J)

File size (MB)

Energy Consumption
(Compression algorithms + Communication API)

VORBIS (OGG)

LAME (MP3, 128 kpbs)

Speex

"No compression"

"VORBIS (OGG) only compression"

"LAME (MP3 128 kbps) only compression"

"Speex only compression"

Figure 3. Energy consumption graphic of compression and communication concern

Finally, as the file size increases the device memory
becomes full, so it is time to upload the audio files to a server.
However, according to the results showed by HADAS (Figure
3), the energy consumption of sending the file to the server
increases exponentially in function of the file size, and thus, a
greener solution is to replace the compression algorithm with
another, with a bigger compression rate, the Speex codec. Note
that the Speex codec is the compression algorithm that
consumes the most if it is used locally (see Figure 2). There are
different green solutions because the file size affects
communication to a greater extent than it does in compression.
So, reducing the file size as much as possible before sending it
to the server drastically decreases the energy consumption of
the global solution. This means that we need an additional
reconfiguration rule that specifies that if the user or the system
decides to upload the audio files to the cloud, the greenest
codec is Speex. We have identified three energy saving
scenarios at runtime, each one recommending a different audio
codec. In the following section, we show a possible
implementation of a self-greening application written in Java.

VI. ENERGY-AWARE RECONFIGURATION

Once the initial system configuration has been deployed,
the system has to monitor and reconfigure the current system,
pursuing true energy efficiency at runtime (Figure 1, label 3).
How can we implement a self-greening application without
overloading the system with heavy-energy monitoring
mechanisms? What elements should be monitored at runtime?
How can we analyze the context to enforce a self-greening
behavior without complicating the resulting code?

Indeed, the greatest challenge is to define a self-greening
mechanism that wastes the least amount of energy, so applying
burdensome, self-adaptation approaches (e.g., manipulating
models@runtime [15]) is not recommended. In addition, since
eco-efficient concerns crosscut several application components
it makes sense to follow an AOSD approach [10] to implement
energy-related concerns separately from the application’s
functional components, to facilitate their replacement at
runtime.

Since we need to observe the runtime variation of some
parameters, the subject-observer design pattern could be a good

option, and the use of Java events. We have found one solution,
which is not intrusive and also eco-efficient, which is the
AspectJ language, an Aspect-Oriented (AO) extension of Java.
With this language, it is possible to define interception points
in the application base code where we want to inject an extra-
functional property, like the energy consuming concerns in our
case. Before, around or after executing these interception
points (i.e., pointcuts in AspectJ terminology implemented as
Java annotations) we can inject code related to self-greening
functionality separately from the core application code. The
AspectJ annotations are interpreted at compile time by the ajc
compiler that weaves the “aspect” code with the application
classes at the bytecode level, so there is no overhead at
runtime.

Figure 4 shows an example of an aspect-oriented design
solution for implementing self-greening applications in
AspectJ. One possible solution would be to implement the
monitoring of events that trigger a reconfiguration as separated
code which would then be injected in the base code of the
application. At runtime, we only need to observe those
parameters whose variation implies that the current
configuration is no longer the most energy efficient; i.e., these
parameters are the events that appear in the ECA rules defined
above (the file size in our case). So, we propose implementing
a Monitor for each of the parameters to be observed as an
aspect, i.e., annotated with @Aspect (stereotyped as
<<aspect>>).

The value captured by each monitoring class is sent to the
Analysis component that contains the ECA rules to decide
whether or not a reconfiguration is needed. If the rules
determine that a new configuration is greener, the Analysis
component will send the new configuration to the
Reconfiguration component. This component directly interacts
with the energy consuming concerns by enabling/disabling
them and reconfiguring their internal behavior. The runtime
energy consuming concerns are also implemented as aspects
(i.e., stereotype <<eco-aspect>>) and are non-intrusively
injected into the base application code. This provides a light
solution in terms of energy consumption and allows an easier
reconfiguration of the energy consuming concerns, because
aspects do not call nor are called by the base application.

Storage energy consuming concern

Reconfiguration system

Base application

operations
+CompressionService(algorithm : Compression)
+executeAlgorithm(file : File) : File
+setAlgorithm(algorithm : Compression)

«eco-aspect»
CompressionConcern

operations
+saveAudio(chatID : String, audio : File)

MultimediaService

«eco-aspect»
LocalStorage

Concern

«eco-aspect»
RemoteStorate

Concern

«eco-aspect»
CommunicationConcern

operations
+compress(file : File) : File

Compression

operations
+compress(file : File) : File

CompressionVORBIS
operations

+compress(file : File) : File

CompressionLAME
operations

+compress(file : File) : File

CompressionSpeex

attributes
-cache : Queue<Object>

«aspect»
Monitor

...
Reconfiguration«aspect»

Monitor
UploadingRate

«aspect»
Monitor

NumberUsers

«aspect»
Monitor
FileSize

Analysis

1. @Aspect
2. public class CompressionConcern {
 3. public static final Compression DEFAULT_ALGORITHM =

 new CompressionLAME();
4. private Compression algorithm;
5.
6. public CompressionConcern() {
7. algorithm = DEFAULT_ALGORITHM;
8. }
9.
10. @Pointcut("execution(public void MultimediaService.saveAudio(..))

 && args(file)")
11. public void compressionHotspot(File file) {}
12.
13. @Around("compressionHotspot(file)")
14. public Object compress(ProceedingJoinPoint thisJoinPoint, File file) {
15. File encodedFile = algorithm.compress(file);
16. return thisJoinPoint.proceed(new Object[]{encodedFile});
17. }
18.
19. public void setAlgorithm(Compression algorithm) {
20. this.algorithm = algorithm;
21. }
22. ...
23. }

 // Reconfiguration of the Remote Storage concern:
1. Aspects.aspectOf(LocalStorageConcern.class).setStatus(false);
2. Aspects.aspectOf(RemoteStorageConcern.class).setStatus(true);
3. Aspects.aspectOf(CommunicationConcern.class).setStatus(true);
... // Reconfiguration of the Compression concern:

4. Aspects.aspectOf(CompressionConcern.class).setAlgorithm(algorithm);
 ...

1. @Aspect
2. public class MonitorFileSize extends Monitor {

 3. ...
4. @Pointcut("call(public void MultimediaService.saveAudio(..))

 && args(file)")
5. public void monitorPoints(File file){}
6.
7. @Before("monitorPoints(file)")
8. public void fileSize(File file) {
9. long size = file.length();

10. cache.add(size); // send cache to Analysis
11. }
12. }

 // Reconfiguration rules for file size:
1. int lastSizes = cache.stream().mapToInt(value -> value).sum();
2. int avgSize = lastSizes/cache.size();
3. if (avgSize*RATE >= AVAILABE_SPACE) {
 4. algorithm = new CompressionSpeex();
5. reconfiguration.reconfigure("localStorage", false);
6. reconfiguration.reconfigure("remoteStorage", true);
7. } else if (avgSize <= 64) { // MB
8. algorithm = new CompressionLAME();
9. } else { // > 64 MB
10. algorithm = new CompressionVORBIS();
11. }
12. reconfiguration.reconfigure("compression", algorithm);

...

«use»

«use»

«crosscuts»

algorithm

«use»

«use»

«crosscuts»

«use»

Figure 4. Implementation of the media store using HADAS self-greening approach

Returning to our example, we have defined the
MonitorFileSize that monitors the size of the audio files
processed by the MultimediaService.saveAudio() method (line
4 in the MonitorFileSize aspect), among others. Each new
parameter value is stored in a cache (line 10), the Analysis
component can have information about the most recent activity
of the user and thereby make more accurate decisions. In our
example, the Analysis considers the average size of the latest
files processed (line 2 in the Analysis component) in the
reconfiguration rules associated with the file size. The rest of
the code of this component shows the implementation of the
ECA rules defined in the previous step. Lines 7-8 correspond

to the ECA rule for files stored locally and with a size less than
or equal to 64 MB, setting the LAME codec. Lines 9-10
implement the second ECA rule that sets the Vorbis algorithm
for file sizes greater than 64 MB. However, when the space
available in the local repository is almost full, the system will
be reconfigured to store the files in a remote server and thus,
change the compression algorithm for Speex (lines 3 to 6).

The Reconfiguration component will activate and/or
deactivate the appropriate concerns, changing from the local to
the remote storage configuration (lines 1 to 3 in
Reconfiguration component). In addition, it is responsible for

changing the current configuration of the activated concern, for
example, changing the compression algorithm (line 4). The
energy consumption concerns crosscut the base application to
inject the appropriate functionality in the correct place. For
instance, the CompressionConcern aspect crosscuts the base
application to compress the audio before saving it (lines 10 to
17).

We tested our implementation and the AspectJ mechanism
and the results showed that the energy consumption of the
proposed implementation is insignificant compared to the total
amount.

VII. CONCLUSIONS

We have presented HADAS, a self-greening approach that
aims to optimize the energy consumption of applications at
runtime. We have focused on those concerns whose
consumption depends on parameters that could vary at runtime,
according to the user interaction or on other context
information (e.g., available memory, battery level). In order to
specify the self-greening rules, we have developed a runtime
energy consuming concerns repository with information about
relative energy consumption of some recurrent concerns. The
graphics generated by the HADAS Green Repository are used
to analyze the possibilities of optimizing energy consumption
at runtime. Indeed, we have shown that there are valuable
opportunities to optimize the energy consumption at runtime
that should not be neglected by developers. In our example, if
the initial codec LAME is maintained and the user starts
producing files greater than 64 MB we miss the opportunity to
save between 48% (128 MB) and 65% (512 MB). In addition,
if audio files have to be uploaded to a server at a certain
moment, setting the codec to Speex could save between 52%
(difference with LAME) or 43% (difference with Vorbis) for
files greater than 64 MB and as the file size increases the
saving could reach 81% (difference with LAME) or 54%
(difference with Vorbis).

ACKNOLEDGEMENTS
This work is supported by the projects Magic P12-TIC1814
and HADAS TIN2015-64841-R (co-financed by FEDER
funds).

REFERENCES
[1] Q. Li and M. Zhou. The survey and future evolution of green computing.

In Proceedings of the IEEE/ACM International Conference on Green
Computing and Communications, GreenCom’11, pages 230–233, 2011.

[2] K. Grosskop, J. Visser. Identification of Application-level Energy-
Optimizations. In Proceedings of the conference on ICT for
Sustainability – ICT4S’13, pages 101-107, 2013

[3] I. Manotas, C. Bird, R. Zhang, D. Shepherd, C. Jaspan, C. Sadowski, L.
Pollock, and J. Clause. An empirical study of practitioners’ perspectives
on green software engineering. In Proceedings of the 38th International
Conference on Software Engineering - ICSE ’16, pages 237–248, 2016.

[4] C. Pang, A. Hindle, B. Adams, and A. Hassan. What do programmers
know about software energy consumption? IEEE Software, 33(3):83–89,
may 2015

[5] K. Grosskop and J. Visser. Identification of application-level energy
optimizations. Proceeding of ICT for Sustainability (ICT4S), pages 101–
107, 2013.

[6] E. Jagroep, J. M. van der Werf, S. Brinkkemper, L. Blom, and R. van
Vliet, “Extending software architecture views with an energy
consumption perspective: A case study on resource consumption of
enterprise software,” Computing, pp. 1–21, 2016.

[7] A. Noureddine and A. Rajan. Optimising energy consumption of design
patterns. In Proceedings of the 37th International Conference on
Software Engineering - Volume 2, pages 623–626, 2015.

[8] S. Hasan, Z. King, M. Hafiz, M. Sayagh, B. Adams, and A. Hindle.
Energy profiles of Java collections classes. In Proceedings of the 38th
International Conference on Software Engineering - ICSE ’16, pages
225–236, 2016.

[9] S. Hallsteinsen, M. Hinchey, S. Park, and Klaus Schmid. “Dynamic
Software Product Lines”. Computer 41, 4 (April 2008), 93-95.

[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.M.
Loingtier, and et. al. Aspect-oriented programming. In: ECOOP – Object
Oriented Programming, vol. 1241. 1997. p. 220–42.

[11] S. Götz, C. Wilke, S. Cech, and U. Aßmann, “Runtime variability
management for energy-efficient software by contract negotiation,” in
CEUR Workshop Proceedings, 2011, vol. 794, pp. 61–72.

[12] A. El Kouche, L. Al-Awami, and H. Hassanein, “Dynamically
Reconfigurable Energy Aware Modular Software (DREAMS)
Architecture for WSNs in Industrial Environments,” Procedia Comput.
Sci., vol. 5, pp. 264–271, 2011.

[13] S. J. Chinenyeze, X. Liu, and A. Al-Dubai, “An Aspect Oriented Model
for Software Energy Efficiency in Decentralised Servers,” in 2nd
International Conference on ICT for Sustainability - ICT4S, 2014, pp.
112–119.

[14] Ø. Haugen, B. Møller-Pedersen, J. Oldevik, G. K. Olsen and A.
Svendsen. Adding Standardized Variability to Domain Specific
Languages. In Proceedings of the 12th International Software Product
Line Conference, SPLC’08, pages. 139-148, 2008

[15] R. H. Reussner, S. Becker, J. Happe, R. Heinrich, A. Koziolek, H.
Koziolek, M. Kramer, and K. Krogmann. Modeling and Simulating
Software Architectures - The Palladio Approach. MIT Press, Cambridge,
MA, October 2016.

[16] N. Bencomo, R. France, B. H. Cheng, U. Aßmann (eds.).
Models@run.time, LNCS, vol. 8378, pages 279–318. Springer,
Heidelberg, 2014

