
Intelligent Perioperative System: Towards Real-time Big Data 
Analytics in Surgery Risk Assessment

Zheng Feng, Rajendra Rana Bhat, Xiaoyong Yuan, Daniel Freeman, Tezcan Baslanti, Azra 
Bihorac, and Xiaolin Li
National Science Foundation Center for Big Learning University of Florida, Gainesville, Florida 
32603–0250

Abstract

Surgery risk assessment is an effective tool for physicians to manage the treatment of patients, but 

most current research projects fall short in providing a comprehensive platform to evaluate the 

patients’ surgery risk in terms of different complications. The recent evolution of big data analysis 

techniques makes it possible to develop a real-time platform to dynamically analyze the surgery 

risk from large-scale patients information. In this paper, we propose the Intelligent Perioperative 

System (IPS), a real-time system that assesses the risk of postoperative complications (PC) and 

dynamically interacts with physicians to improve the predictive results. In order to process large 

volume patients data in real-time, we design the system by integrating several big data computing 

and storage frameworks with the high through-output streaming data processing components. We 

also implement a system prototype along with the visualization results to show the feasibility of 

system design.
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I. Introduction

According to the study, an average American is expected to undergo seven surgeries in his 

lifetime. Each year in US, at least 150,000 patients die and 1.5 million develop certain forms 

of medical complications within 30 days after surgeries [1] [2]. It could potentially save 

thousands of lives by just reducing the postoperative complications (PC) by 20% [3]. 

Postoperative complications often lead to higher healthcare cost, adverse long-term stress, 

and other health issues. Among them, the Sepsis (SEP) and Acute Kidney Injury(AKI) are 

some complications that cause significant long-term morbidity and mortality [4]. However, 

the mortality of SEP and AKI can be lessened by various preventive therapies based on 

physicians’ risk assessment.

In prior research, the surgery risk scores are often subjectively assessed by physicians, and 

hence may suffer from inaccuracy. The presence of the large volume information-rich 

electronic health records (EHRs) also overwhelms physicians to comprehend every detail of 

a patient’s profile. In addition, the characteristic of EHR data including high dimensionality, 

sparsity, and heterogeneity, makes it difficult to utilize them for modeling the perioperative 
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risk, especially when they are applied in traditional statistical models. The viable alternative 

is utilizing data-friendly machine learning models that built on top of various features 

derived from data engineering approaches [5]. By applying these data on distributed 

streaming data processing framework, the real-time perioperative risk prediction is able to 

perform after aggregating and transforming the EHR data from different data sources. These 

techniques along with physicians’ domain knowledge facilitate existing clinical decision 

support systems and improve patient-centered outcomes.

The integration of the analytic models and big-data techniques is a challenge in real clinical 

practice, owing to the complexity of processing real-time streaming data. The accuracy of 

the predictive models depend on domain expertise for feature selection process. 

Furthermore, traditional feature engineering approaches often scale poorly when facing the 

large volume EHR data from different sources, therefore missing the opportunity to discover 

novel patterns in data.

In this paper, we develop a real-time perioperative complication (PC) risk assessment system 

by using streaming EHR data. Furthermore, it calculates the risk scores for each new patient 

with high accuracy. IPS facilitates doctors to develop preventive strategies depending on the 

timely and accurate identification of the greatest perioperative complication risks for 

patients. It builds on open-source frameworks and runs various statistical and machine 

learning prediction models to provide accurate, automatic, and personalized perioperative 

risk assessment.

II. Related Work

In this section, we review the existing research works of predicting and identifying 

complications or chronic diseases that applying statistical and machine learning models on 

EHR data. EHR data usually comprise of biological, anatomical and physiological data. 

They can be unstructured or semi-structured and come from various different sources such 

as patients’ demographic information, discharge information, diagnostic/vital sign notes and 

check-in/check-out information.

For phenotyping identification, algorithmically automated EHR-based phenotyping by using 

Inductive logic programming (ILP) has been developed [6]. This relational machine learning 

(ML) model provider prediction for nine phenotypes, and it gives better results (in AUROC) 

compare to other non-relational approaches such as PART (p = 0.039), J48 (p = 0.003), and 

JRIP (p = 0.003). Similar experiments of predicting heart failure rate model using EHR data 

were conducted by M. Panahiazar, et al. [7]. The new model comprising the Random Forest 

(RF) and Logistic Regression (LR) is evaluated on the benchmark of the standard Seattle 

Heart Failure Model. This model is applied to Mayo’s Clinic data sets and it performs with 

better accuracy (11% increase in AUC) and better prognostic prediction performance (8% 

improvement in AUC), compared to the existing models after incorporating 26 more co-

morbidities. In a different study, cardiovascular autonomic neuropathy detection was 

developed for diabetes patients using the ensemble methods including AdaBoost and 

Bagging(based on J48) [8]. This model is applied to the datasets collected from Diabetes 

Feng et al. Page 2

DASC PICom DataCom CyberSciTech 2017 (2017). Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Complications Screening Research Initiative at Charles Sturt University for the detection of 

Cardiovascular Autonomic Neuropathy.

Recently, some applications are developed to extract novel probabilistic interdependence 

among disease-associated risk factors in various epidemics by applying the probabilistic 

framework on EHR data. The probabilistic frameworks Epi-Defend and EpiAttack are 

proposed to identify and target the flu outbreak [9]. This probabilistic model comprises of 

Dynamic Markovian Bayesian Network, Particle Filter, and text mining algorithms. This 

model applies on time series data such as WSARE datasets. Text mining algorithms are 

applied to determine anthrax epidemic by screening through the telephonic keyword. A 

similar approach of predicting pancreatic cancer is applied on different datasets including 

PubMed knowledge and EHR records by constructing a weighted Bayesian Network 

Inference (BNI) model [10]. In this study, twenty common risk factors were extracted from 

Pubmed knowledge to develop the BNI model called iDiagnosis for predicting pancreatic 

cancer. Compared to other machine learning methods, iDiagnosis outperforms existing 

machine learning models including k-Nearest Neighbor and Support Vector Machine. The 

probabilistic framework is also utilized in building real-time predictors for mortality and 

readmission [11]. This framework is built on Bayesian Network and applies to laboratory 

and administrative data of the patients, including 32,634 patient’s records from the 

emergency department of Sydney metropolitan hospital in the span of 3 years. The average 

accuracy and AUC of the model are 0.80 and 0.82, respectively. With this model, they draw 

the trajectory of the patients and subsequently get some inference results including expected 

discharge, death, and readmission.

III. The Intelligent Perioprative System Framework

This paper proposes a real-time intelligent perioperative system that periodically collects the 

EHR data of patients, and performs data integration, variable generation, surgical risk scores 

prediction, and risk scores visualization. It supports health professionals for their treatment 

evaluation and decision making. To fulfill the security requirements of University of Florida 

Health Integrated Data Repository (IDR) and build the system with high flexibility and 

scalability, we designed our system into separate components based on different roles of 

IDR and physicians. Each component is deployed on the separated server or platform and 

works in different trust region. The communication among different components is protected 

by multiple encrypting and security schemes. To process the data in real-time, the major data 

processing logic and prediction model are built on distributed subcomponents, and each 

subcomponent works individually with highly efficiency. As shown in Fig 1, we designed 

our system into three components, including Data Provider, Intelligent Engine, and 

Application Clients. The Data Provider is a component integrating several data sources from 

IDR and formulating all the data into patients’ admission based data stream. After collecting 

and aggregating the data from IDR, the transformed patients’ data stream is sent to the 

Intelligent Engine through distributed message queue. The Intelligent Engine periodically 

fetches the data from the message queue, processes the data by streaming working logic, and 

finally stores the results into NoSQL database for further interpretation and visualization. 

The last component builds on top of the intelligent engine is the Surgery Risk Assessment 
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Application clients. The major functionalities of the application clients include patient 

surgery risk profiling and physician feedback on risk assessment.

A. Security Schemes Design

Because the processed data in the system contains sensitive health information of patients, 

the information security is the essential part of system design required by IDR. To ensure the 

system security, different schemes are proposed while the sensitive data is exchanged among 

different system components. The schematic diagram of the security design is shown in Fig 

2. First, the IDR maintains all the data from different sources and provides the data to the 

system whenever new records get in. To work with IDR, the data producer continuously 

checks on the directory of IDR for new data. During this process, the encryption of the 

message is not required because the Data Producer works in the same secure domain with 

IDR. But when data exchanges among servers that work in the different region, the 

communication is required to be secured. This happens when Data Producer sends data to 

the Intelligent Engine and the Application Clients access the database. In these situations, 

the system applies the public key infrastructure (PKI) to protect the exchange of the sensitive 

information. Data exchanging is encrypted through the Secure Sockets Layer (SSL) protocol 

and only the intended receiver can decipher the data by using the private key it possesses. 

The Streaming work logic and prediction models in Intelligent Engine can be deployed at 

different cluster from the database at some working environment, so the encrypted 

communication between these two subcomponents is required as well. Considering the mass 

data exchanging of them, we use the symmetric key encryption to encrypt the data, because 

compare with the public-key encryption algorithms, the symmetric-key algorithms are more 

efficient, and the symmetric key can be designated during the configuration before running. 

We also apply RestAPI [12] for clients to communicate with our system. This avoids clients 

to directly talk with the system and may provide the opportunity for SQL injection and other 

malicious attacks.

B. Data Producer

The primary purpose of the Data Producer is gathering all the data files from different 

sources provided by IDR. After aggregating and connecting these data, it transforms them 

into patient based records stream. To this end, the Data Provider performs the process shown 

in Fig 3. All the data files provided by IDR come from the patients’ Electronic Health 

Records, Florida Bureau of Vital Statistics, Social Security Death Index, US Renal Data 

System, and US Census Data. The major information used in the current surgery risk 

prediction models has four categories, including patient admission information, provider 

information, lab tests data, and medication data. For each patient admission, there is zero or 

multiple lab tests and medication records and at least 1 provider record. The Data Producer 

progress is scheduled to check the directories of IDR repeatedly in a configured time 

interval. At each interval, the Data Producer collects a new batch of data files, then connect 

all the records in different files based on the patient admission identity. All the records are 

transformed into JSON string and remotely wrote into the input agent of Intelligent Engine. 

The input agent of Intelligent Engine is implemented with Kafka [13] distributed message 

queue, so the producer is able to simultaneously write to multiple servers in Intelligent 

Engine cluster.
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C. Intelligent Engine

The Intelligent Engine consists of tools and modules for processing and analyzing the data 

stored in the NoSQL database or from streaming data source. Here we utilize the Spark [14] 

as our distributed computational infrastructure, Cassandra [15] as NoSQL database, and 

HDFS [16] as distributed file system solution. In order to tighten the system security, and 

make the deployment of the Intelligent Engine with the minimum configuration at the 

different production environment, we use Docker [17] container to host all the 

subcomponents of Intelligent Engine.

The Intelligent Engine provides three functionalities shown in Fig 1 including real-time 

complications risk scores prediction, batched model training with distributed machine 

learning/deep learning tools, and SQL based data analysis. First, the real-time risk scores 

prediction builds on the spark streaming infrastructure. The surgery risk prediction is the 

major functionality of the Intelligent Engine, the customed real-time prediction job 

constantly works on top of the spark streaming and periodically pulls the patient admission 

based JSON records from Kafka distributed message queue. The acquired patient records 

stream flows through the defined streaming work logic including the data engineering/

preprocess, surgery risk prediction, and storage of the final results. All these three 

subcomponents in the streaming logic work individually with their own functional modules 

and we use the streaming interfaces to couple them together to work in a pipeline. The data 

engineering/preprocessing subcomponent first convert each patient JSON record into raw 

features. Then it transforms and remodels these raw features based on several predefined 

dictionaries to fit the input of 8 complications risk prediction models. The 8 complications 

prediction models are currently designed to work independently from each other. But the 

multitask learning that share the common learning features are also supported. This gives the 

system opportunities for exploring the interrelationship among different complications. The 

batch model training is established on the distributed machine learning tools of Spark, 

including the Mlib for general machine learning tasks, and TensorOnSpark [18] for deep 

learning tasks. The general data analysis and processing tasks are performed by the 

SparkSQL. It executes on the powerful Spark distributed computational engine for the 

computational ability and NoSQL database for large amount unstructured data storage.

D. Application Clients

The application component provides the real time display of patients’ complete information. 

It includes the prediction of the likelihood of PCs as well as some descriptive information of 

patients for physicians. This component consists of web service, presentation, and 

visualization. In Web Service, we use RestAPI as the intermediate agent for the clients and 

Intelligent Engine. Various clients interact with RestAPI instead of directly talk to Intelligent 

Engine. Fig 4 provides the architectural design of the application clients components. For 

visualization, the module uses JavaScript based D3 visualization framework. It renders pie-

chart graph that allowing the physician to increase or decrease the pie based on their 

evaluation of the prediction.
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IV. Intelligent Perioperative System Prototype Implementation

In the first stage of our work, we implement a prototype of the intelligent perioperative 

system to validate the feasibility of the proposed system design. In this section, we describe 

the major implementation of the system, as shown in Fig 5 the work logic of the 

implementation can be summarized into two parts, including the data engineering and data 

analytics. The data engineering contains all the work of data transformation and feature 

extraction. The data analytics describes the model training and the real-time prediction. At 

the end, we present the visualized results of a patient that shows his predicted surgery risk. 

When building the system, we use the configuration shown in Fig 6. we deployed the system 

on 4 × 86 servers with CPU of E5-2695 X8, 256 GB memory, and 3 TB storage. One of 

them serves as the master node and other 3 serve as the slave nodes. The software 

environment is described in Table I. With this setting, the system can reach the through-

output of 5000 records per minute. And the average system delay for a single record is 60 s.

A. Data Engineering

All the data in the prototype is collected from University of Florida Health Integrated Data 

Repository, and it includes a single cohort of the patients admitted to Shands Hospital at the 

University of Florida from January 2000 and November 2010. Patients that aged 18 years 

and above, with the hospital stay of greater than 24 hours, are selected, giving the total of 

50,314 patients. The patients having end-stage renal disease on admission and missing 

serum creatinine were excluded. In order to analyze the data, the raw data is preprocessed by 

a set of data engineering techniques to generate applicable features for the predictive model. 

The data engineering process includes variable generation, data cleaning, outlier removal, 

and missing data imputation. The variable generation extracts useful patients information 

(demographics, socioeconomics, operative information, and comorbidity related 

information) from raw data to generate a set of variables. Once data is collected, data 

cleaning including removal of outliers and imputation of missing data is executed. Mean 

imputation is applied for continuous variable whereas the missing category is created for 

nominal variables.

B. Data Analytics

In current stage, the main target of the Data Analytics subcomponent is to apply the surgery 

risk predictive models on processed data stream. The complete work flow is shown in Fig 5. 

The predictive model applied in Data Analytic is Generative Additive Model (GAM) model 

[4]. All the GAM models of 8 complications are pre-trained and encapsulated in R packages. 

For each complication, the model produces the predicted surgery risk score along with the 

important contributing risk factors. The output risk scores categorize patients into low-risk 

and high-risk groups by employing a cutoff (the threshold value) evaluated by maximizing 

the Youden index. The calculated cutoff values for all 8 complications are AKI (0.35), ICU 

(0.35), MV (0.13), WND (0.10), CV (0.07), NEU (0.07), SEP (0.06), VTE (0.03), 

respectively. To ensure that we are able to select the relative better model, five-fold cross-

validation is employed and the corresponding performance metrics are reported.
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C. Results and Visualization

IPS implements two clients for physicians to conveniently access and interact with the 

system in any moment. It includes Mobile app client and thin web client, and they both 

exchange the information via RestAPI. The RestAPI provides the interface for various 

clients and avoids the clients to query the data from the system core directly. This also 

augments the scalability of the system because it decouples the system from different clients 

of various platforms.

1) Web Client—The web client provides physicians a series of services to facilitate them 

monitoring the immediate surgery risks of their patients. This includes the Email notification 

for the new status of patients, the patients’ profile sketch generation, and visualization of 

each predicted surgery risk scores with pie chart. The example of predicted scores visualized 

a pie-chart is shown in Fig 7. In this pie-chart, the IPS system predict the risk scores of a 

patient for postoperative complications includes Acute kidney injury, Cardiovascular 

complications, Intensive care unit admission > 48 hours, Mechanical ventilation > 48 hours, 

Neurologic complications, Sepsis, Venous thromboembolism, and Wound complications.

2) Mobile App—The mobile client implements on Android Operating System. Compare to 

the Web client, the mobile client contains the functionality of pushing notification through 

Google Cloud Messaging (GCM) to the physicians once the results of their patients are 

available. Fig 8 shows few screen shots of our mobile client.

V. Conclusion And Future Works

In this paper, we developed IPS, a distributed real-time system for perioperative risk 

prediction. The system applies the predictive risk models for major complications by using 

EHR data. We implemented a prototype to validate the system design, and we believe it is 

the first real-time perioperative risk prediction system for the clinical usage. Motivated by 

this idea, we are optimistic that this streaming analytics paradigm shall be an effective tool 

for the clinics and hospitals surgery management in the US. In next stage of our work, we 

plan to replace the current individually trained complication models with an ensembled 

multi-task model and integrate it into the current streaming system. This takes into account 

the interrelationship of all the complications and gives better generalizing ability for each 

complication by sharing the common features of all the complications.
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Fig. 1. 
The Architecture of IPS. The system is designed into three components, including Data 

Provider, Intelligent Engine, and Application Client. The communication among different 

components is implemented by using distributed message queue and remote database access. 

All the components in Intelligent Engine are designed to work on separated Docker 

containers. The distributed Intelligent Engine cluster is deployed on UF Shands Data Center.
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Fig. 2. 
Security Design of IPS. Here we use three different schemes to ensure the system security 

while exchanging the sensitive data, including non-encrypted data exchanging for sub-

components in same trusted region, public-key encryption applied among different 

subcomponents out of trusted region, and symmetric key encryption is applied in the 

communication between streaming logic and database.
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Fig. 3. 
The Workflow of Data Producer. For each patient admission, there is at least 1 provider 

record, zero or multiple lab tests, and medication records. The Data Producer will collect 

and connect all the records and transform them into patient admission based records stream.
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Fig. 4. 
Client Interface Architecture. In the system, each client interface with server via RestAPI. 

RestAPI is deployed in Apache Tomcat web server.
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Fig. 5. 
Implementation of IPS Prototype. The work logic of the implementation can be summarized 

in two parts, including the data preprocessing and data analytics.
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Fig. 6. 
Configuration of IPS prototype. The cluster of Intelligent Engine is deployed on 4 servers 

and one of them serves as master node and the other 3 serve as slave nodes. The nodes in the 

cluster exchange the data through a gigabit switch. The DataProducer and clients 

communicate to the Intelligent Engine through Internet.
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Fig. 7. 
Web Client for IPS. Computer generated risk assessment with final patient’s risk assessment 

is displayed.
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Fig. 8. 
Mobile Client for IPS. AKI and ICU scores are displayed in left screen and physician 

registration page in right screen.
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TABLE I

The software environment of IPS prototype

Software Version

JDK 1.8.0

Python 2.7.12

Scalar 2.10.1

HDFS 2.6.4

Spark 1.6.2

Cassandra 3.9

Kafka 2.10-0.10.0.1

ZooKeeper 3.4.9
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