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Abstract 
 

We examine the feasibility of quantitatively 
characterizing the vulnerabilities in the two major HTTP 
servers. In particular, we investigate the applicability of 
quantitative empirical models to the vulnerabilities 
discovery process for these servers. Such models can 
allow us to predict the number of vulnerabilities that 
may potentially be present in a server but may not yet 
have been found. The data on vulnerabilities found in the 
two servers is mined and analyzed. We explore the 
applicability of a time-based and an effort-based 
vulnerability discovery model. The effort-based model 
requires data of the current market-share of a server. 
Both models have been successfully used for 
vulnerabilities in the major operating systems. Our 
results show that both vulnerabilities discovery models 
fit the data for the HTTP servers well. We also examine 
a separate classification schemes for server 
vulnerabilities that based on the source of error, and 
then explore the applicability of the quantitative methods 
to individual classes.  
 
1. Introduction 

 
There has been considerable discussion of server 

security in recent years. However, much of this has been 
qualitative, often focused on detection and prevention of 
individual vulnerabilities. Quantitative data is sometimes 
cited, but without any significant critical analysis. 
Methods need to be developed to allow security related 
risks to be evaluated quantitatively in a systematic 
manner.  A study by Ford et al. has made a side-by-side 
comparison between various general servers and the 
number of vulnerabilities and severity. This study 
concluded that there is a need to develop some tools for 
estimating the risks posed by vulnerabilities [1]. 

Two of the major software components of the Internet 
are an HTTP (Hyper Text Transfer Protocol) server (also 
termed a web server) and the browser, which serves as 
the client. Both of these components were first 
introduced in 1991 by Tim Berners-Lee of CERN. They 
have now become indispensable parts of both 
organizational and personal interactions. The early web 
servers provided information using static HTML pages. 

The web server now provides dynamic and interactive 
services between the server and client using database 
queries, executable script, etc. The web server is able to 
support functions such as serving streaming media, mail, 
etc. An HTTP server has thus emerged as a focal point 
for the Internet.  

We examine the vulnerabilities in the two most 
widely-used HTTP servers, the Apache server, 
introduced in 1995, and the Microsoft IIS (Internet 
Information Services) server, originally supplied as part 
of the NT operating systems in 1995-96. While Apache 
has a much larger overall market share, roughly 63%, IIS 
may have a higher share of the corporate websites. The 
market share for other servers is very small and thus they 
are not examined here. IIS is the only HTTP server that 
is not open-source. Both Apache and IIS are generally 
comparable in features. IIS runs only under the Windows 
operating systems, whereas Apache supports all the 
major operating systems.  

The security of systems connected to the Internet 
depends on several components of the system. These 
include the operating systems, the HTTP servers and the 
browsers. Some of the major security compromises arise 
because of vulnerabilities in the HTTP servers. A 
vulnerability is defined as “a defect which enables an 
attacker to bypass security measures” [2]. The 
vulnerabilities found are disclosed by the finders using 
some of the common reporting mechanisms available in 
the field. The databases for the vulnerabilities are 
maintained by organizations such as National 
Vulnerabilities Database [3], MITRE [4], Bugzilla [5], 
BugTraq [6], etc., as well as the developers of the 
software. The exploitations of some of the server 
vulnerabilities are well known. The Code Red worm [7], 
which exploited a vulnerability in IIS (described in 
Microsoft Security Bulletin MS01-033, June 18, 2001), 
appeared on July 13, 2001, and soon spread world-wide 
in unpatched systems.  

All the computing systems connected to the network 
are subject to some security risk. While there have been 
many studies attempting to identify causes of 
vulnerabilities and potential counter-measures, the 
development of systematic quantitative methods to 
characterize security has begun only recently. There has 
been considerable debate comparing the security 
attributes of open source and commercial software [8]. 
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However, for a careful interpretation of the data, 
rigorous quantitative modeling methods are needed. The 
likelihood of a system being compromised depends on 
the probability that a newly discovered vulnerability will 
be exploited. Thus, the risk is better represented by the 
not yet discovered vulnerabilities and the vulnerabilities 
discovery rate rather than by the vulnerabilities that have 
been discovered in the past and remedied by patches. 
Possible approaches for a quantitative perspective of 
exploitation trends are discussed in [9]. Probabilistic 
examinations of intrusions have been presented by 
several researchers [10, 11]. In [12], Rescorla has studied 
vulnerabilities in open source servers. The vulnerabilities 
discovery process in operating systems has just recently 
been examined by Rescorla [13] and by Alhazmi and 
Malaiya [14, 15, 16].   

Servers are very attractive targets for malicious 
attacks. It is essential to understand the threat posed by 
both undiscovered vulnerabilities and recently 
discovered vulnerabilities for which a patch has not been 
developed or applied. At this time, despite the 
significance of security in the HTTP servers, very little 
quantitative work has been done to model the 
vulnerabilities discovery process for the servers. Such 
work would permit the developers and the users to better 
estimate future vulnerabilities discovery rates. It would 
also be highly desirable to be able to project what types 
of vulnerabilities are more likely to be discovered.  

Some of the available work on HTTP servers 
discusses some specific problem or attacks that the 
servers face, such as denial of service attacks (DoS) [17, 
18], in which the authors suggests some countermeasures 
to be applied when an attack of this type takes place. In 
this paper, our focus is the discovery rates of 
vulnerabilities of all types. 

The next section introduces the two vulnerabilities 
discovery models used. We then consider the total number of 
vulnerabilities in the two HTTP servers and examine how 
well the models fit the available data. We then partition the 
vulnerabilities into categories based on how such 
vulnerabilities arise, and consider the applicability of the 
models to individual partitions. Lastly, we discuss the major 
observations and present the conclusions.  

 
2. Vulnerability discovery models 

 
Use of reliability growth models is now common in 

software reliability engineering [19, 20]; SRGMs show 
that as bugs are found and removed, fewer bugs remain. 
Therefore, the bug finding rate gradually drops and the 
cumulative number of bugs eventually approaches 
saturation. Such growth models are used to determine 
when a software system is ready to be released and what 
future failure rates can be expected. 

Vulnerabilities are a special class of defects that can 
permit circumvention of security measures. Some 

vulnerabilities discovery models were recently proposed 
by Anderson [8], Rescorla [13], and Alhazmi and 
Malaiya [14]. The applicability of these models to 
several operating systems was examined in [17]. The 
results show that while some of the models fit the data 
for most operating systems, others do not fit well or 
provide a good fit only during a specific phase.  

Here, we investigate the applicability of two of the 
most successful models for HTTP servers. The models 
used are time-based and effort-based models proposed 
by Alhazmi and Malaiya [14]. These two models have 
been found to fit datasets for several of the major 
Windows and Linux operating systems, as determined by 
goodness of fit and other measures. The first model 
considers calendar time as the independent variable.  The 
model incorporates the effect of the rising and declining 
market share on the software. The second model requires 
explicit estimation of the effort using an effort measure, 
which is then used as an independent variable. 

The Alhazmi-Malaiya Time-Based Model: This model, 
referred to as the Time-Based Model, assumes that the 
rate of change of the cumulative number of 
vulnerabilities Ω is governed by two factors, as given in 
Equation 1 below [14]. The first factor declines as the 
number of remaining undetected vulnerabilities declines. 
The other factor increases with the time needed to take 
into account the rising share of the installed base. The 
saturation effect is modeled by the first factor. While it is 
possible to obtain a more complex model, this model 
provides a good fit to the data, as shown below. Let us 
assume that the vulnerabilities discovery rate is given by 
the differential equation: 

)( Ω−Ω=
Ω BA

dt
d

,           (1) 

where Ω is the cumulative number of vulnerabilities, t is 
the calendar time, and initially t=0. A and B are empirical 
constants determined from the recorded data. By solving 
the differential equation, we obtain  

1
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+
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where C is a constant introduced while solving Equation 
1. Equation 2 gives us a three-parameter model given by 
the logistic function. In Equation 2, as t approaches 
infinity, Ω approaches B. Thus, the parameter B 
represents the total number of accumulated 
vulnerabilities that will eventually be found. The model 
derivation assumes the software is stable. It is applicable 
even when the software is gradually evolving, however 
the model parameters will take different values. 

Equation 2 shows S-shaped plot for the time-based 
model, which is determined by values of A, B and C. 
Thus, the vulnerabilities discovery rate increases at the 



beginning, reaches a steady rate and then starts declining. 
Consequently, the cumulative number of vulnerabilities 
shows an increasing rate at the beginning as the system 
begins to attract an increasing share of the installed base. 
After some time, a steady rate of vulnerabilities finding 
yields a linear curve. Eventually, as the vulnerabilities 
discovery rate begins to drop, there is saturation due both 
to reduced attention and a smaller pool of remaining 
vulnerabilities. 

The Alhazmi-Malaiya Effort-Based Model: 
Vulnerabilities are usually reported using calendar time, 
because it is easy to record vulnerabilities and link them 
to the time of discovery. This, however, does not take 
into consideration the changes occurring in the 
environment during the lifetime of the system. A major 
environmental factor is the number of installations, 
which depends on the share of the installed base of the 
specific system. It is much more rewarding to exploit 
vulnerabilities that exist in a large number of computers. 
Hence, it can be expected that a larger share of the effort 
going into the discovery of vulnerabilities, both in-house 
and external, would go toward a system with a larger 
installed base. 

Using effort as a factor was first discussed in [21]. 
However, the authors did not suggest a unit or way of 
measuring effort. The Effort-based Model utilizes a 
measure termed Equivalent Effort (E), which is 
calculated using 
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where Ui is the total number of all HTTP servers at 
the period of time i, n represents the last period of usage 
time, and Pi is the percentage of the servers using the 
specific server for which we are measuring E. Ni is the 
number of machines running the specific server during 
time i. The result is given in system-months. The 
measure E can be calculated for the servers using the 
data available at [3].  

The model employs equivalent effort as a factor to 
model vulnerabilities discovery. Equivalent effort 
reflects the effort that would have gone into finding 
vulnerabilities more accurately than using time alone. 
This is somewhat analogous to using CPU time for 
software reliability growth models (SRGMs). 

If we assume that the vulnerabilities detection rate 
with respect to effort is proportional to the fraction of 
remaining vulnerabilities, then we get an exponential 
model like the exponential SRGM. This model can be 
expressed as follows: 

)1()( EvueBE λ−−=Ω ,                     (4) 

where λvu is a parameter analogous to failure intensity in 
SRGMs and B is another parameter. B represents the 

number of vulnerabilities that will eventually be found.  
We will refer to the model given by Equation 4 as the 
Effort-Based Model. 
 
3. Vulnerabilities in HTTP server 

 
In this section, the datasets for the total vulnerabilities 

of the Apache and Microsoft IIS web servers are fitted to 
the models. The goodness of fit is evaluated to determine 
how well the models reflect the actual vulnerabilities 
discovery process. The vulnerabilities data are from the 
National Vulnerabilities Database maintained by NIST. 
The market share data from Netcraft [23] was used. We 
note that Apache represents an open source software and 
IIS represents a closed source, i.e., a commercial system. 
It should also be noted that the number of vulnerabilities, 
either found or estimated as remaining, should not be the 
only measurement of a security threat. Factors such as 
patch development and application delays and 
vulnerabilities’ exploitation rates also need to be 
considered. In this section, all vulnerabilities are 
considered without regard to how they arise or the extent 
of their impact.  

Market share is one of the most significant factors 
impacting the effort expended in exploring potential 
vulnerabilities. Higher market share indicates more 
incentive to explore and exploit vulnerabilities for both 
exports and non-exports, since both would find it more 
profitable or satisfying to spend their time on a software 
with a higher market share.  

Table 1 presents data obtained from NVD and Netcraft, 
showing the current web server market share and total 
number of vulnerabilities found to date. For servers with a 
lower percentage of the market, such as Sun Java System 
Web Server (SJSWS) and Zeus, the total number of 
vulnerabilities found is low. That does not mean that these 
systems are more secure, but merely that only limited 
effort has gone into detecting their vulnerabilities. A 
significant number of vulnerabilities have been found in 
both Apache and IIS, illustrating the impact of the market 
share on the motivation for exploring or finding 
vulnerabilities. In this study, we use market share as an 
indicator of effort for the effort-based model. 

Table 1. Market share and vulnerabilities found 
Web Server Apache IIS SJSWS Zeus Other

Market Share 63.09% 29.48% 0.39% 0.59% 6.45%
Vulnerabilities 96 123 3 5 N/A 
Release Year 1995 1995 2002 1995 N/A 

Latest Version 2.2 6.0 6.1 4.3 N/A 
 

Figure 1 shows the web server market share for 
Apache and IIS. As demonstrated by Figure 1, the 
number of web servers continues to grow steadily. 
Among the various web servers, Apache and Microsoft 
IIS dominate the web server market. Since the total share 
of all of SJSWS and Zeus added together represents less 



than 10% of the market share, very few vulnerabilities 
have been found in them and hence the data for these 
servers has not been used in our study.  

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

Fe
b-

00

Ju
n-

00

O
ct

-0
0

Fe
b-

01

Ju
n-

01

O
ct

-0
1

Fe
b-

02

Ju
n-

02

O
ct

-0
2

Fe
b-

03

Ju
n-

03

O
ct

-0
3

Fe
b-

04

Ju
n-

04

O
ct

-0
4

Fe
b-

05

Ju
n-

05

O
ct

-0
5

Fe
b-

06

N
um

be
r 

of
 H

T
T

P 
Se

rv
er

Apache

IIS

Total Number of HTTP Server

 
Figure 1. Server market share trends 

There is a marked gap between the Apache and IIS 
market shares, as shown in Figure 1. This difference in 
market share may be due to several factors. Perhaps the 
most important of these is that Apache is available for all 
major operating system platforms and can be obtained 
without cost. Apache may also have benefited from not 
having been exposed to serious security issues such as 
the Code Red [7] or Nimda worms that were faced by IIS 
in 2001. 

The Apache HTTP server was first released in middle 
of 1995. Since then it has gained wide popularity and is 
used by over 50 million web server systems. In this 
section, we fit the vulnerabilities data for Apache to the 
time-based and the effort-based models. Figure 3 gives 
the vulnerabilities data from NVD for the period 
between March 1996 and May 2006, and the Netcraft 
market share data coves the same time period.  

In Figure 2 and 3, the bold black lines indicate the 
fitted models, while the other lines show cumulative 
vulnerabilities for Apache. Figure 2 (a) shows 
cumulative vulnerabilities by month for the time-based 
model. At the beginning, the slope of the curve for 
Apache rises gently until about January 2000, after 
which the slope has remained steady. From the point of 
the three phases of the vulnerabilities discovery process 
[14], Apache has not yet entered the saturation phase. 
Apache currently appears to be in the linear phase, since 
the number of vulnerabilities still appears to be growing 
linearly. Despite having been on the market for several 
years, Apache has not reached the saturation phase 
possibly because of its larger market share; moreover, 
the number of systems using the Apache is still 
increasing. This means that vulnerabilities discovery for 
Apache can be expected to continue at a significant pace 
in near future  

Figure 2 (b) shows cumulative vulnerabilities by 
number of Apache installations in terms of million 
system-months and the fitted effort-based model. This 

effort-based model shows that Apache has not yet 
approached the saturation phase since the number of 
vulnerabilities continues to increase approximately 
linearly as the number of Apache severs increases.  
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(a) Time-based model 

0

20

40

60

80

100

120

0

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

19
50

21
00

Million System Months  
(b) Effort-based model 

Figure 2. Fitting Apache vulnerabilities data 

IIS was released in the early part of 1996. IIS is a 
popular commercial web server with about 15 million 
installations currently. We have used the vulnerabilities 
data from January 1997 to May 2006.  

 Figure 3 (a) shows the cumulative vulnerabilities by 
month and the fitted time-based model for the IIS web 
server. The time-based and effort-based models fit the 
data for IIS very well. The IIS web server appears to have 
reached the saturation phase. In recent months, the 
vulnerabilities discovery rate for IIS has dropped to a very 
low point. A possible explanation for this can be that the 
number of IIS web servers installed appears to be 
stationary, unlike the Apache server which is still gaining 
in terms of new installations. Another possibility is that 
the number of remaining undiscovered vulnerabilities may 
actually have dropped significantly. 

Figure 3 (b) shows cumulative vulnerabilities for the 
IIS server and the effort-based model by million system-
months. Unlike Figure 2 (b), Figure 3 (b) shows a 
significant degree of saturation.  

We examine the fit of the models to the data as shown 
in Figures 2 and 3. For χ2 goodness of fit test, we chose 
an alpha level of 5%. Table 2 gives the chi-square values 
and parameter values for both the time-based and effort-



Table 2. χ2 Goodness of fit test results for total number of vulnerabilities 

based models. For comparison, we also provide 
corresponding parameter values for the Windows 98 and 
NT operating systems, as well as the chi-square values.  
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(a) Time-based model 
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Figure 3.  Fitting IIS vulnerabilities data 
Table 2 shows that the chi-square values are less than 

the critical values. This demonstrates that the fit for 
Apache, IIS, Windows 98 and NT is significant. Both 
data sets fit both models with χ2 P-values ranging from 
0.959 to nearly 1, indicating that the fit is quite 
significant. We can also note that parameter A is always 
less than 0.005 and parameter C is always less then 0.85, 
while parameter B corresponds approximately to the 
number of vulnerabilities. 

 
4. Vulnerability categories 

 
In the previous section we examined the application 

of the time-based and the effort-based model for the total 
number of vulnerabilities of Apache and IIS. In this, we 
apply these models to a classification schemes for server 
vulnerabilities. 

 Distinguishing among vulnerabilities is useful when 
we want to examine the nature and extent of the problem. 
It can help determine what protective actions would be 
most effective. Vulnerabilities taxonomy is still an 
evolving area of research. Several taxonomies have been 
proposed [24, 25, 26, 27, 28]. An ideal taxonomy should 
have such desirable properties as mutual exclusiveness, 
clear and unique definition, and coverage of all software 
vulnerabilities.   

Vulnerabilities can be classified using schemes based 
on cause, severity, impact and source, etc. In this 
analysis, we use the classification scheme employed by 
the National Vulnerability Database of the National 
Institute of Standards and Technology. This 
classification is based on the causes of vulnerabilities. 
The eight classes are as follows [3, 6]: 

1. Input Validation Error (Boundary condition error, 
Buffer overflow): Such types of vulnerabilities 
include failure to verify the incorrect input and 
read/write involving an invalid memory address. 

2. Access Validation Error: These vulnerabilities cause 
failure in enforcing the correct privilege for a user. 

3. Exceptional Condition Error: These arise due to 
failures in responding to unexpected data or 
conditions. 

4. Environmental Error: These are triggered by specific 
conditions of the computational environment.  

5. Configuration Error: These vulnerabilities result from 
improper system settings. 

6. Race Condition Error: These are caused by the 
improper serialization of the sequences of processes. 

7. Design Error: These are caused by improper design 
of the software structure. 

8. Others: Includes vulnerabilities that do not belong to 
the types listed above, sometimes referred to as 
nonstandard. 

Unfortunately, the eight classes are not completely 
mutually exclusive. Because a vulnerability can belong 
to more than one category, the summation of all 
categories for a single software system may add up to 
more than the total number of vulnerabilities (also the 
percentages may exceed 100%). 

Time-Based Model Effort-Based Model  
A B C χ2 χ2 critical P-value B λVU  χ2 χ2 critical P-value

Apache .00062 90.01 0.7675 64.24 148.78 0.999 112.5 .00092 23.726 61.66 .992 
IIS .00075 120 0.5959 35.54 138.81 1 122 .009 46.6 103 .998 

Win 98 .0048 37.73 0.554 7.365 60.481 1 37 .0005 3.510 44.9853 1 
Win NT4 .0006 136 0.522 35.58 103.01 1 108 .0030 15.05 42.5569 0.985 
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Figure 4. Vulnerabilities by category 

Figure 4 compares vulnerabilities distributions in 
Apache and IIS. The categories with the highest 
proportions are input validation errors, followed by 
design errors. There is a slight difference in category 
ordering between Apache and IIS, with Apache having 
more configuration errors than access validation errors; 
however, IIS has more access validation errors. While 
IIS has been more vulnerable to access validation errors, 
the fact that Apache has been more vulnerable to 
configuration errors may be due to Apache’s more 
complex installation requirements. 
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(a) Time-based model 
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(b) Effort-based model 

Figure 5. Fitting Apache by category 

We plot the vulnerabilities for the major categories to 
determine whether there is an observable pattern at the 
level of individual classes. Since we noted a similar 
pattern for the uncategorized vulnerabilities, a possible 
fit was examined. Figures 5 and 6 show the fit for the 
Apache and Microsoft IIS, respectively. 

In Figure 5, we only consider the three major 
categories, examining only: input validation errors, 
design errors and exceptional handling condition errors.  

As we mentioned above, the IIS model has a better fit 
than the Apache model, since IIS has reached the 
saturation phase. The categorized number of 
vulnerabilities shows the same pattern as demonstrated by 
the total number of vulnerabilities. Thus, each category 
shows a related pattern with regard to total number of 
vulnerabilities. Our time-based and effort-based models 
are fitted for each category. It may be noted that the 
number of input validation errors and design errors are the 
most common category in Apache and IIS. 
Table 4 shows the chi-square goodness of fit tests for the 
Apache and IIS models by category. Table 3 
demonstrates that the chi-square value for each category 
are less the P-values are close to 1, the fit of input 
validation, design and exceptional condition error classes 
are significant for both models. 
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(a) Time-based model 
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 (b) Effort-based model 

Figure 6. Fitting IIS by category 
 
5. Discussion 

 
When the total number of vulnerabilities is examined, 

both the time-based and effort-based models fit the 
datasets well, even when the vulnerabilities are 
categorized by type. This suggests that the models can be 
used to estimate the number of vulnerabilities expected to 
be discovered in a given period, and which types is likely 
to dominate. 



Table 3. Apache and IIS’s category chi-square analysis of goodness of fit 

The results of model fitting for the vulnerabilities 
classified by type are shown in Table 3. The fitting was 
done for the most common types of vulnerabilities for 
which the available data is statistically significant. It 
would be difficult to use these models to estimate the 
types of vulnerabilities that occur less frequently because 
the data may not be sufficiently statistically significant to 
make meaningful projections.  

The effort-based model requires the use of the market 
share data, which may be difficult to obtain. The time-
based model does not require this data; it can therefore 
be a feasible alternative when market share data is 
unavailable. Further research needs to be done to 
evaluate the predictive capabilities of the two models. 

Even though the Apache's vulnerability discovery rate 
has not reached saturation yet as observed in this paper, 
we had applied the time-based model for Apache and the 
statistical results show that the fit is significant.   

Static analysis has been used in software reliability 
engineering, where some of the systems’ attributes are 
estimated empirically even before testing begins. Similar 
static analysis can be carried out by utilizing metrics 
such as software size and estimated number of total 
defects.  These methods can potentially be used to 
estimate Defect density (DKD) and Vulnerability density 
(VKD), which can then be used to estimate the total 
number of vulnerabilities of a comparable system. DKD 
gives the defects per thousand lines of code and VKD is 
the number of vulnerabilities per thousand lines of code. 
Table 4 shows some of the major attributes of the 
Apache server and two other major operating systems for 
comparison. Unfortunately, some of the important 
metrics for the Microsoft IIS server are not available. For 
proprietary systems, such data can be hard to obtain 
outside of the developing organization. 

The sizes of IIS and Apache may comparable in terms 
of SLOC numbers, since both offer the same features. 
The Apache source code size for Windows is 328 Ksloc, 
larger than for Unix. A few of the Apache vulnerabilities 
may be applicable to only a specific platform. In Table 4, 
we observe that vulnerability density values for the 
Windows operating systems are significantly less than 
for Apache. This may be due to the fact that Windows 
operating systems has large segments that do not play a 
role in accessibility, while severs are smaller and 
therefore vulnerabilities are more concentrated in the 
code. This assumption is supported by the fact that the 

defect density to vulnerability density ratio is higher in 
Windows NT 4.0, a server operating system, than in 
Windows 98, a client operating system. Note that VKD/ 
DKD ratios are within a narrow range. 

Table 4. Known DKD vs. known VKD
App-

lication Ksloc Known 
Defects DKD

Known 
Vulnerabilities VKD

Ratio
VKD/DKD

Apache227(Unix) 4148 18.27 96 0.423 0.0232
IIS N/A N/A N/A 123 N/A N/A 

Win 98 16,000 10,000 0.625 91 0.0057 0.0091
Win NT 18,000 10,000 0.556 230 0.0128 0.023

After comparing the vulnerabilities trends of the web 
servers discussed in this paper, it is expected that fewer 
vulnerabilities will be discovered in IIS in the future. 
This may lead to the conclusion that IIS is more secure 
than Apache in this respect.  However, this is simply due 
to the fact that IIS has reached saturation phase, even 
though more IIS vulnerabilities have been found in the 
past. Other factors such as patch release, number of 
remaining vulnerabilities, economic aspects etc., also 
need to be considered when choosing a web server.    
 
6. Conclusions  

 
This study has demonstrated that the vulnerabilities 

discovery process in servers follows a pattern, which can 
be modeled. It is therefore possible to make reasonable 
projections about the number of remaining 
vulnerabilities and vulnerabilities discovery rates. 

We also examined the application of the models to 
vulnerabilities belonging to specific categories. The fit 
was significant for both the time-based and the effort-
based models. The distribution of the vulnerabilities into 
specific categories was also analyzed and compared with 
distributions in the operating systems. The results show 
that the distributions are comparable for the distributions 
of the operating systems. It was observed that a larger 
number of input validation error vulnerabilities 
constitute a high risk. This suggests that more effort 
should be spent on testing in order to target 
vulnerabilities from this class, thereby minimizing the 
number of high risk vulnerabilities.  

The results indicate that the models originally proposed 
for operating systems are also applicable to servers. These 
models can be used to estimate vulnerabilities discovery 
rates, which can be integrated with risk assessment models 

Time-Based Model (Apache) Effort-Based Model (Apache) 
 

A B C χ2 χ 2 critical P-Value B λVU χ 2 χ 2 critical P-value
Input Validation .00113 41.06 .902 49.96 148.78 1 45.67 .00105 13.426 61.66 .999

Design Error .00248 25.998 11.05 45.08 148.78 1 34 .00058 14.77 61.66 .999Apache 
Exceptional Condition .00238 19.686 3.704 54.7 148.78 0.999 37.6 .00034 19.30 61.66 .997

Input Validation  .00122 59 .8899 27.12 138.81 1 59 .0065 13.71 103 1 
Design Error .00234 26 1 41.14 138.81 1 25 .0071 21.14 103 1 IIS 

Access Validation .01 16 10 33.17 138.81 1 14 .0604 24.66 103 1 



in the future. A model recently proposed by Sahinoglu 
[29] needs such an assessment for estimating risk and cost 
of loss. Furthermore, these models can be integrated into 
the development process to create more secure software 
systems [30]. 

Further work is needed to evaluate the prediction 
accuracy of the models so that the users can measure how 
accurately these models can predict future vulnerabilities 
discovery rates [31]. Further research is also needed to 
evaluate the degree of confidence that can be attained 
when these methods are used to predict the type of 
vulnerabilities that are anticipated and their severity levels. 
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