
Assessing Vulnerabilities in Apache and IIS HTTP Servers

Sung-Whan Woo, Omar H. Alhazmi and Yashwant K. Malaiya
Computer Science Department

Colorado State University, Fort Collins, CO 80523
woo|omar|malaiya@cs.colostate.edu

Abstract

We examine the feasibility of quantitatively
characterizing the vulnerabilities in the two major HTTP
servers. In particular, we investigate the applicability of
quantitative empirical models to the vulnerabilities
discovery process for these servers. Such models can
allow us to predict the number of vulnerabilities that
may potentially be present in a server but may not yet
have been found. The data on vulnerabilities found in the
two servers is mined and analyzed. We explore the
applicability of a time-based and an effort-based
vulnerability discovery model. The effort-based model
requires data of the current market-share of a server.
Both models have been successfully used for
vulnerabilities in the major operating systems. Our
results show that both vulnerabilities discovery models
fit the data for the HTTP servers well. We also examine
a separate classification schemes for server
vulnerabilities that based on the source of error, and
then explore the applicability of the quantitative methods
to individual classes.

1. Introduction

There has been considerable discussion of server

security in recent years. However, much of this has been
qualitative, often focused on detection and prevention of
individual vulnerabilities. Quantitative data is sometimes
cited, but without any significant critical analysis.
Methods need to be developed to allow security related
risks to be evaluated quantitatively in a systematic
manner. A study by Ford et al. has made a side-by-side
comparison between various general servers and the
number of vulnerabilities and severity. This study
concluded that there is a need to develop some tools for
estimating the risks posed by vulnerabilities [1].

Two of the major software components of the Internet
are an HTTP (Hyper Text Transfer Protocol) server (also
termed a web server) and the browser, which serves as
the client. Both of these components were first
introduced in 1991 by Tim Berners-Lee of CERN. They
have now become indispensable parts of both
organizational and personal interactions. The early web
servers provided information using static HTML pages.

The web server now provides dynamic and interactive
services between the server and client using database
queries, executable script, etc. The web server is able to
support functions such as serving streaming media, mail,
etc. An HTTP server has thus emerged as a focal point
for the Internet.

We examine the vulnerabilities in the two most
widely-used HTTP servers, the Apache server,
introduced in 1995, and the Microsoft IIS (Internet
Information Services) server, originally supplied as part
of the NT operating systems in 1995-96. While Apache
has a much larger overall market share, roughly 63%, IIS
may have a higher share of the corporate websites. The
market share for other servers is very small and thus they
are not examined here. IIS is the only HTTP server that
is not open-source. Both Apache and IIS are generally
comparable in features. IIS runs only under the Windows
operating systems, whereas Apache supports all the
major operating systems.

The security of systems connected to the Internet
depends on several components of the system. These
include the operating systems, the HTTP servers and the
browsers. Some of the major security compromises arise
because of vulnerabilities in the HTTP servers. A
vulnerability is defined as “a defect which enables an
attacker to bypass security measures” [2]. The
vulnerabilities found are disclosed by the finders using
some of the common reporting mechanisms available in
the field. The databases for the vulnerabilities are
maintained by organizations such as National
Vulnerabilities Database [3], MITRE [4], Bugzilla [5],
BugTraq [6], etc., as well as the developers of the
software. The exploitations of some of the server
vulnerabilities are well known. The Code Red worm [7],
which exploited a vulnerability in IIS (described in
Microsoft Security Bulletin MS01-033, June 18, 2001),
appeared on July 13, 2001, and soon spread world-wide
in unpatched systems.

All the computing systems connected to the network
are subject to some security risk. While there have been
many studies attempting to identify causes of
vulnerabilities and potential counter-measures, the
development of systematic quantitative methods to
characterize security has begun only recently. There has
been considerable debate comparing the security
attributes of open source and commercial software [8].

mailto:malaiya@cs.colostate.edu

However, for a careful interpretation of the data,
rigorous quantitative modeling methods are needed. The
likelihood of a system being compromised depends on
the probability that a newly discovered vulnerability will
be exploited. Thus, the risk is better represented by the
not yet discovered vulnerabilities and the vulnerabilities
discovery rate rather than by the vulnerabilities that have
been discovered in the past and remedied by patches.
Possible approaches for a quantitative perspective of
exploitation trends are discussed in [9]. Probabilistic
examinations of intrusions have been presented by
several researchers [10, 11]. In [12], Rescorla has studied
vulnerabilities in open source servers. The vulnerabilities
discovery process in operating systems has just recently
been examined by Rescorla [13] and by Alhazmi and
Malaiya [14, 15, 16].

Servers are very attractive targets for malicious
attacks. It is essential to understand the threat posed by
both undiscovered vulnerabilities and recently
discovered vulnerabilities for which a patch has not been
developed or applied. At this time, despite the
significance of security in the HTTP servers, very little
quantitative work has been done to model the
vulnerabilities discovery process for the servers. Such
work would permit the developers and the users to better
estimate future vulnerabilities discovery rates. It would
also be highly desirable to be able to project what types
of vulnerabilities are more likely to be discovered.

Some of the available work on HTTP servers
discusses some specific problem or attacks that the
servers face, such as denial of service attacks (DoS) [17,
18], in which the authors suggests some countermeasures
to be applied when an attack of this type takes place. In
this paper, our focus is the discovery rates of
vulnerabilities of all types.

The next section introduces the two vulnerabilities
discovery models used. We then consider the total number of
vulnerabilities in the two HTTP servers and examine how
well the models fit the available data. We then partition the
vulnerabilities into categories based on how such
vulnerabilities arise, and consider the applicability of the
models to individual partitions. Lastly, we discuss the major
observations and present the conclusions.

2. Vulnerability discovery models

Use of reliability growth models is now common in

software reliability engineering [19, 20]; SRGMs show
that as bugs are found and removed, fewer bugs remain.
Therefore, the bug finding rate gradually drops and the
cumulative number of bugs eventually approaches
saturation. Such growth models are used to determine
when a software system is ready to be released and what
future failure rates can be expected.

Vulnerabilities are a special class of defects that can
permit circumvention of security measures. Some

vulnerabilities discovery models were recently proposed
by Anderson [8], Rescorla [13], and Alhazmi and
Malaiya [14]. The applicability of these models to
several operating systems was examined in [17]. The
results show that while some of the models fit the data
for most operating systems, others do not fit well or
provide a good fit only during a specific phase.

Here, we investigate the applicability of two of the
most successful models for HTTP servers. The models
used are time-based and effort-based models proposed
by Alhazmi and Malaiya [14]. These two models have
been found to fit datasets for several of the major
Windows and Linux operating systems, as determined by
goodness of fit and other measures. The first model
considers calendar time as the independent variable. The
model incorporates the effect of the rising and declining
market share on the software. The second model requires
explicit estimation of the effort using an effort measure,
which is then used as an independent variable.

The Alhazmi-Malaiya Time-Based Model: This model,
referred to as the Time-Based Model, assumes that the
rate of change of the cumulative number of
vulnerabilities Ω is governed by two factors, as given in
Equation 1 below [14]. The first factor declines as the
number of remaining undetected vulnerabilities declines.
The other factor increases with the time needed to take
into account the rising share of the installed base. The
saturation effect is modeled by the first factor. While it is
possible to obtain a more complex model, this model
provides a good fit to the data, as shown below. Let us
assume that the vulnerabilities discovery rate is given by
the differential equation:

)(Ω−Ω=
Ω BA

dt
d

, (1)

where Ω is the cumulative number of vulnerabilities, t is
the calendar time, and initially t=0. A and B are empirical
constants determined from the recorded data. By solving
the differential equation, we obtain

1
)(

+
=Ω − ABtBCe

Bt , (2)

where C is a constant introduced while solving Equation
1. Equation 2 gives us a three-parameter model given by
the logistic function. In Equation 2, as t approaches
infinity, Ω approaches B. Thus, the parameter B
represents the total number of accumulated
vulnerabilities that will eventually be found. The model
derivation assumes the software is stable. It is applicable
even when the software is gradually evolving, however
the model parameters will take different values.

Equation 2 shows S-shaped plot for the time-based
model, which is determined by values of A, B and C.
Thus, the vulnerabilities discovery rate increases at the

beginning, reaches a steady rate and then starts declining.
Consequently, the cumulative number of vulnerabilities
shows an increasing rate at the beginning as the system
begins to attract an increasing share of the installed base.
After some time, a steady rate of vulnerabilities finding
yields a linear curve. Eventually, as the vulnerabilities
discovery rate begins to drop, there is saturation due both
to reduced attention and a smaller pool of remaining
vulnerabilities.

The Alhazmi-Malaiya Effort-Based Model:
Vulnerabilities are usually reported using calendar time,
because it is easy to record vulnerabilities and link them
to the time of discovery. This, however, does not take
into consideration the changes occurring in the
environment during the lifetime of the system. A major
environmental factor is the number of installations,
which depends on the share of the installed base of the
specific system. It is much more rewarding to exploit
vulnerabilities that exist in a large number of computers.
Hence, it can be expected that a larger share of the effort
going into the discovery of vulnerabilities, both in-house
and external, would go toward a system with a larger
installed base.

Using effort as a factor was first discussed in [21].
However, the authors did not suggest a unit or way of
measuring effort. The Effort-based Model utilizes a
measure termed Equivalent Effort (E), which is
calculated using

∑∑
=

=
=×=

n

i
ii

n

i i NPUE
0

0
)(, (3)

where Ui is the total number of all HTTP servers at
the period of time i, n represents the last period of usage
time, and Pi is the percentage of the servers using the
specific server for which we are measuring E. Ni is the
number of machines running the specific server during
time i. The result is given in system-months. The
measure E can be calculated for the servers using the
data available at [3].

The model employs equivalent effort as a factor to
model vulnerabilities discovery. Equivalent effort
reflects the effort that would have gone into finding
vulnerabilities more accurately than using time alone.
This is somewhat analogous to using CPU time for
software reliability growth models (SRGMs).

If we assume that the vulnerabilities detection rate
with respect to effort is proportional to the fraction of
remaining vulnerabilities, then we get an exponential
model like the exponential SRGM. This model can be
expressed as follows:

)1()(EvueBE λ−−=Ω , (4)

where λvu is a parameter analogous to failure intensity in
SRGMs and B is another parameter. B represents the

number of vulnerabilities that will eventually be found.
We will refer to the model given by Equation 4 as the
Effort-Based Model.

3. Vulnerabilities in HTTP server

In this section, the datasets for the total vulnerabilities

of the Apache and Microsoft IIS web servers are fitted to
the models. The goodness of fit is evaluated to determine
how well the models reflect the actual vulnerabilities
discovery process. The vulnerabilities data are from the
National Vulnerabilities Database maintained by NIST.
The market share data from Netcraft [23] was used. We
note that Apache represents an open source software and
IIS represents a closed source, i.e., a commercial system.
It should also be noted that the number of vulnerabilities,
either found or estimated as remaining, should not be the
only measurement of a security threat. Factors such as
patch development and application delays and
vulnerabilities’ exploitation rates also need to be
considered. In this section, all vulnerabilities are
considered without regard to how they arise or the extent
of their impact.

Market share is one of the most significant factors
impacting the effort expended in exploring potential
vulnerabilities. Higher market share indicates more
incentive to explore and exploit vulnerabilities for both
exports and non-exports, since both would find it more
profitable or satisfying to spend their time on a software
with a higher market share.

Table 1 presents data obtained from NVD and Netcraft,
showing the current web server market share and total
number of vulnerabilities found to date. For servers with a
lower percentage of the market, such as Sun Java System
Web Server (SJSWS) and Zeus, the total number of
vulnerabilities found is low. That does not mean that these
systems are more secure, but merely that only limited
effort has gone into detecting their vulnerabilities. A
significant number of vulnerabilities have been found in
both Apache and IIS, illustrating the impact of the market
share on the motivation for exploring or finding
vulnerabilities. In this study, we use market share as an
indicator of effort for the effort-based model.

Table 1. Market share and vulnerabilities found
Web Server Apache IIS SJSWS Zeus Other

Market Share 63.09% 29.48% 0.39% 0.59% 6.45%
Vulnerabilities 96 123 3 5 N/A
Release Year 1995 1995 2002 1995 N/A

Latest Version 2.2 6.0 6.1 4.3 N/A

Figure 1 shows the web server market share for
Apache and IIS. As demonstrated by Figure 1, the
number of web servers continues to grow steadily.
Among the various web servers, Apache and Microsoft
IIS dominate the web server market. Since the total share
of all of SJSWS and Zeus added together represents less

than 10% of the market share, very few vulnerabilities
have been found in them and hence the data for these
servers has not been used in our study.

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

Fe
b-

00

Ju
n-

00

O
ct

-0
0

Fe
b-

01

Ju
n-

01

O
ct

-0
1

Fe
b-

02

Ju
n-

02

O
ct

-0
2

Fe
b-

03

Ju
n-

03

O
ct

-0
3

Fe
b-

04

Ju
n-

04

O
ct

-0
4

Fe
b-

05

Ju
n-

05

O
ct

-0
5

Fe
b-

06

N
um

be
r

of
 H

T
T

P
Se

rv
er

Apache

IIS

Total Number of HTTP Server

Figure 1. Server market share trends

There is a marked gap between the Apache and IIS
market shares, as shown in Figure 1. This difference in
market share may be due to several factors. Perhaps the
most important of these is that Apache is available for all
major operating system platforms and can be obtained
without cost. Apache may also have benefited from not
having been exposed to serious security issues such as
the Code Red [7] or Nimda worms that were faced by IIS
in 2001.

The Apache HTTP server was first released in middle
of 1995. Since then it has gained wide popularity and is
used by over 50 million web server systems. In this
section, we fit the vulnerabilities data for Apache to the
time-based and the effort-based models. Figure 3 gives
the vulnerabilities data from NVD for the period
between March 1996 and May 2006, and the Netcraft
market share data coves the same time period.

In Figure 2 and 3, the bold black lines indicate the
fitted models, while the other lines show cumulative
vulnerabilities for Apache. Figure 2 (a) shows
cumulative vulnerabilities by month for the time-based
model. At the beginning, the slope of the curve for
Apache rises gently until about January 2000, after
which the slope has remained steady. From the point of
the three phases of the vulnerabilities discovery process
[14], Apache has not yet entered the saturation phase.
Apache currently appears to be in the linear phase, since
the number of vulnerabilities still appears to be growing
linearly. Despite having been on the market for several
years, Apache has not reached the saturation phase
possibly because of its larger market share; moreover,
the number of systems using the Apache is still
increasing. This means that vulnerabilities discovery for
Apache can be expected to continue at a significant pace
in near future

Figure 2 (b) shows cumulative vulnerabilities by
number of Apache installations in terms of million
system-months and the fitted effort-based model. This

effort-based model shows that Apache has not yet
approached the saturation phase since the number of
vulnerabilities continues to increase approximately
linearly as the number of Apache severs increases.

0

10

20

30

40

50

60

70

80

90

100

M
ar

-9
6

Se
p-

96

M
ar

-9
7

Se
p-

97

M
ar

-9
8

Se
p-

98

M
ar

-9
9

Se
p-

99

M
ar

-0
0

Se
p-

00

M
ar

-0
1

Se
p-

01

M
ar

-0
2

Se
p-

02

M
ar

-0
3

Se
p-

03

M
ar

-0
4

Se
p-

04

M
ar

-0
5

Se
p-

05

M
ar

-0
6

V
ul

ne
ra

bi
lit

ie
s

(a) Time-based model

0

20

40

60

80

100

120

0

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

19
50

21
00

Million System Months
(b) Effort-based model

Figure 2. Fitting Apache vulnerabilities data

IIS was released in the early part of 1996. IIS is a
popular commercial web server with about 15 million
installations currently. We have used the vulnerabilities
data from January 1997 to May 2006.

 Figure 3 (a) shows the cumulative vulnerabilities by
month and the fitted time-based model for the IIS web
server. The time-based and effort-based models fit the
data for IIS very well. The IIS web server appears to have
reached the saturation phase. In recent months, the
vulnerabilities discovery rate for IIS has dropped to a very
low point. A possible explanation for this can be that the
number of IIS web servers installed appears to be
stationary, unlike the Apache server which is still gaining
in terms of new installations. Another possibility is that
the number of remaining undiscovered vulnerabilities may
actually have dropped significantly.

Figure 3 (b) shows cumulative vulnerabilities for the
IIS server and the effort-based model by million system-
months. Unlike Figure 2 (b), Figure 3 (b) shows a
significant degree of saturation.

We examine the fit of the models to the data as shown
in Figures 2 and 3. For χ2 goodness of fit test, we chose
an alpha level of 5%. Table 2 gives the chi-square values
and parameter values for both the time-based and effort-

Table 2. χ2 Goodness of fit test results for total number of vulnerabilities

based models. For comparison, we also provide
corresponding parameter values for the Windows 98 and
NT operating systems, as well as the chi-square values.

0

20

40

60

80

100

120

140

Ja
n-

97

Ju
l-9

7

Ja
n-

98

Ju
l-9

8

Ja
n-

99

Ju
l-9

9

Ja
n-

00

Ju
l-0

0

Ja
n-

01

Ju
l-0

1

Ja
n-

02

Ju
l-0

2

Ja
n-

03

Ju
l-0

3

Ja
n-

04

Ju
l-0

4

Ja
n-

05

Ju
l-0

5

Ja
n-

06

V
ul

ne
ra

bi
lit

ie
s

(a) Time-based model

0

20

40

60

80

100

120

140

0 40 80 12
0

16
0

20
0

24
0

28
0

32
0

36
0

40
0

44
0

48
0

52
0

56
0

60
0

64
0

68
0

72
0

76
0

80
0

Million System Months
 (b) Effort-based model

Figure 3. Fitting IIS vulnerabilities data
Table 2 shows that the chi-square values are less than

the critical values. This demonstrates that the fit for
Apache, IIS, Windows 98 and NT is significant. Both
data sets fit both models with χ2 P-values ranging from
0.959 to nearly 1, indicating that the fit is quite
significant. We can also note that parameter A is always
less than 0.005 and parameter C is always less then 0.85,
while parameter B corresponds approximately to the
number of vulnerabilities.

4. Vulnerability categories

In the previous section we examined the application

of the time-based and the effort-based model for the total
number of vulnerabilities of Apache and IIS. In this, we
apply these models to a classification schemes for server
vulnerabilities.

 Distinguishing among vulnerabilities is useful when
we want to examine the nature and extent of the problem.
It can help determine what protective actions would be
most effective. Vulnerabilities taxonomy is still an
evolving area of research. Several taxonomies have been
proposed [24, 25, 26, 27, 28]. An ideal taxonomy should
have such desirable properties as mutual exclusiveness,
clear and unique definition, and coverage of all software
vulnerabilities.

Vulnerabilities can be classified using schemes based
on cause, severity, impact and source, etc. In this
analysis, we use the classification scheme employed by
the National Vulnerability Database of the National
Institute of Standards and Technology. This
classification is based on the causes of vulnerabilities.
The eight classes are as follows [3, 6]:

1. Input Validation Error (Boundary condition error,
Buffer overflow): Such types of vulnerabilities
include failure to verify the incorrect input and
read/write involving an invalid memory address.

2. Access Validation Error: These vulnerabilities cause
failure in enforcing the correct privilege for a user.

3. Exceptional Condition Error: These arise due to
failures in responding to unexpected data or
conditions.

4. Environmental Error: These are triggered by specific
conditions of the computational environment.

5. Configuration Error: These vulnerabilities result from
improper system settings.

6. Race Condition Error: These are caused by the
improper serialization of the sequences of processes.

7. Design Error: These are caused by improper design
of the software structure.

8. Others: Includes vulnerabilities that do not belong to
the types listed above, sometimes referred to as
nonstandard.

Unfortunately, the eight classes are not completely
mutually exclusive. Because a vulnerability can belong
to more than one category, the summation of all
categories for a single software system may add up to
more than the total number of vulnerabilities (also the
percentages may exceed 100%).

Time-Based Model Effort-Based Model
A B C χ2 χ2 critical P-value B λVU χ2 χ2 critical P-value

Apache .00062 90.01 0.7675 64.24 148.78 0.999 112.5 .00092 23.726 61.66 .992
IIS .00075 120 0.5959 35.54 138.81 1 122 .009 46.6 103 .998

Win 98 .0048 37.73 0.554 7.365 60.481 1 37 .0005 3.510 44.9853 1
Win NT4 .0006 136 0.522 35.58 103.01 1 108 .0030 15.05 42.5569 0.985

41 (37.61%)

22 (20.18%)

18 (16.51%)

6 (5.50%)

12 (11.01%)

4 (3.67%)

2 (1.83%)

4 (3.67%)

59 (45.04%)

26 (19.85%)

15 (11.45%)

16 (12.21%)

6 (4.58%)

4 (3.05%)

1 (0.76%)

4 (3.05%)

0% 10% 20% 30% 40% 50%

Input Validation Error

Design Error

Exceptional Condition Error

Access Validation Error

Configuration Error

Enviromental Error

Race Condition Error

Other

C
a

te
g

o
ri

e
s

Percentage

IIS
Apache

Figure 4. Vulnerabilities by category

Figure 4 compares vulnerabilities distributions in
Apache and IIS. The categories with the highest
proportions are input validation errors, followed by
design errors. There is a slight difference in category
ordering between Apache and IIS, with Apache having
more configuration errors than access validation errors;
however, IIS has more access validation errors. While
IIS has been more vulnerable to access validation errors,
the fact that Apache has been more vulnerable to
configuration errors may be due to Apache’s more
complex installation requirements.

0

5

10

15

20

25

30

35

40

45

M
ar

-9
6

Se
p-

96

M
ar

-9
7

Se
p-

97

M
ar

-9
8

Se
p-

98

M
ar

-9
9

Se
p-

99

M
ar

-0
0

Se
p-

00

M
ar

-0
1

Se
p-

01

M
ar

-0
2

Se
p-

02

M
ar

-0
3

Se
p-

03

M
ar

-0
4

Se
p-

04

M
ar

-0
5

Se
p-

05

M
ar

-0
6

V
ul

ne
ra

bi
lit

ie
s

Input Validation Error

Design Error

Exceptional Condition Error

(a) Time-based model

0

5

10

15

20

25

30

35

40

45

0

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

19
50

21
00

Million System Months

Input Validation Error

Design Error

Exceptional Condition Error

(b) Effort-based model

Figure 5. Fitting Apache by category

We plot the vulnerabilities for the major categories to
determine whether there is an observable pattern at the
level of individual classes. Since we noted a similar
pattern for the uncategorized vulnerabilities, a possible
fit was examined. Figures 5 and 6 show the fit for the
Apache and Microsoft IIS, respectively.

In Figure 5, we only consider the three major
categories, examining only: input validation errors,
design errors and exceptional handling condition errors.

As we mentioned above, the IIS model has a better fit
than the Apache model, since IIS has reached the
saturation phase. The categorized number of
vulnerabilities shows the same pattern as demonstrated by
the total number of vulnerabilities. Thus, each category
shows a related pattern with regard to total number of
vulnerabilities. Our time-based and effort-based models
are fitted for each category. It may be noted that the
number of input validation errors and design errors are the
most common category in Apache and IIS.
Table 4 shows the chi-square goodness of fit tests for the
Apache and IIS models by category. Table 3
demonstrates that the chi-square value for each category
are less the P-values are close to 1, the fit of input
validation, design and exceptional condition error classes
are significant for both models.

0

10

20

30

40

50

60

70

Ja
n-

97

Ju
l-9

7

Ja
n-

98

Ju
l-9

8

Ja
n-

99

Ju
l-9

9

Ja
n-

00

Ju
l-0

0

Ja
n-

01

Ju
l-0

1

Ja
n-

02

Ju
l-0

2

Ja
n-

03

Ju
l-0

3

Ja
n-

04

Ju
l-0

4

Ja
n-

05

Ju
l-0

5

Ja
n-

06

V
ul

ne
ra

bi
lit

ie
s

Input Validation Error

Design Error

Access Validation Error

(a) Time-based model

0

10

20

30

40

50

60

70

0 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

42
0

45
0

48
0

51
0

54
0

57
0

60
0

63
0

66
0

69
0

72
0

75
0

78
0

Million System Months

Input Validation Error

Design Error

Access Validation Error

 (b) Effort-based model

Figure 6. Fitting IIS by category

5. Discussion

When the total number of vulnerabilities is examined,

both the time-based and effort-based models fit the
datasets well, even when the vulnerabilities are
categorized by type. This suggests that the models can be
used to estimate the number of vulnerabilities expected to
be discovered in a given period, and which types is likely
to dominate.

Table 3. Apache and IIS’s category chi-square analysis of goodness of fit

The results of model fitting for the vulnerabilities
classified by type are shown in Table 3. The fitting was
done for the most common types of vulnerabilities for
which the available data is statistically significant. It
would be difficult to use these models to estimate the
types of vulnerabilities that occur less frequently because
the data may not be sufficiently statistically significant to
make meaningful projections.

The effort-based model requires the use of the market
share data, which may be difficult to obtain. The time-
based model does not require this data; it can therefore
be a feasible alternative when market share data is
unavailable. Further research needs to be done to
evaluate the predictive capabilities of the two models.

Even though the Apache's vulnerability discovery rate
has not reached saturation yet as observed in this paper,
we had applied the time-based model for Apache and the
statistical results show that the fit is significant.

Static analysis has been used in software reliability
engineering, where some of the systems’ attributes are
estimated empirically even before testing begins. Similar
static analysis can be carried out by utilizing metrics
such as software size and estimated number of total
defects. These methods can potentially be used to
estimate Defect density (DKD) and Vulnerability density
(VKD), which can then be used to estimate the total
number of vulnerabilities of a comparable system. DKD
gives the defects per thousand lines of code and VKD is
the number of vulnerabilities per thousand lines of code.
Table 4 shows some of the major attributes of the
Apache server and two other major operating systems for
comparison. Unfortunately, some of the important
metrics for the Microsoft IIS server are not available. For
proprietary systems, such data can be hard to obtain
outside of the developing organization.

The sizes of IIS and Apache may comparable in terms
of SLOC numbers, since both offer the same features.
The Apache source code size for Windows is 328 Ksloc,
larger than for Unix. A few of the Apache vulnerabilities
may be applicable to only a specific platform. In Table 4,
we observe that vulnerability density values for the
Windows operating systems are significantly less than
for Apache. This may be due to the fact that Windows
operating systems has large segments that do not play a
role in accessibility, while severs are smaller and
therefore vulnerabilities are more concentrated in the
code. This assumption is supported by the fact that the

defect density to vulnerability density ratio is higher in
Windows NT 4.0, a server operating system, than in
Windows 98, a client operating system. Note that VKD/
DKD ratios are within a narrow range.

Table 4. Known DKD vs. known VKD
App-

lication Ksloc Known
Defects DKD

Known
Vulnerabilities VKD

Ratio
VKD/DKD

Apache227(Unix) 4148 18.27 96 0.423 0.0232
IIS N/A N/A N/A 123 N/A N/A

Win 98 16,000 10,000 0.625 91 0.0057 0.0091
Win NT 18,000 10,000 0.556 230 0.0128 0.023

After comparing the vulnerabilities trends of the web
servers discussed in this paper, it is expected that fewer
vulnerabilities will be discovered in IIS in the future.
This may lead to the conclusion that IIS is more secure
than Apache in this respect. However, this is simply due
to the fact that IIS has reached saturation phase, even
though more IIS vulnerabilities have been found in the
past. Other factors such as patch release, number of
remaining vulnerabilities, economic aspects etc., also
need to be considered when choosing a web server.

6. Conclusions

This study has demonstrated that the vulnerabilities

discovery process in servers follows a pattern, which can
be modeled. It is therefore possible to make reasonable
projections about the number of remaining
vulnerabilities and vulnerabilities discovery rates.

We also examined the application of the models to
vulnerabilities belonging to specific categories. The fit
was significant for both the time-based and the effort-
based models. The distribution of the vulnerabilities into
specific categories was also analyzed and compared with
distributions in the operating systems. The results show
that the distributions are comparable for the distributions
of the operating systems. It was observed that a larger
number of input validation error vulnerabilities
constitute a high risk. This suggests that more effort
should be spent on testing in order to target
vulnerabilities from this class, thereby minimizing the
number of high risk vulnerabilities.

The results indicate that the models originally proposed
for operating systems are also applicable to servers. These
models can be used to estimate vulnerabilities discovery
rates, which can be integrated with risk assessment models

Time-Based Model (Apache) Effort-Based Model (Apache)

A B C χ2 χ 2 critical P-Value B λVU χ 2 χ 2 critical P-value
Input Validation .00113 41.06 .902 49.96 148.78 1 45.67 .00105 13.426 61.66 .999

Design Error .00248 25.998 11.05 45.08 148.78 1 34 .00058 14.77 61.66 .999Apache
Exceptional Condition .00238 19.686 3.704 54.7 148.78 0.999 37.6 .00034 19.30 61.66 .997

Input Validation .00122 59 .8899 27.12 138.81 1 59 .0065 13.71 103 1
Design Error .00234 26 1 41.14 138.81 1 25 .0071 21.14 103 1 IIS

Access Validation .01 16 10 33.17 138.81 1 14 .0604 24.66 103 1

in the future. A model recently proposed by Sahinoglu
[29] needs such an assessment for estimating risk and cost
of loss. Furthermore, these models can be integrated into
the development process to create more secure software
systems [30].

Further work is needed to evaluate the prediction
accuracy of the models so that the users can measure how
accurately these models can predict future vulnerabilities
discovery rates [31]. Further research is also needed to
evaluate the degree of confidence that can be attained
when these methods are used to predict the type of
vulnerabilities that are anticipated and their severity levels.

References

[1] R. Ford, H. Thompson and F. Casteran, Role comparison
report—web server role. Technical Report, Security Innovation,
2005.

[2] E.E. Schultz, D.S. Brown and L. T. Longstaff, Responding
to computer security incidents, Technical report, Lawrence
Livemore National Laboratory, July 1990.

[3] National Vulnerability Database. http://nvd.nist.gov/,
April 2006.

[4] Mitre Corp, Common Vulnerabilities and Exposures,
http://www.cve.mitre.org/, April 2006.

[5] Apache Software Foundation Bug System,
http://issues.apache.org/bugzilla/, April 2006.

[6] Securityfocus, http://www.securityfocus.com/, April 2006.

[7] D. Moore, C. Shannon and K.C Claffy, “Code-red: a case
study on the spread and victims of an internet worm”, In
Internet Measurement Workshop, 2002, pp. 273–284.

[8] R. Anderson, “Security in open versus closed systems—
the dance of boltzmann, coase and moore”. In Conf. on Open
Source Software: Economics, Law and Policy, 2002, pp. 1–15.

[9] J. Hallberg, A. Hanstad, and M. Peterson, ”A framework for
system security assessment”, Proc. 2001 IEEE Symposium on
Security and Privacy, May 2001, pp. 214–229.

[10] H.K. Browne, W.A. Arbaugh, J. McHugh and W. L.
Fithen, “A trend analysis of exploitations”, In IEEE Symposium
on Security and Privacy, 2001, pp. 214–229.

[11] B.B. Madan, K. Goseva-Popstojanova, K. Vaidyanathan,
and K.S. Trivedi, “A method for modeling and quantifying the
security attributes of intrusion tolerant systems”, Perform.
Eval., 2004, pp. 167–186.

[12] E. Rescorla, “Is finding security holes a good idea?”,
IEEE Security and Privacy , 2005, pp. 14–19.

[13] E. Rescorla, “Security holes... who cares?”, Proc. 12th

USENIX Security Symposium, 2003. Pp. 75-90.

[14] O.H. Alhazmi, and Y.K. Malaiya, “Quantitative
vulnerability assessment of system software”, Proc. Annual
Reliability and Maintainability Symposium, Jan. 2005, pp.
615–620.

[15] O.H. Alhazmi, and Y.K. Malaiya and I. Ray, “Security
vulnerabilities in software systems: A quantitative perspective.
Proc. Ann. IFIP WG11.3 Working Conference on Data and
Information Security, Aug. 2005, pp. 281–294.

[16] O.H. Alhazmi, and Y.K. Malaiya, “Modeling the
vulnerability discovery process”, Proc. 16th International
Symposium on Software Reliability Engineering, Nov. 2005, pp.
129–138.

[17] T. Aura, M. Bishop and D. Sniegowski, "Analyzing
Single-Server Network Inhibition", Proceedings of the 13th
IEEE Computer Security Foundations Workshop, July 2000,
pp.108-117.

[18] F. Kargl, J. Maier and M. Weber, “Protecting web servers
from distributed denial of service attacks”, Proc. 10th
International WWW Conference, 2001, pp. 514–524.

[19] J. Musa, Software Reliability Engineering. McGraw-Hill,
1999.

[20] Lyu, M.R., Handbook of Software Reliability. McGraw-
Hill, 1995.

[21] O. H. Alhazmi, and Y. K. Malaiya, “Prediction capability of
vulnerability discovery process”, Proc. Reliability and
Maintainability Symposium, Jan. 2006. pp. 86-91

[22] B. Littlewood, S. Brocklehurst, N.E. Fenton, P. Mellor, S.
Page, D. Wright, J. Dobson, J. McDermid, and D. Gollmann,
“Towards operational measures of computer security” Journal of
Computer Security, 1993, pp. 211–230.

[23] Netcraft,. http://news.netcraft.com/, April 2006.

[24] T. Aslam and E.H. Spafford, A taxonomy of security faults,
Technical report, Carnegie Mellon, 1996.

[25] M. Bishop, “Vulnerability analysis: An extended abstract”,
Proc. Second International Symposium on Recent Advances in
Intrusion Detection, Sept. 1999, pp. 125-136.

[26] C.E. Landwehr, A.R. Bull, J.P. McDermott and W. S Choi,
“A taxonomy of computer program security flaws”, ACM
Comput. Surv., 1994, pp. 211–254.

[27] C.R. Seacord and A.D. Householder, A structured
approach to classifying vulnerabilities, Technical Report
CMU/SEI-2005-TN-003, Carnegie Mellon, 2005.

[28] R. Gopalakrishna, E.H. spafford, and J. Vitek,
“Vulnerability Likelihood: A Probabilistic Approach to
Software Assurance,” Technical Report, CERIAS, 2005.

[29] M. Sahinoglu, “Quantitative risk assessment for
dependent vulnerabilities”, Proc. Reliability and
Maintainability Symposium, Jan. 2006, pp. 82-85.

[30] Seacord, R., Secure Coding in C and C++. Addison
Wisely, 2005.

[31] O.H. Alhazmi and Y.K. Malaiya, "Measuring and
Enhancing Prediction Capabilities of Vulnerabilities Discovery
Models for Apache and IIS HTTP Servers ", to be presented at
International Symposium on Software Reliability Engineering,,
Nov. 2006.

http://nvd.nist.gov/
http://www.cve.mitre.org/
http://issues.apache.org/bugzilla/
http://www.securityfocus.com/
http://news.netcraft.com/

	1. Introduction
	2. Vulnerability discovery models
	3. Vulnerabilities in HTTP server
	5. Discussion
	6. Conclusions
	[1] R. Ford, H. Thompson and F. Casteran, Role comparison report—web server role. Technical Report, Security Innovation, 2005.
	[2] E.E. Schultz, D.S. Brown and L. T. Longstaff, Responding to computer security incidents, Technical report, Lawrence Livemore National Laboratory, July 1990.
	[3] National Vulnerability Database. http://nvd.nist.gov/, April 2006.
	[4] Mitre Corp, Common Vulnerabilities and Exposures, http://www.cve.mitre.org/, April 2006.
	[5] Apache Software Foundation Bug System, http://issues.apache.org/bugzilla/, April 2006.
	[6] Securityfocus, http://www.securityfocus.com/, April 2006.
	[7] D. Moore, C. Shannon and K.C Claffy, “Code-red: a case study on the spread and victims of an internet worm”, In Internet Measurement Workshop, 2002, pp. 273–284.
	[9] J. Hallberg, A. Hanstad, and M. Peterson, ”A framework for system security assessment”, Proc. 2001 IEEE Symposium on Security and Privacy, May 2001, pp. 214–229.
	[11] B.B. Madan, K. Goseva-Popstojanova, K. Vaidyanathan, and K.S. Trivedi, “A method for modeling and quantifying the security attributes of intrusion tolerant systems”, Perform. Eval., 2004, pp. 167–186.
	[12] E. Rescorla, “Is finding security holes a good idea?”, IEEE Security and Privacy , 2005, pp. 14–19.
	[13] E. Rescorla, “Security holes... who cares?”, Proc. 12th USENIX Security Symposium, 2003. Pp. 75-90.
	[14] O.H. Alhazmi, and Y.K. Malaiya, “Quantitative vulnerability assessment of system software”, Proc. Annual Reliability and Maintainability Symposium, Jan. 2005, pp. 615–620.
	[18] F. Kargl, J. Maier and M. Weber, “Protecting web servers from distributed denial of service attacks”, Proc. 10th International WWW Conference, 2001, pp. 514–524.
	[19] J. Musa, Software Reliability Engineering. McGraw-Hill, 1999.
	[20] Lyu, M.R., Handbook of Software Reliability. McGraw-Hill, 1995.
	[21] O. H. Alhazmi, and Y. K. Malaiya, “Prediction capability of vulnerability discovery process”, Proc. Reliability and Maintainability Symposium, Jan. 2006. pp. 86-91
	[22] B. Littlewood, S. Brocklehurst, N.E. Fenton, P. Mellor, S. Page, D. Wright, J. Dobson, J. McDermid, and D. Gollmann, “Towards operational measures of computer security” Journal of Computer Security, 1993, pp. 211–230.
	[23] Netcraft,. http://news.netcraft.com/, April 2006.
	[26] C.E. Landwehr, A.R. Bull, J.P. McDermott and W. S Choi, “A taxonomy of computer program security flaws”, ACM Comput. Surv., 1994, pp. 211–254.
	[27] C.R. Seacord and A.D. Householder, A structured approach to classifying vulnerabilities, Technical Report CMU/SEI-2005-TN-003, Carnegie Mellon, 2005.
	[29] M. Sahinoglu, “Quantitative risk assessment for dependent vulnerabilities”, Proc. Reliability and Maintainability Symposium, Jan. 2006, pp. 82-85.
	[30] Seacord, R., Secure Coding in C and C++. Addison Wisely, 2005.
	[31] O.H. Alhazmi and Y.K. Malaiya, "Measuring and Enhancing Prediction Capabilities of Vulnerabilities Discovery Models for Apache and IIS HTTP Servers ", to be presented at International Symposium on Software Reliability Engineering,, Nov. 2006.

