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Abstract—Most real-time scheduling algorithms prioritize
tasks solely based on their timing parameters and cannot effec-
tively handle them when they have different execution preferences.
In this paper, for a set of periodic tasks, where some tasks are
preferably executed as soon as possible (ASAP) and others as
late as possible (ALAP), we investigate preference-oriented fixed-
priority scheduling algorithms. Specifically, following the idea in
dual-priority scheduling, we derive promotion times for ALAP
tasks (only). Then, we devise a dual-queue based fixed-priority
scheduling algorithm that retains ALAP tasks in the waiting
queue until their promotion times to delay their executions while
putting ASAP tasks into the ready queue immediately once they
arrive for early execution. We also investigate online techniques to
further expedite (delay) the executions of ASAP (ALAP) tasks,
respectively. Our evaluation results show that the dual-queue
technique with ALAP tasks’ promotion times can effectively
address the execution preferences of both ASAP and ALAP tasks,
which can be further improved at runtime with wrapper-task
based slack management. Our technique is shown to yield clear
advantages over a simple technique that periodically inserts idle
intervals to the schedule before ALAP tasks are executed.

Index Terms—Real-Time Systems, Fixed-Priority Scheduling,
Preference-Oriented Execution

I. INTRODUCTION

In the past, numerous real-time scheduling algorithms
have been proposed by the research community (such as
rate-monotonic-scheduling (RMS) and earliest-deadline-first
(EDF), which are optimal schedulers based on static and
dynamic priorities, respectively [11]). With exclusive focus
on meeting the timing constraints, most existing real-time
scheduling algorithms prioritize and schedule tasks solely
based on their timing parameters (e.g., deadlines and peri-
ods). Moreover, these algorithms normally adopt the work-
conserving strategy to keep the processor busy as long as there
are ready tasks and to execute the workload at the earliest
possible time instants.

However, there are occasions when it can be beneficial to
execute tasks at their latest times provided that there are no
deadline misses. For instance, to get better response time for
aperiodic soft real-time tasks, the execution of periodic hard
real-time tasks can be delayed maximally [3, 4]. In addition,
in fault-tolerant systems, backup tasks should also be executed
as late as possible to reduce the overlapped executions with
the primary tasks on other processors and thus the system
overhead for fault tolerance [8, 9, 12]. Although the earliest
deadline latest (EDL) [3] and dual-priority (DP) schedulers [4]
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have been proposed to schedule periodic tasks at their latest
times, these schedulers treat all periodic tasks uniformly with-
out differentiating their execution preferences and thus cannot
effectively handle tasks with different execution preferences.

As the first study to systematically address the different
execution preferences of periodic real-time tasks, we have
proposed the preference-oriented earliest deadline (POED)
scheduling algorithms [6, 7]. Note that, POED is a dynamic
priority based scheduler. To the best of our knowledge, there
is no fixed-priority based preference-oriented scheduling algo-
rithm yet, which will be studied in this work.

We consider a set of periodic real-time tasks that have dif-
ferent execution preferences, where some tasks are preferably
executed as soon as possible (ASAP) while others as late as
possible (ALAP). For such tasks, we propose the preference-
oriented fixed-priority (POFP) scheduling algorithm that ex-
plicitly takes the execution preferences of tasks into con-
sideration when making scheduling decisions. Specifically,
POFP is a dual-queue based scheduler, where the waiting
queue is used to hold ALAP tasks temporarily and prevent
their executions until their promotion times, which can be
derived from the dual-priority scheduling framework [4]. In
contrast, ASAP tasks are put into the ready queue immediately
once they arrive. In addition, by exploiting the slack time
generated at runtime, we also investigate online techniques
to further expedite (delay) the executions of ASAP (ALAP)
tasks, respectively. For this part, we extend the wrapper-task
based slack management as well as the dummy task based
technique [13] to the fixed-priority settings.

As an example fixed-priority scheduler, we evaluate the
performance of PO-RMS and compare it against RMS in
terms of meeting the execution preferences of tasks through
extensive simulations. Our evaluation results show that the
runtime overhead of PO-RMS scheduler is comparable to
that of RMS. However, by explicitly taking the tasks’ ex-
ecution preferences into consideration, PO-RMS can fulfill
the preference requirements of tasks much better than RMS
with the help of the dual-queue technique and promotion
times of ALAP tasks. The performance of PO-RMS can be
further improved with the wrapper-task based online slack
management. The technique is also shown to yield clear gains
over a simple technique (the dummy task based technique) that
periodically inserts idle intervals to the schedule before ALAP
tasks are executed.

The rest of this paper is organized as follows. Section II
presents system models and preliminaries. The POFP sched-



uler is proposed in Section III and the online enhancements are
addressed in Section IV. Section V discusses the evaluation
results and Section VI concludes the paper.

II. SYSTEM MODELS AND PRELIMINARIES

A. System Models

We consider a set of n independent periodic real-time tasks
Ψ = {T1, . . . , Tn} to be executed on a single processor
system. Each task Ti is represented as a tuple (ci, pi), where ci
is its worst-case execution time (WCET) and pi is its period.
pi is also the relative deadline of task Ti. The offset of task
Ti is denoted by φi. That is, the first task instance (or job) of
task Ti arrives at time φi. The jth task instance of task Ti,
which is denoted by Ti,j , arrives at time ri,j = φi+(j−1) ·pi
and has a deadline at time di,j = φi + j · pi. The task Ti’s
utilization is defined as ui =

ci
pi

, and the system utilization is
further defined as U =

∑
Ti∈Ψ ui.

It is assumed that each task Ti has a fixed priority level ηi
and the priorities of different tasks are assumed to be different.
That is, for any two tasks Ti and Tj (i "= j), either ηi > ηj
or ηi < ηj , denoting whether Ti has higher or lower priority
than Tj , respectively. Therefore, tasks can be totally ordered
according to their priorities.

In addition, each task Ti also has a parameter θi to in-
dicate its execution preference, which can be either ASAP or
ALAP [6]. Based on the preferences of tasks, we can partition
them into two subsets ΨS and ΨL (where Ψ = ΨS ∪ ΨL),
which contain the tasks with ASAP and ALAP preferences,
respectively. When all tasks have ASAP (or ALAP) preference,
they can be optimally scheduled by the RMS [11] (or Dual-
Priority [4]) scheduler. Hence, in this work, we consider task
sets that consists of both ASAP and ALAP tasks (i.e., both
ΨS and ΨL are non-empty).

We note that, as opposed to stringent deadline constraints,
the preferences of tasks are not hard constraints and just
provide guidelines (or soft requirements) on how early or late
the tasks’ instances should be preferably executed. As long
as the timing constraints are met, a feasible schedule that
provides better fulfillment of tasks’ preferences can lead to
less execution overhead and/or energy consumption [7].

In [6], based on the aggregated executions of ASAP/ALAP
tasks within certain intervals, we have defined optimal (fea-
sible) schedules in terms of fulfilling the preference require-
ments of tasks. However, due to the conflicting demands from
ASAP and ALAP tasks regarding the placement of idle times
in schedules, finding a feasible schedule that can optimally
fulfill the preference requirements of both ASAP and ALAP
tasks may not be always possible [6].

In fixed-priority scheduling, the priorities of tasks directly
affect the execution order of their task instances and thus the
fulfillment of their preference requirements. Ideally, ASAP
tasks should have higher priorities to get them executed early
while ALAP tasks should have late executions. However,
exploring the optimal priority assignment of tasks that
preserves schedulability while maximally fulfilling their
execution preferences is beyond the scope of this paper and

will be left for our future work.

Problem Description: In this work, for a set of tasks that
are schedulable under conventional fixed-priority scheduling
with a given priority assignment, we focus on how to manage
the executions of the tasks to better fulfill their preference
requirements while maintaining the schedulability of the tasks.

B. Dual-Priority Scheduling and Promotion Times

In this section, we first review how the executions of
periodic tasks can be postponed using the Dual-Priority (DP)
scheduling framework [4]. The main objective of the DP
scheduler is to improve the response time of soft real-time
aperiodic tasks when they are executed on the same processor
as a set of periodic tasks. For that purpose, the DP scheduler
utilizes three runtime queues: the upper queue, middle queue
and lower queue, and executes tasks from the queues in that
order.

Specifically, the middle queue is used to hold the aperiodic
soft real-time tasks, which are executed when the upper queue
is empty. The periodic tasks are put into the lower queue at
the time of their arrival to postpone their executions and thus
provide opportunities to execute aperiodic tasks early in order
to improve their response time. However, in order to prevent
the soft real-time aperiodic tasks from causing deadline misses
for periodic tasks, these tasks are promoted to the upper queue
after a certain amount of time, which is called the promotion
time.

Hence, it is critical to properly derive the promotion time
for periodic tasks, which determines how long their executions
can be postponed. Considering only the periodic tasks with a
given fixed-priority assignment, the response time of a task Ti

can be found iteratively as follows [1, 10]:

Rk+1
i =

∑

Tj∈hp(Ti)

⌈
Rk

i

pj

⌉
cj + ci (1)

hp(Ti) = {Tx|Tx ∈ Ψ ∧ ηx > ηi} denotes the set of tasks in
Ψ that have higher priorities than that of task Ti. Suppose that
the periodic tasks are schedulable with their given priorities
under the fixed-priority scheduler. We know that the above
equation will eventually converge (i.e., Rk+1

i = Rk
i ) and then

task Ti’s response time can be set accordingly as Ri = Rk
i .

If the tasks are schedulable, Ri ≤ pi will hold for all tasks.
Then, the promotion time of task Ti can be found as [4]:

γi = pi −Ri (2)

Therefore, task Ti can be safely delayed for γi time units
in the lower queue before entering the upper queue without
missing its deadline. Note that, to provide better response time
for future aperiodic tasks, the DP scheduler also adopts the
work-conserving strategy. That is, when there are no ready
tasks in the upper and middle queues, the periodic tasks in
the lower queue will be executed according to their priorities
regardless of their promotion times [4].



Algorithm 1 : The POFP Scheduling Algorithm
1: Input: {ci, pi, ηi} for ∀Ti ∈ Ψ and γi for ∀Ti ∈ ΨL;

Invocation after an event at time t involving task Tk;
Current running task is denoted by Tc;

2: if (Tk ∈ ΨL arrives at time t AND γk > 0) then
3: Enqueue(Tk, QW ); SetTimer(γk);
4: else if (Tk completes at time t) then
5: if (Ready queue QR is not empty) then
6: Tk = Dequeue(QR); Execute(Tk);
7: else
8: Let the processor idle; //regardless of tasks in QW
9: end if

10: else
11: //Tk ∈ ΨL is promoted OR Tk ∈ ΨS arrives at time t
12: if (ηk > ηc) then
13: Enqueue(Tc, QR); Execute(Tk);//Tk preempts Tc

14: else
15: Enqueue(Tk, QR); //Insert Tk to ready queue QR
16: end if
17: end if

III. PREFERENCE-ORIENTED FIXED-PRIORITY (POFP)
SCHEDULER

To effectively address the preference requirements of ASAP
and ALAP tasks, we have developed two basic principles for
designing preference-oriented scheduling algorithms [6]: a) at
any time t, if there are ready ASAP tasks in ΨS , the scheduler
should not let the processor idle; and b) at any time t, if all
ready tasks are ALAP tasks in ΨL, the scheduler should let the
processor stay idle if it is possible to do so without causing any
deadline miss for current and future task instances. From [6],
we also know that these two principles can pose conflicting
demands when making scheduling decisions, especially for
task sets with utilization strictly less than 100%.

A. The POFP Scheduling algorithm

In this work, we focus on the second principle to handle
ALAP tasks and investigate scheduling techniques to delay
their executions. However, in contrast to the dynamic-priority
based preference-oriented schedulers [6] where the delay for
ALAP tasks needs to be determined at runtime, we first
investigate how to derive the static delay for ALAP tasks
for fixed-priority scheduling. For that purpose, we adopt the
concept of promotion time in Dual-Priority scheduling [4], and
propose a preference-oriented fixed-priority (POFP) schedul-
ing algorithm with the dual-queue technique [9].

Specifically, in the POFP scheduler, the promotion times
are calculated offline according to Equation (2), but only
for ALAP tasks. At runtime, in addition to the ready queue
QR that holds the ready tasks, POFP utilizes a second (i.e.,
waiting) queue QW to hold the ALAP tasks that have arrived.
Only the tasks in QR are ready for execution and they are
executed in the order of their priorities. While ASAP tasks
enter the ready queue QR and are ready for execution when
they arrive, an ALAP task Ti becomes ready for execution

only after its promotion time (i.e., γi time units after its arrival
time) and is moved to QR at that time.

Basically, POFP exploits the waiting queue QW to delay
the executions of ALAP tasks (regardless of their priorities)
until their promotion times, which provides opportunities for
ASAP tasks to be executed at earlier times. Also, in contrast
to the Dual-Priority scheduling [4], as long as the ready queue
QR is empty, POFP will let the processor idle, even if there
are ALAP tasks in the waiting queue QW . That is, POFP is
not a work-conserving scheduler.

The basic steps of the POFP scheduler are given in Algo-
rithm 1, which is invoked at a few occasions involving task
Tk: a) the arrival time of task Tk; b) the completion of task Tk;
and, c) when an ALAP task Tk is promoted from the waiting
queue QW to the ready queue QR. An ALAP task Tk with
promotion time γk > 0 will be put into the waiting queue
by the function Enqueue(Tk,QW ). Moreover, a timer with its
promotion time is set (lines 2 and 3).

When task Tk completes its execution, POFP will execute
the next highest-priority task in the ready queue QR (line 6).
However, if there is no ready task in QR, POFP lets the
processor idle (line 8), which effectively delays the execution
of ALAP tasks in the waiting queue until their promotion
times. When an ALAP task is promoted or an ASAP task
arrives at the invocation time, it preempts the currently running
task Tc if it has a higher priority than that of Tc (lines 12 and
13); otherwise, the task is inserted to the ready queue (line
15).

Note that, compared to the conventional fixed-priority
schedulers, only the promotion events for ALAP tasks are
additional scheduling events for POFP and the processing
of such events is the same as a normal task arrival event.
Therefore, the run-time complexity of POFP will be at the
same level as that of the fixed-priority scheduler.

B. An Example: PO-RMS vs. RMS

We further illustrate how the preference-oriented fixed-
priority scheduler works through a concrete example. In partic-
ular, we consider the well-known RMS scheduler [11], where
the priorities of tasks are inversely related to their periods.
That is, tasks will smaller periods have higher priority. RMS
is the optimal fixed-priority scheduler for implicit-deadline
tasks with synchronous arrival patterns [11]. When two tasks
have the same period, we assume that the task with smaller
index has higher priority. Once the RMS priorities of tasks
are determined, the corresponding POFP scheduler is called
PO-RMS.

The example task set has four tasks, namely, T1(1, 5),
T2(3, 10), T3(1, 5) and T4(1, 10) with φi = 0 ∀i. Tasks T1

and T2 have ASAP preference while T3 and T4 have ALAP
preference. That is, ΨS = {T1, T2} and ΨL = {T3, T4}.
According to the RMS priorities, we have η1 > η3 > η2 > η4,
and the feasible RMS schedule can be easily found as shown
in Figure 1a.

Note that, RMS is a work-conserving scheduler and does not
consider tasks’ preferences when making scheduling decisions.
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Fig. 1. The RMS and PO-RMS schedules for an example task set of
four tasks: T1(1, 5), T2(3, 10), T3(1, 5) and T4(1, 10); ΨS = {T1, T2},
ΨL = {T3, T4}; γ3 = 3 and γ4 = 2.

Therefore, the processor is idle only when there are no ready
jobs. Moreover, although the ASAP tasks T1 and T2 are
executed before the execution of ALAP tasks T3 and T4 in
the RMS schedule, we can see next that the execution se-
quence can be further improved to better fulfill the preference
requirements under PO-RMS.

Based on Equations (1) and (2), the promotion times for
the ALAP tasks T3 and T4 can be found as: γ3 = 3 and
γ4 = 2. Therefore, as shown in Figure 1b, the instances of
task T3 and T4 are held in the waiting queue for 3 and 2 time
units, respectively, before they are moved to the ready queue
and compete with ASAP tasks for the processor. We can see
that, as opposed to the RMS schedule where the task instance
T3,1 is executed at time 1, PO-RMS holds T3,1 in the waiting
queue until time 3. Hence, the ASAP task instance T2,1 gets
the chance to run partially before the execution of the ALAP
task instance T3,1. Similarly, the execution of T3,2 is delayed
until time 8 with one unit of idle time before its execution.
Clearly, we can see that, compared to the RMS schedule, the
preference requirements of all tasks are better fulfilled under
the PO-RMS scheduler.

IV. ONLINE TECHNIQUES FOR PREFERENCE-ORIENTED

EXECUTIONS

From the above discussions, we can see that POFP can
effectively delay the execution of ALAP tasks until their
promotion times. However, once such tasks are promoted
to the ready queue, POFP treats them in the same way as
ASAP tasks and no further delay will be imposed on their
executions. On the other hand, it is well-known that real-
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Fig. 2. PO-RMS with online slack management; Here, the task set has
four tasks: T1(1.5, 4), T2(1, 8), T3(1.5, 4) and T4(1, 12); ΨS = {T1, T2},
ΨL = {T3, T4}, γ3 = 1 and γ4 = 4. At runtime, the actual execution times
of tasks are assumed to be a1 = 0.5, a2 = 1, a3 = 1 and a4 = 0.5;

time tasks typically take a small fraction of their worst-case
execution times (WCETs) [5] and significant amount of slack
time can be expected at runtime. Such slack time can be
exploited to execute ASAP tasks at earlier times and to further
delay the executions of ALAP tasks. Before presenting the
online techniques for preference-oriented executions of tasks,
in what follows, we first illustrate the idea through an example.

Consider another task set with four tasks: T1(1.5, 4),
T2(1, 8), T3(1.5, 4) and T4(1, 12), where ΨS = {T1, T2} and
ΨL = {T3, T4}. Again, it is assumed that tasks have RMS
priorities with η1 > η3 > η2 > η4. The promotion times for
tasks T3 and T4 are found as γ3 = 1 and γ4 = 4, respectively.
At runtime, it is assumed that most tasks take less time than
their WCETs and their actual execution times are assumed to
be a1 = 0.5, a2 = 1, a3 = 1 and a4 = 0.5.

Without taking the slack time into consideration, the sched-
ule for the first few instances of the tasks under PO-RMS
is shown in Figure 2a. When T3,1 is promoted at time 1, it
preempts the execution of T2,1 since it has higher priority
(i.e., η3 > η2). Similarly, T4,1 gets promoted at time 4 and is
executed right after the early completion of T1,2.

On the other hand, if slack time is explicitly managed at
runtime, we can have one unit of slack S1 due to the early
completion of T1,1 at time 0.5. Moreover, we assume that the
slack S1 inherits the priority of its contributing task T1. Since
the slack S1 has higher priority than that of T2,1 in the ready
queue, the processor will be “allocated” to the slack, which in
turn can wrap the execution of T2,1 by lending its time to the
task instance as shown in Figure 2b. When T3,1 is promoted
to the ready queue at time 1, its priority is lower than that



of the slack S1 to which the processor is allocated and no
preemption occurs. Hence, through such wrapped execution,
the ASAP task T2,1 can complete before the ALAP task T3,1

gets executed.
However, when the processor is allocated to the slack and

there is no ASAP task in the ready queue, this will enable the
processor to idle and delay the execution of ALAP tasks (even
if they have been promoted to the ready queue). For instance,
as shown in Figure 2b, when the task instance T1,2 completes
early, the processor is allocated to another generated slack S1

at time 4.5 but then it is left idle in order to delay the execution
of T4,1 that has been promoted to the ready queue at time 4.

A. Slack Management with Wrapper-Tasks

To generalize the above idea and enable slack times to com-
pete for the processor, we extend the wrapper-task based slack
management, which has been studied for dynamic priority
based task systems [13], to the fixed-priority setting. Basically,
each piece of slack time will be represented by a wrapper-task
with two parameters (c, η). Here, c denotes the size of the slack
and η represents the slack’s priority, which is inherited from
the task giving rise to this slack.

At runtime, wrapper-tasks are kept in a separate slack queue
QS and compete for the processor with tasks in the ready
queue. At the dispatch time of the POFP scheduler, there are
four possibilities regarding the states of the ready queue QR

and the slack queue QS . If both of them are empty, POFP
will let the processor idle while waiting for the new arrival
of tasks and/or the promotion of ALAP tasks in the waiting
queue.

Otherwise, suppose that Tk and Sh are the highest priority
task and wrapper-task in QR and QS , respectively. If the ready
queue is empty (i.e., Tk = NULL) or ηh > ηk but there is
no ASAP task in the ready queue QR, the slack (represented
by the wrapper task Sh) will get the processor and also keep
it idle for the interval of its allocated time, which effectively
delays the executions of ready ALAP tasks in QR (if any).
For the case of the empty slack queue (i.e., Sh = NULL)
or ηk > ηh, POED will dispatch task Tk normally from the
ready queue QR.

An interesting case occurs when the slack has higher priority
(i.e., ηh > ηk) and the ready queue QR contains at least one
ASAP task. Suppose that the highest-priority ASAP task in
QR is Ts (and it is possible that ηs < ηk). In this case, the
slack (i.e., the wrapper task Sh) obtains the processor and will
lend its time to Ts by wrapping its execution. That is, during
the wrapped execution of Ts, Ts inherits the higher priority
of Sh, which can prevent preemptions from future promoted
ALAP tasks as shown in the above example.

Note that, once such wrapped execution ends due to the
completion of Ts or Sh using up its slack time, a new piece
slack with the size of the wrapped execution and Ts’s priority
will be generated and inserted back to the slack queue QS .
The operations of slack (i.e., wrapper tasks) are very similar to
those for dynamic priority based scheme [13], and are omitted
due to space limitations.

B. Dummy Task Technique to Exploit Static Spare Capacity

For a given set of tasks that are schedulable under fixed-
priority scheduling, it is more likely that the system is not fully
utilized (i.e., U < 1). However, the wrapper-task technique
discussed in the last section is designed to handle dynamic
slack from early completion of tasks and cannot directly
utilize such spare system capacity. In [13], we have utilized
a dummy task T0 to represent the spare system capacity
and to periodically introduce slack time into the system at
runtime. Moreover, considering the utilization bound for EDF
scheduling, the utilization of T0 is set as u0 = 1− U .

Following the similar approach as in [13], we can also aug-
ment a given task set with a dummy task T0. Here, in addition
to its timing parameters (c0, p0), we need to determine T0’s
priority η0. From the discussions in the last section, slack time
needs to have a higher priority to wrap an ASAP task for its
early execution and to delay the execution of ALAP tasks.
Therefore, it is desirable to assign the highest priority to the
dummy task T0; that is, η0 > ηmax = max{ηi|Ti ∈ Ψ}.
In addition, the period of T0 determines how often slack is
introduced to the system at runtime and can have a direct
impact on how the preference requirements of tasks are
fulfilled [13].

Note that, the choice of T0’s timing parameters and priority
should not compromise the schedulability of the augmented
task set. Considering the complex interplay between tasks’
schedulability and their priorities and timing parameters, it
is much more difficult to find the appropriate (c0, p0, η0)
values for T0 than that for the dynamic-priority based EDF
scheduling [13]. One possible approach can be exploiting
the response time analysis [1, 10] and iteratively examining
the feasibility of the dummy task T0’s priority assignment
(from the highest to lowest) and associated timing parameters.

Dummy Task Technique for RM Scheduling: Next,
focusing on the RM scheduler, we discuss a conservative
but simple approach to determine T0’s priority and timing
parameters. Suppose that the given task set is schedulable
under RMS and that U ≤ U b

rms(n) = n(21/n − 1) holds,
where n is the number of tasks and U b

rms(n) is the utilization
bound of the RMS scheduler [11]. In this case, we can
safely set u0 = U b

rms(n + 1) − U without compromising
the schedulability of the tasks. In addition, we can have
p0 = pmin = min{pi|Ti ∈ Ψ} and c0 = u0 · p0. By setting
the period of T0 as the smallest period of the tasks, we know
that the dummy task T0 will have the highest priority η0.

While T0 can help to transform system spare capacity to
slack at runtime, it also affects the promotion time of the lower
priority ALAP tasks. Actually, as our evaluation results in the
next section show, the negative effects of the dummy task
on the reduced promotion time of ALAP tasks, by causing
ALAP tasks be promoted and executed at earlier times, can
overshadow its benefit for introducing the slack time from
spare capacity. This is quite different from dynamic-priority
based preference-oriented scheduling [6].
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Fig. 3. Runtime overhead for PO-RMS and RMS; U = 0.5.

V. EVALUATIONS AND DISCUSSIONS

In this section, we evaluate the proposed POFP scheduler
in terms of its runtime overhead as well as its performance
on how well the preference requirements of tasks are fulfilled
through extensive simulations. In particular, we focus on a
typical fixed-priority scheduler RMS and compare it against
the PO-RMS scheduler. To this aim, we developed a discrete
event simulator using C++ and implemented both RMS and
PO-RMS schedulers.

In the simulations, we consider synthetic task sets with 10 to
100 tasks, where the utilization of each task is generated using
the UUniFast scheme proposed in [2]. The period of each
task is uniformly distributed within the range of [10, 100], and
its WCET is set accordingly. We vary the system load (i.e.,
utilization U ), the workload of ALAP tasks, as well as the
number of tasks and evaluate their effects on the performance
of the proposed PO-RMS scheduler. In the figures below, each
data point corresponds to the average result of 100 task sets.

A. Scheduling Overhead

We first evaluate the scheduling overhead of the PO-RMS
scheduler and compare it against RMS. Note that, as we
discussed in Section III, PO-RMS has the same complexity
as that of RMS, which depends on the number of tasks in
the system. Therefore, we vary the number of tasks per task
set from 10 to 100. To ensure that the generated task sets are
schedulable, we set the system utilization as U = 0.5.

Figure 3a shows the average per-invocation overhead for
both PO-RMS and RMS. We consider cases where ALAP
tasks contribute to the 20%, 50% and 80% of the total
workload, which are denoted as ALAP=20%, ALAP=50% and
ALAP=80%, respectively. From the results, we can see that
the runtime overhead of RMS only depends on the number of
tasks in a task set, which increases with the number of tasks.

However, as PO-RMS exploits an additional runtime queue
to handle ALAP tasks, there are fewer number of tasks in each
queue compared to the ready queue in RMS. Thus, on average,
it takes less time for PO-RMS to process each invocation
compared to RMS, especially for the cases with balanced
ASAP and ALAP workloads (i.e., ALAP=50%). Such runtime
overhead difference becomes larger as there are more tasks in
each task set.

Figure 3b further shows the normalized overall runtime
overhead of PO-RMS with that of RMS as the baseline. The
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Fig. 4. Normalized PV values of PO-RMS vs. RMS.

overall runtime overhead of PO-RMS is higher than that of
RMS for task sets with small number of tasks due to the extra
promotion events for ALAP tasks in PO-RMS. However, when
there are more tasks in a task set, the overhead for additional
promotion events in PO-RMS can be quickly offset by its
much reduced per-invocation overhead, which leads to smaller
overall overhead for PO-RMS when compared to that of RMS.

B. Fulfillment of Tasks’ Preference Requirements

Considering the preemptive nature of the scheduler, it is
difficult to quantify how well the preference requirements of
tasks are fulfilled. As in [6], we use the preference value (PV)
metric, which is defined over the completion and start times
for ASAP and ALAP tasks, respectively. In particular, the
preference value for a task instance Ti,j is defined as [6]:

PVi,j =

{
ftmax−ft

ftmax−ftmin
if Ti ∈ ΨS;

st−stmin
stmax−stmin

if Ti ∈ ΨL.
(3)

where st and ft denote the task’s start and complete times,
respectively. Moreover, ftmin and ftmax represent the ear-
liest and latest completion times of an ASAP task instance,
respectively. Suppose the task instance arrive at time r and its
task has WCET c and period p; we haveftmin = r + c and
ftmax = r + p. Similarly, stmin = r and stmax = r + p− c
represent the earliest and latest start times of an ALAP task
instance, respectively.

We can see that the preference value for a task instance has
the value within the range of [0, 1]. A larger value of PVi,j

indicates that Ti,j’s preference requirement has been fulfilled
better. For a given schedule of a task set, the preference value
of a task is defined as the average preference value of all its
task instances and the overall preference value of a task set is
the average preference value of all its tasks. In what follows,
the normalized preference values achieved for all tasks under
PO-RMS are shown with that of RMS as the baseline.

Effects of the system utilization and task numbers:
Figure 4 first shows the effects of system utilization and
the number of tasks on the achieved preference values for
tasks under PO-RMS. Clearly, we can see that PO-RMS
can obtain better preference values for tasks (up to 4 times)
when compared to those obtained with RMS, especially
when there are more ALAP tasks (i.e., ALAP=80%). This
comes from the fact that PO-RMS exploits the waiting queue
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Fig. 5. The effects of dummy task; ALAP = 50%;

and promotion times to delay the start time of ALAP tasks,
thereby providing good opportunities for ASAP tasks to
complete early. However, when there are only a few number
of ALAP tasks, the performance of PO-RMS gets close to
that of RMS as ASAP tasks are processed in the same way
in both schedulers.

Effects of the dummy task technique: For task sets with
different system utilizations and task numbers, Figure 5 shows
how the dummy task can affect the performance of PO-RMS.
Here, we assume that all tasks take their WCETs and all
available slack at runtime is introduced by the dummy task that
transforms the spare capacity. For simplicity, the utilization of
the dummy task is set as u0 = 0.69 − U , where 0.69 is the
asymptotical utilization bound for the RMS scheduler [11].

From the results, we can see that, when the dummy task
exploits the spare system capacity, PO-RMS performs worse
in terms of fulfilling the preference requirements of tasks. This
is because ALAP tasks are promoted to the ready queue at
earlier times due to their decreased promotion times as the
result of the highest-priority dummy task. Since the preference
values for ALAP tasks rely on their start times only, such early
promotion of ALAP tasks enables them to start earlier and
overshadows the benefits of the slack time introduced by the
dummy task from the spare system capacity.

In Figure 5a, as system utilization becomes higher, each
task becomes larger since there are only 10 tasks per task
set. The increased task sizes make it harder for ASAP tasks
complete at earlier time and also may also force ALAP
tasks start at earlier times, which in turn leads to reduced
preference values. This trend can also be seen as there are
more tasks with fixed system utilization as shown in Figure 5b.
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Fig. 6. The effects of slack management; 10 tasks and ALAP = 80%.

Effects of the online technique: By exploiting wrapper-
tasks to manage online slack, the performance of PO-RMS
is further shown in Figure 6. No dummy task is incorporated
as it cannot improve the performance of PO-RMS. Moreover,
the amount of online slack from early completion of tasks is
controlled by a parameter dynamic load Ldyn, which indicates
the percentage of their WCETs that will be taken by the tasks.
That is, smaller Ldyn values mean more dynamic slack.

It is interesting to see that the performance improvement of
the online technique is quite limited. One possible reason for
this is the fact that the slack cannot help much to postpone
the start times of ALAP tasks or completion times of ASAP
tasks, which are the main factors for the performance values.

VI. CONCLUSIONS

In this work, for real-time tasks where some tasks are
executed preferably early while others late, we proposed a
preference-oriented fixed-priority (POFP) scheduling algo-
rithm. The basic idea is to use the promotion time and an
additional runtime queue to delay the execution of late tasks,
which also enable other tasks to run earlier. Online techniques
with slack management are also investigated. The evaluation
results for RMS schedulers show that the dual-queue POFP
scheduler can effectively address the execution preferences
tasks. While online technique with wrapper-tasks can slightly
improve the performance of POFP, the dummy task can lead
to worse performance as it can reduce the promotion time of
late tasks.
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