Proc. 8th Int. Conf. on Database Systems for Advanced Applications (DASFAA'03), Kyoto, Japan, 2003

Spatial Query Processing for High Resolutions

Hans-Peter Kriegel*, Martin Pfeifle’, Marco Pétke™ and Thomas Seidl

k

“University of Munich, {kriegel, pfeifle} @dbs.infor matik.uni-muenchen.de
"sd&m AG software design & management, marco.poetke@sdm.de

* k%

Abstract

Modern database applications including computer-
aided design (CAD), medical imaging, or molecular biology
impose new requirements on spatial query processing. Par-
ticular problems arise from the need of high resolutions for
very large spatial objects, including cars, space stations,
planes and industrial plants, and fromthe design goal to use
general purpose database management systemsin order to
guarantee industrial-strength. In the past two decades, vari-
ous stand-al one spatial index structures have been proposed
but their integration into fully-fledged database systems is
problematic. Most of these approaches are based on decom-
position of spatial objects|eading to replicating index struc-
tures. In contrast to common black-and-white decomposi-
tions which suffer fromthelack of intermediate solutions, we
introduce grey approximations as a new and general con-
cept. We demonstrate the benefits of grey approximationsin
the context of encoding spatial objects by space filling
curvesresulting in grey interval sequences. Spatial intersec-
tion queries are then processed by a filter and refine archi-
tecturewhich, asanimportant design goal, can purely be ex-
pressed by means of the SQL:1999 standard. Our new High
Resolution Indexing (HRI) method can easily be integrated
into general purpose DBMSs. The experimental evaluation
on real-world test data from car and plane design projects
points out that our new concept outperforms competitive
techniques that are implementable on top of a standard ob-
ject-relational DBMSby an order of magnitude with respect
to secondary storage space and overall query responsetime.

1. Introduction

The efficient management of spatially extended objects
has become an enabling technology for many novel database
applications, including computer aided design (CAD), med-
ical imaging or molecular biology. As a common and suc-
cessful approach, spatial objects can conservatively be ap-
proximated by voxels, i.e. cells of a grid covering the
complete data space. An important new requirement for
large objects, including cars, planes or space stations, is a
high approximation quality which is primarily influenced by
the resolution of the grid. Low resolutions result in large ap-
proximation errors whereas high resolutions yield a high
quality but require high efforts in terms of storage space as
well as update and query processing time. By means of space
filling curves, each cell of the grid can be encoded by asingle

RWTH Aachen University, seidl @informatik.rwth-aachen.de

a) Spatial object b Voxel set

Figure 1: Conversion pipelinefrom spatial objectsto
interval sequences

c) Interval sequence

integer and, thus, an extended object is represented by a set
of integers. As a principa design goal, space filling curves
achieve good spatial clustering propertiessince cellsin close
spatial proximity are encoded by contiguous integers. Fol-
lowing [16], adjacent cell values can be grouped together to
Object Interval Sequences (cf. Figure1l) which are basic
datatypes for spatial applications.

By expressing spatia region queries as intersections of
interval sequences, vital operationsfor two-dimensional GIS
and environmental information systems[18] can be support-
ed. Efficient and scal able database sol utions are al so required
for two- and three-dimensional CAD applications to cope
with rapidly growing amounts of dynamic data and highly
concurrent workflows. Such applications include the digital
mock-up of vehicles and airplanes [1], haptic simulationsin
virtual product environments [19] or engineering data man-
agement. Furthermore, spatial databases have evolved from
highly specialized applications to mainstream business soft-
ware such as enterprise resource planning systems (ERP)
[10].

For commercial use, a seamless and capable integration
of temporal and spatial indexing into industrial-strength da-
tabases is essential. Fortunately, alot of traditional database
servers have evolved into Object-Relational Database Man-
agement Systems (ORDBM). Thismeansthat in additionto
the efficient and secure management of data ordered under
therelational model, these systems now also provide support
for data organized under the object model. Object types and
other features, such as large objects (LOBS), external proce-
dures, extensible indexing, user-defined aggregate functions
and query optimization, can be used to build powerful, reus-
able server-based components.

In order to guarantee an efficient evaluation of user-de-
fined predicates, the extensibility services of the ORDBMS
offer a conceptual framework to supplement the functional
evaluation of user-defined predicates with index-based |ook-

//} o /} BT mray
Zﬁ) b/>,[\,, Jg,\? QFi ﬁ*, N
I L2 1= 1=

J A A A A
(0| R | | P
S Oy S
[l | [| |

Figure 2: Quadtreetessellation (top) and Z-order
interval sequence decomposition (bottom) of a 2D
spatial object for various resolutions 4x4, 8x8, 16x16,
and 32x32 (left to right).

ups. A wide variety of access methods for one- and multidi-
mensional extended objects has been published so far. For a
general overview on external temporal and spatia index
structures, we refer the reader to the surveys of Manolopou-
los, Theodoridis and Tsotras [20] or Gaede and Gunther [8].
An extensive comparison of index structures for one-dimen-
sional intervals has been done by Kriegel, Pdtke and Seidl
with a particular focus on relational storage and relational
query processing, i.e. an implementation mainly based on
SQL [15]. Furthermore, multidimensional access methods
for objectswith aspatial (or temporal) extension can be clas-
sified, with respect to inherent data replication, i.e. the need
to produce redundancy for spatial objects or their identifiers
[16].

Many of the non-replicating access methods, eg. R-
trees[2, 9, 14], use simple spatial primitives such asrectilin-
ear hyperrectangles for one-val ue approximations of extend-
ed objects. Although providing the minimal storage com-
plexity, one-value approximations of spatialy extended
objects often are far too coarse. In many applications, GIS or
CAD objectsfeature avery complex and fine-grained geom-
etry. Therectilinear bounding box of the brake line of a car,
for example, would cover the whole bottom of the indexed
data space. A non-replicating storage of such data causes re-
gion queries to produce too many false hits that have to be
eliminated by subsequent filter steps. For such applications,
the accuracy can be improved by decomposing the objects.

In the case of replicating access methods, e.g. R™-tree
[25] or the RI-tree [16], the number of the simple spatial
primitives used to approximate the objects can become very
high, resulting in a storage and query processing overhead.
Gaede pointed out that the number of tiles and intervals rep-
resenting a spatially extended object exponentially depends
on the granularity of the grid approximation [7] (cf.
Figure 2). Furthermore, the extensive analysis givenin [17]
and [6] shows that the asymptotic redundancy of aninterval-
based decomposition is proportiona to the surface of the ap-
proximated object. Thus, in the case of high resolution huge
parts (e.g. wings of an airplane), the number of intervals can
become unreasonably high.

A promising way to cope with high resolution spatial
data may be found somewhere in between replicating and
non-replicating spatial index structures. In this paper, we
present our new concept of grouping simple black intervals
into grey intervals which helps to range between these two
extremes.

The remainder of the paper is organized as follows:
Section 2 introduces grey intervals and how they can be
stored in an ORDBMS. Section 3 shows that spatial query
processing based on grey intervals can elegantly be ex-
pressed within the SQL-standard. In Section 4, we present
the empirical results, which are based on two real-world test
datasetsof our industrial partners, aGerman car manufactur-
er and an American plane producer, dealing with high resolu-
tion CAD data. In Section 5, we summarize our work.

2. Grey Intervals

Interval sequences, representing high resol ution spatial -
ly extended objects, often consist of very short intervals con-
nected by short gaps. Experiments suggest that both gapsand
intervals obey an exponentia distribution (cf. Section 4).
Thus, it seems promising to group them together to longer
greyintervalsin order toimprove storage behavior and query
response time.

Definition 1 (grey object interval sequences)

Let id be an object identifier and W={(l, u) O IN? | < u} be
the domain of intervals which we call black intervas
throughout this paper. A black interval (I, u) containsall inte
gersxsuchthat | < x < u. Furthermore, let b; = (14, uy), ..

=(l,, u,) O Wbe aseguence of intervalswithu, + 1 < I|+1 for
alid{y,...,n=1}. Moreover, let m< nandletio, i1, 09 ver)
mOINsuchthat 0=iy<i; <i,<...<i,=nholds. Then, we
cal Oy = (id, IIb,Q+1, b0 Oy b0,
Ebi L+ 1D DE) a grey object mterval sequence of cardi-
nalltym If mequalsn we denote Oy, al'so as ablack object
interval sequence Oy, We cal each of thej =1, ..., m
groups Eb T D of Oy agrey interval Iy, . Ifij4+1
equalsi, we denotel o also asablackinterval Iy, -

Intuitively, a grey interval is a covering of one or more
digoint and nonadjacent black intervals where there is at
least a gap of one integer between adjacent intervals. In the
next definition, we introduce a few useful operators on grey
intervals.

Definition 2 (operators on grey intervals)

For any grey interval | gq, = [, ,uy),..., (Is,u) Dwe define the
following operators:

Length: L (Igq) = Us—I, + 1.

Cardinality: C (lge,) = s—r+1

Number of Black Cells: Ny (Igrgy) = 2, Ui=li+ 1),

Number of White Cells: N, (I4¢) = L(Ig,ey) Np (Igrey)-
DenSty D(Igrey) Nb (Igrey)ll-(lgrey)
Hull: H (1gre,) = (1, ,Ug).

. _ r=s
Gap'G(Igrey)‘ max{l;-u;_,-1i=r+1..,g €ese -

A voxelized “red-world” object

Black object interval sequence (obtained from encoding voxels via a space filling curve)

0 8 16 24 R 40 48

R —
v

Grey obj ect interval sequence (obtained from grouping black intervalstogether)

H\HH
'HH'\H'

16 2 2
LLLLEL HHHH

IZ
LANEJRE S

-H-H'H- -H-H-H-H-

L(,)=6 L(y)=7 L(,)=8 L(l,)= L(I5) 2
D (1,)=5/6 D(lp)=3/7 D(l9=1 D(|4)=3/7 D(l)=1
G()=1 G(l,)=2 G(l=0 G()=2 G(g9=0
C(y=2 Cc(,)=3 Cy)=1 C()=3 C(g=1
Ny (I)=5 N, (1) =3 N (1)=8 Ny(1)=3 Np(lg)=2
N, (I)=1 N, (I,)=4 N, (=0 N,()=4 N,()=0

Figure 3: Grey object interval sequence

Figure 3 demonstrates the val ues of these operatorsfor a
sample set of grey intervals.

2.1. Storing Grey Intervalsin an ORDBM S

One approach for storing an object id in a database isto
map its black object interval sequence Oy 4 = (id, by, ...,
b,0 to aset of nrowsin an object-relational table Blackinter-
vals(id, interval). An index on the attribute interval supports
efficient query processing. For high resolution spatial data,
this approach yields a high number of table and index entries
and, consequently, leads to a poor query response behavior.

A key idea of our approach is to store the grey object
interval %quence Ogrey = (id, [Ib; 45,0, 0, by 44,000,
e By gyl DD]masetofmrowsmanobject relatlon-
a tabIeGreyl ntervals(ld interval sequence). Inthis case, the
black intervals by, ..., bsof each grey interval 1o, = [y, ...,
b,JJare mapped to the complex attribute intervalseguence
which consists of the hull H(ly,), 2 BLOB, and the BLOB
type, indicating the structure of the BLOB. The two impor-
tant advantages of this approach are as follows: First, the
number of table and index entries can be controlled and re-
duced dramatically. Secondly, the accessto the grey intervals
is efficiently supported by established relational access
methods for intervals. These access methods have to be cre-
ated on H(l y.q,)-

2.1.1. Storing an Interval Sequence in a BLOB. The de-
tailed black interval sequence b, , ..., b of a grey interval

lgrey = Uy, ..., b[Ican be materialized and stored in aBLOB
in many d|fferent ways. A good materialization should con-
sider two aspects. First, as little as possible secondary stor-
age should be occupied. Secondly, as little as possible time

lgey = <(3,6),(8,8),(13,13),(16,16),(19,19),(23,28),(38,38),(41,42)>

1 10 20 ki) 40 50
RN
a) Wﬁﬁﬂ‘mm -
OO0 0000 OO0 T OO0 00000)
1 10 0 ki) 40 50

b) as\/ Ve \ 53
000017100010110001 01/0010107001010]00 1101]0017/01/010000]010000]010100)
011001]100011]100011]100110

—

43

Figure4: Storing thedetailed black interval
sequencein a BLOB
a) bit-oriented, b) offset-oriented

should be needed for the evaluation of the BLOB. Thesetwo
requirements arein accordance with each other aslong asthe
CPU-costs for the evaluation of the BLOB are negligible
compared to the I/O-costs. We introduce two aternatives,
the bit-oriented approach and the offset-oriented approach,
and show in which case each of them uses less secondary
disk space. Finaly, we present a mixed approach which
yields both, a good secondary storage behavior and a good
query response time (cf. Section 4).

Bit-Oriented Approach. A very important observation is
that a black object interval sequence for high resolution spa-
tial objects consists of alarge number of very short intervals
(e.g. points) which are connected by short gaps. This moti-
vates the bit-oriented approach illustrated in Figure 4a. Each
voxel of the data space which is covered by a grey interval
lgrey =y, ..., bLIsrepresented by onebitinitsBLOB. Thus,
thesize of the BLOB isalwaysequal to u,—I, + 1 bits, i.e. the
space complexity is O(L(lye,)). Obviously, this approach
workswell for short intervals with short gaps.

Offset-Oriented Approach. Unfortunately, the bit-oriented
approach is extremely bad if a grey interval includes very
long black intervalsor long gaps. Therefore, weintroducethe
offset-oriented approach (cf. Figure 4b) where we process
the boundary values of theblack intervals. For agrey interval
lgrey = B, ..., bCwith C(l) black intervals, we store the
vauesu, =1, Iy =1, U =1y ooy g gy =1 U gy =1, @nd
=1, sequentiallyintheBLOB. Eachof these1+2 - (C(l)
-2)+1=2"(Clye) —1) vauesis smaller than L(ly)-
Thus, only tog, L(l e,) [hits are needed for storing onevalue
(e.g. dog, (42 — 3)0= 6 bitsin the example of Figure 4). In
the offset-oriented approach the size of the BLOB does not
depend linearly on L(l g,), but logarithmically. Furthermore,
it depends linearly on the cardinality C(l4.) of the grey in-
terval, i.e. we have a space complexity of O(C(I
IOgZ L(Igrey))-

A final remark: instead of using the offset-oriented ap-
proach, we could have organized the sequence by, ..., byby
means of run-length-coding. Theresult isin the same storage
space complexity class but the process of accessing the

grey) '

BLOB at a desired offset is only possible by scanning the
BLOB from the beginning, whereas our approach allows bi-
partitioning the BLOB and so a logarithmic access time is
guaranteed (cf. Section 3).

Mixed approach. Obvioudly, it is sometimes better to use
the bit-oriented approach which needs O(L(l) bits, and
sometimes the offset-oriented approach which needs O(C(1 ;.
rey) * 109, L(1 4e)) bitsis better. Fortunately, it can be decided
individually which one is preferable for each grey interval,
depending on the length and the cardinality of the grey inter-
val.

Theorem 1 (bit-oriented versus offset-oriented approach)
Letlge =, ..., b[beagrey interval. Then, the bit-orient-
ed approach needs less secondary disk space compared to the
offset-oriented approach for storing the sequenceb,, ..., bgif
thefollowing formula holds

L (Igrey) < 2 (C (Igrey) - 1) ’ |:n()(:JZI-(Igrey)D

Proof: The bit-oriented approach needs L(l) bits for stor-
ing the sequenceb, , ..., by;inaBLOB. Onthe other hand, we
have to store 2 - (C(l 4¢,) — 1) boundary values of which each
needs og,L(l4q)0 bits in the offset-oriented approach.
Thus, theformula holds.

Based on this theorem, we can decide for each grey in-
terval whether the offset-oriented or the bit-oriented ap-
proach needs less secondary storage.

3. Query Processing

Most ORDBMSs, including Oracle [21, 24], IBM DB2
[5, 12] or Informix IDS/UDO [4, 13], provide extensibility
interfacesin order to enable database devel opersto seamless-
ly integrate custom object types and predicates within the de-
clarative DDL and DML. These interfaces form a necessary
prerequisite for the seamless embedding of spatial objects
and the intersect predicate into off-the-shelf ORDBM Ss. As
we represent spatial objects by grey object interval sequenc-
es, wefirst clarify when two of these sequencesintersect.

Definition 3 (object intersection)

Let Wyao =10, u) O IN?, | < u} bethedomain of black inter-
vals, and let I' = (b}, ...,b; Oand 1= (b}, ...,b; Obe two
grey intervals. Furthermore, let O* = (id", O3, 13, ..., I3, D)
and 0% = (id% 03, 13, ..., I, [) be two grey object interval
sequences. Then, the notions intersect and interlace are de-
fined in the following way (cf. Figure 5):

1. Two black intervals, b; = (15, uy) and b, = (1, u,), intersect
ifl;<u,andl,<u,.

2a. Twogrey intervals|® and 12 intersect if forany i O {1, ...,
n},j O{1,...,n,}, theblack intervals b} and b’ intersect.
2b. Two grey intervals|* and 12 interlace, if their hulls, H(I%)
and H(1?) intersect.

3a. Two objects O and O? intersect if forany i 0{1, ..., m;},
jO{1,...,my}, thegreyintervals I} and I? intersect.

3b. Two objects O' and O%interlaceif foranyi 0{1,...,m;},
j0{1,...,m}, thegreyintervas I; and I? interlace.

a) b) C)
Mo e Heer=itat forei
PR H et R

interlacing but
no intersection

no interlacing
no intersection

interlacing and
intersection

Figure 5: grey object interval sequences
a) non interlacing, b) interlacing but no inter section,
C) intersection

3.1. Theintersect SQL Statement

As shown in Section 2.3, the black object interval se-
guences can be mapped to an object-relational schemaBlack-
Intervals. Following this approach yields a clear SQL -state-
ment for the detection of intersecting spatial objects
(cf. Figure 6). In order to efficiently determine al intersect-
ing black intervals, we can use one of the many index struc-
tures for intervals, surveyed in [15], and integrate them into
the extensible indexing framework of modern ORDBM Ss.

SELECT DISTINCT db.id
FROM Blackintervals db, :BlackQueryIntervalsq
WHERE intersects (db.interval, g.interval)

Figure 6: SQL statement for spatial object intersection,
based on black object interval sequences

Theseindex structures also support the evaluation of the
intersect predicate based on grey intervals. As we defined
grey object interval sequences as a conservative approxima-
tion of black object interval sequences, we can use the hulls
of the grey intervalsin afirst conservativefilter step. There-
by, we can take advantage of the same access methods as
used for the detection of intersecting black interval pairs. As
shown in Section 2.1, the grey object interval sequences can
be mapped to an object-relational schema Greylntervals.
Following this approach, we can also clearly expressthein-
tersect predicate on top of the SQL engine (cf. Figure 7).

We use table asanesting function that groupsreferences
of interlacing grey query and databaseinterval pairstogether.
In our implementation, we realized this NF2-operator table
by a user-defined aggregate function as provided in the
SQL:1999 standard. As we want to find out which database
objects are intersected by a specific query object, we have to
test theinterlacing grey intervalsfor intersection. Thistestis
carried out by a stored procedure blobinter section. If wefind
oneintersecting grey database and query interval pair, wecan
stop investigating other grey interlacing interval pairs be-
longing to the same database obj ect, and issue the object’sid.
This skipping principle is realized by means of the exists-
clause within the SQL -statement.

SELECT candidates.id FROM
(SELECT dh.id ASid,
table (pair(db.rowid, g.rowid)) AS ctable
FROM GreyIntervalsdb, :GreyQueryIntervalsq
WHERE intersects (hull(db.interval sequence),
hull(g.interval sequence)) -- interlacing
GROUPBY dhb.id
) candidates
WHERE EXISTS
(SELECT1
FROM Greylntervals db, :GreyQuerylntervals g,
candidates.ctable ctable
WHERE db.rowid = ctable.dbrowid AND
g.rowid = cable.growid AND
blobintersection (db.interval sequence,
g.interval sequence) -- intersection

)

Figure 7: SQL statement for spatial object intersection,
based on grey object interval sequences

The approach introduced above actually forms a new
spatial access method which can easily be integrated into
common extensible indexing frameworks [22].

3.1.1. Stored Procedure blobintersection. In order to de-
cide whether two interlacing grey database and query inter-
vals intersect, the detailed black interval sequences have to
be scrutinized. If an intersection is detected, the procedure
bl obinter section can stop testing the interlacing area further-
more. Thus, unnecessary disk accesses are avoided.

If the grey interval |y, = [, ..., b[ls bit-oriented and
has to be examined in the area Linterlace = (Iinterlace ’ L"i nterlacg)v
we can find the starting point of theinterlacing areal; g acein
constant time by using |, r1ace— I 8s Offset. We then have to
examine at most the L ¢ 5ce DitS Of this area

If the grey interval |y, = (B, ..., bfollows the offset-
oriented approach, the starting point of the interlacing area
linterlace OF | grey €N be found by bipartitioning. Wefirst access
the value in the middle of the BLOB and compare it to
linteriace - I it IS smaller, we only have to consider the upper
half of the BLOB. If it ishigher, we take the lower half. This
test can be done in constant time and has to be performed at
most 1 +10g,C(4¢,) times. Then, we haveto accessthe black
intervals in the interlacing area which are consecutively or-
ganized.

3.2. Optimizations

For each database object which interlaces the query ob-
ject, it suffices to find a single intersecting interval pair in
order to issue the database id. Obviously, it is desirable to
detect such intersecting interval pairs as early as possible in
order to avoid unnecessary bl obinter section tests.

In this section, we present two optimizations striking for
this goal. First, we introduce a fast second filter step which

tries to determine intersecting intervals without examining
the detailed black interval sequence of a grey interval. This
test is entirely based on aggregated information of the grey
intervals. Secondly, we introduce a probability model which
leadsto an ordering for the interlacing interval s such that the
most promising blobintersection tests are carried out first.

In order to put these optimizationsinto practice, we pass
G(lgrey) and D(l) (cf. Definition 2) as additional parame-
ters to the user-defined aggregate function table. Thus, the
following two optimizations can easily beintegrated into this
user-defined aggregate function. For efficiency reason, we
materidize not only H(lgg) (cf. Section2.1), but also
G(lgre) and D(lge,) in the complex attribute intervalse-
guenceof thetable Greylntervals. If thefast second filter step
determines an intersecting pair of intervals, al other interval
pairs are del eted so that the resulting table of candidate inter-
val pairs, caled ctable, consists only of one intersecting in-
terval pair. If this test detects that the intervals cannot inter-
sect, this interval pair is not added to ctable. Nevertheless,
there might be database objects where for none of the corre-
sponding interval pairs this second filter step determines an
intersection. In this case, we sort the interval pairs at the end
of our user-defined aggregation function table such that the
most promising blobintersection tests are carried out first.

3.2.1. Fast Grey Tedt. In the following paragraph, we will
discuss how grey and black intervals haveto look like so that
we can decide whether two interlacing intervals intersect
each other or not without accessing their BLOBS.

Two Black Intervals. If two black intervals interlace, they
necessarily intersect aswell.

Black and Grey Intervals. In this case, the situation is a
littlebit more complicated. In almost any caseswhereablack
interval lpacc = (Ipack: Uniac) INterlaces a grey interval |y,
with H(lgey) = (Igreys Ugrey), there is an intersection of 1y,
and Iy as well. If any of the three conditions depicted in
Table 1 holds, then I, and I ¢ intersect.

Two Grey Intervals. Obviously, two grey intervals |, and
Iygrey’ with H(Igrey) = (Igrey’ ugrey) and H(I,grey):(l,grey' u grey)y
which interlace do not have to intersect. Fortunately, there
are two cases where we can assert that they intersect without
examining the detailed black interval sequences. The two
casesareillustrated in Table 2.

No intersection. There are only two situations, depicted in
Table 3, where we can determine that two interlacing inter-
vals do not intersect.

3.2.2. Ranking. As shown above, we can pinpoint, based on
relatively little information, whether two interlacing inter-
vals intersect or not. Nevertheless, there might be cases
where we cannot do this for any interlacing database and
query interval pair. In this situation, it is still helpful if we
can predict how likely an intersection might be in order to
rank this interval pair properly in the set of al interlacing

Table 1: | nter section between an interlacing black and grey
interval

condition
I—(I bl ack)
>

explanation

() If the black interval is longer
arey than the maximum gap

larges thon between two black intervals
e of the detailed black interval
— sequence of |, then the two
- - -— intervals intersect.
smaller than
G(lgrey)

(linterlace = Iblack and
Uinterlace = ugrey) or
(lintertace = |grey and If one of the two conditions
u presented in the box on the
left holds, then the black and
grey interva intersect. This

interlace = Ulac

| = Uinterlace™ ugrey
interlace™ 'black

——
[— is due to the fact that the grey
I intervals end and start with
o black intervals.

— -
| interlace™ | arey

Uinterlace™ Ublack

NW(Igrey)

<

Linterlace If the number of the white
 E— cells Ny(lg,e) OF agrey inter-

val is smaller than the length
of the interlacing area, then
the grey and the black inter-
0 val necessarily intersect.

Uinterlace ~ |mte(\ace+l > Nw(lgrey)

guery and database interval pairs belonging to the same da-
tabase object.

Theorem 2 (Probability for an intersection of interlacing in-

tervals)
Let 1ge and I’ g, be two grey intervals with densities d =
D(Igre,),) and d' = D(I’ 4,) Which interlace within an area of

length L. Furthermore, let the black and white cellsof thetwo
intervals be equally distributed. Then the probability for an
intersectionis:

fb—dxlg
Dd’xLD
ol g
Ly = 0

Proof: Aswe assume that the black cells of both grey inter-
vals are equally distributed, we can conclude that N=d x L
black cells of |4, are included in the interlacing area and
likewiseN' =d' x L black cellsfrom I’ ¢, . The number of all
different possibilities how N' black cells of I’y can be
placed over theL cellsof theinterlacing areais EN D g - D

Assuming that all N black cellsof |, are aready distri uted
over L, then the number of different possibilities how N’

P=1-

Table 2: Inter section between two interlacing grey intervals

condition explanation

Ugrey = U grey

or

lgrey =1’

o If one of the three conditions

| =y depicted in the box on the left

oe i holds, then the two grey inter-

Voo =lgy Ugey™ ey | vals intersect (grey intervals
| | start and end with black inter-

] | vas). Thistest is similar to the

|’; =u_grey - polygon boundary test in [11].
e
—
Nullgrey) + Nw(I'gey) | I the sum of the number of the
< Linterlace “white cells’ of two grey inter-
Linterlace lacing intervals is smaller than

the length of the interlacing
area, then the two intervals nec-
essarily intersect. This is the
. generalization of the third case
of Table 1. Thistestissimilar to
thefalseareatest in [3].

Nw (Igrey)+Nw (Iygrey)

Table 3: No inter section between two interlacing grey intervals

condition explanation

Nb (Igrey) =2

and

lrey <1 grey

ad If 15,6, cONsists only of two black

Ugrey > U grey cellsand I' o, is totally “included”
lyey< I'gey Uge< Uy | 1N Igreys then we know that the two

intervals cannot intersect each
other, although they interlace.

aey

= = - gy
Nb(l grey) =2

Nb(lgrey) =2
Nb(lygrey) =2
and
'grey’t Ilgrey"’t
Ugrey# U grey If both grey intervals consist only
- of two black cells and, further-
arey ey more, have distinct interval
bounds, then the two intervals cer-
tainly do not intersect.

ey~ grey

n [Lgfe}’

[

n [grey

Nb(lgrey) =2
N’b(lgrey) =2

black cells of 1"y, can be placed over the remaining L-N
white cells such that no intersection occurs is
o-N_d- deLD Thus, the probability for a non-intersec-

ON D]
tiohis equél to ¢ XLLE/EH - [, which proves the theorem.

number of parts: approx. 200 approx. 10,000
data space: [0m .. 6 m]® [Oinch .. 3250inch]®
voxel sidelength: 3mm 0.2inch

resolution: 33 bit 42 bit
(0..8,589,934,591) (0.. 4,398,046,511,103)
number of intervals: approx. 7 million approx. 10 million

Figure 8: High resolution CAD test data sets
a) CAR, b) PLANE

4. Experimental Evaluation

In this section, we evaluate the performance of the grey
object interval sequences based on two test datasets CAR and
PLANE (cf. Figure 8). These test data sets were provided by
our industrial partners, a German car manufacturer and an
American plane producer, in form of high resolution voxel-
ized three-dimensional CAD parts. In both cases, the Z-curve
was used as a space filling curve to enumerate the voxels.

In order to support the first filter step of our new High
Resolution Indexing method HRI, we can take an arbitrary
access method for intervals as presented in [15]. Throughout
our experiments we have used the relational interval tree for
this purpose. Many spatial access methods compete with our
HRI technique but only few of them may be integrated into
standard SQL database servers. Examplesinclude the Linear
Segment Tree, the Linear Quadtree (Octree), the Relational
R-tree and the spatial version of the RI-tree [16]. Since the
latter outperforms competing approaches by factors between
4.6 and 58.3 for query response time [16], we compared the
HRI method to the optimized spatial version of the RI-tree
which deals efficiently with black interval sequences.

In order to evaluate the HRI method, we have grouped
black object interval sequencesinto different grey object in-
terval sequences depending on a MAXGAP parameter. The
grouping algorithm tries to minimize the number of grey in-
tervals while not alowing that a maximum gap G(l) of
any grey interval exceeds the MAXGAP parameter. Let us
note that the HRI method and the RI-tree coincide if the
MAXGAP parameter is 0. In this case, we always used the
original optimized version of the RI-tree and not the HRI
method.

We have implemented the optimized RI-tree and the
HRI method on top of the Oracle9i Server using PL/SQL for
the computational main memory based programming. All
experiments were performed on a Pentium 111/700 machine
with IDE hard drives. The database block cache was set to
500 disk blocks with ablock size of 8 KB and was used ex-
clusively by one active session.

C'H)HS‘[(IJ&'Y] — OR
10mom | N\ RANE
[%2] A\
&
S 1000/
o
2
g 1y
S5
c
1l h
1 26 16777&6@9%7&5%%3—

Figure 9: Gap histogram

4.1. Gap and Interval Histograms

Asshown by Gaede[7] and Faloutsoset al. [6], the num-
ber of intervals generated via a space-filling curve out of a
real-world object mainly depends on the surface and the
shape of the objects and on the resolution of the underlying
grid. Unfortunately, thereis nothing mentioned about the dis-
tribution of the intervals or the corresponding gap distribu-
tion. In[23] it is asserted that the gap histograms show local
peaks at gap lengths around 2%with k 0 IN and k= 0 for 3D
data. Thisbehavior is caused by the fact that many gaps rep-
resent empty cube-like (3D) regions at the boundary of the
spatial objects. Figure9 supports this assertion. Figure 10
depictstheinterval distribution. It can be seen that the bucket
whichincludes most intervalsisregularly increasing with in-
creasing MAXGAP.

4.1.1. Storage Requirements. Although the storage com-
plexity O(n/b) of the RI-tree is optimal, it seems rather
wasteful to spend one row in the table Blackintervals of the
RI-treefor each short interval, especially if these black inter-
vals are connected to each other by short gaps. Figure 11a
shows the different storage requirements for the Greylnter-
vals table with respect to the different organization ap-
proaches of the BLOBs. Asyou can see, the bit-oriented ap-
proach is very bad for high MAXGAP values, but it is better
than the offset-oriented approach when using small MAX-
GAP values. The mixed approach combines the advantages
of both and is, therefore, used throughout the rest of this pa-
per. In Figure 11b, the storage requirements for the index as
well as for the complete Greylntervals table are depicted. In
the case of small MAXGAP parameters, the number of disk

a) b)
1000000 1000000

))

g g

& 10000]

g . £ 10000 ~ O

3) 5 s A\

g 100 \ \ 5 100

8 \ \ \ 2

£ \ ~ E

] 5

= 1 \ c .
' Titefval-Length i Thtefval-tength
1 1024 1048576 1 1024 1048576

——MF10"T —— M=10"2 —\=0 ——MEI0M —— MF10°2

M=10"4 M=10"5 — MF10"3 M=10"4 M=10"5

— V=
— M=10"3
M:

BRo
5}

Figure 10: Interval length depending on the MAXGAP
parameter

a)

Greyinterval bit-oriented Greylintervals bit-oriented
CAR approach PLANE approach
30 offset-oriented 30 offset-oriented
approach approach
—— mixed - — mixed
o
g approach - S approach
58 201 e °320{ }
o o X
@ X o
Eg g
28104 =210
8 N\ A .
—
0 T T T)
MAXGAP 0 T T T TVAX
MAXGAP
0 1000 1000000 0 1000 1000000
(Rl-tree) (RI-tree)
b) 100 CAR 160 PLANE
80 140
Qindex 120 index
= 60 tabl 100
g Btable g table
s3 58 ®
g0 5% 60
ox
@
EZ2 EL 4
=2 S0 20
Qa o
0 AXGAP 0+ T MAXGAP
0 1000 1000000 ? 1000 1000000
(RI-tree) (RI-tree)

Figure 11: Storage requirements
a) Greylntervalstable, b) Greylntervalstable + index

blocks used by the index dominates the number of disk
blocks for the Greylntervals table. With increasing MAX-
GAP parameters the number of disk blocks used by the index
dramatically decreases hand in hand with the number of grey
intervals, and at high parameter values they yield no signifi-
cant contribution any more to the overall sum of used disk
blocks.

Observation 1

With the HRI method we can improve the storage re-
guirement at least by an order of magnitude.

4.2. Evaluation of the Dynamic Properties of the
HRI Method

Inthis section, wewant to turn our attention to the differ-
ent facets related to the query response behavior of the HRI
method where we consider collision queries.

All figures presented in this paragraph depict the aver-
age result obtained from collision querieswhere we havetak-
en every physical mechanical part from both test data sets
CAR and PLANE as query objects in order to determine
which partsin the associated database are colliding with the
query object. We first discuss the overall runtime behavior,
and then, investigate the number of tested candidates. Final-
ly, we close with a few general remarks on miscellaneous
facets.

Response time. In Figure 12, it is shown in which way the
overall response time depends on the MAXGAP parameter.
As the second filter step does not require any measurable
time, itisnot visible there. If we use small MAXGAP param-
eters, westill need alot of timefor thefirst filter step. On the
other hand, using large values leads to an expensive BLOB

a o
03 fitter step
40,
02 fitter step
30+ 01 fitter step

10

response time [sec.]
B

10 100 1000 10000 100000 1000000 Ritree

b) 07 PLANE
[0 e RCCCEEEEEEEE LU R LR
G O3 fiter step
@05)
0, 02 fiter step
“g’ 04 [0 fiter step
© 03
2
502
So1
00 T T T T MAKGAP
10 100 1000 10000 100000 1000000 Riree

Figure 12: Responsetimeon collision queries
a) CAR, b) PLANE

test. Fortunately, using MAXGAP parameters in the middle
leads to agood query response time.

Observation 2

With the HRI method we can improve the response time
of collision queries by an order of magnitude.

Number of Tested candidates. Figure 13 illustrates the
number of interval candidate pairs and the number of the cor-
responding tests which are actually carried out. In the second
filter step, the number of the candidate pairs rapidly decreas-
es with increasing MAXGAP value athough the number of
candidate object IDs increases (cf. Figure 14). At low MAX-
GAP values, we haveto test only afractional amount of can-
didate pairs as the fast second filter step works very success-
fully with this parametrization (cf. Figure 13). Consequently,
there is only arelative small number of candidate pairs left
for the blobinter section tests.

In the blobintersection step, the number of both candi-
date pairs and corresponding tests do not vary as much asin
the second step. We can still see that in the case of the best
response time on the CAR data (i.e. MAXGAP equals 1,000),
weonly haveto test 40% of al candidates and, thus, this step
benefits as well from the skipping principle introduced in
Section 3.1.

In Figure 14, itisillustrated that at small MAXGAP val-
ues the number of the different object 1Ds resulting from the
first filter step is only marginaly higher than the number of
different IDsin the final result set. Likewise, the number of
detected hits in the second filter step is only marginally

100000 2nd filter step 1.0 BLOB intersection step
a 1000 1.0
10000 08 08
- - -
5 & 1000 0.6 EE 5 §100 06 58
ég 100 04 8O 83 04 88
2 s T 10 R
S 3 c o Ec
28 w0 02 25 3§ 02228
1 20 1 0.0
MAXGA
10 10000 10 10000 MAXGAP

‘ Candidates —e— Tests/Candidates ‘ ‘ Candidates —e— Tests/Candidates ‘

1000 2nd filter step 1.0 blobintersection step o
b 1
) 0.8
« @ 100 =5 08
52 06 22 582 06 o
5] o5 38
25 04 2O 8% 0a 6
E2 s o EE 1 ;o
28 02 €< 28 02 22
1 0,0 0 0.0
10 10000 MAXCAP 10 10000 MAXGAP

‘ Candidates —e Tests/Candidates‘ ‘ Candidates +Tesls/candldales‘

Figure 13: Tested candidate pairsof query and
databaseintervalsa) CAR, b) PLANE

smaller. With increasing MAXGAP values the two curves di-
verge.

Miscellaneous. The size of the parts in the PLANE data set
varies considerably. We have alot of small parts and only a
few very large ones. In the case of the CAR data, this pecu-
liarity isfar less distinctive. As large query parts produce a
large number of query intervals, it is obvious that the size of
a part correlates with the response time. In Figure 153, it is
shown that for most parts from the PLANE data set the HRI

method (MAXGAP = 10,000) outperformsthe RI-tree ‘only’

by afactor of 2.9 whereasthere are some parts for which this

40 + CAR 4031
2 30 + 28,08
— 20,91
5 27 1,68 B0
()
200 ="
'g 10 #— = = = s 114
=] 10,83
< 0 7,80 463 257 174 137
‘ ‘ 'MAXGAP
10 1000 100000
4 + PLANE
333
0w 37T
a]
5 2 187 22
o €
g 161
145
é | ¢ 137 L] L L L lSll
5 125 1B 107 03 03 108
O T T
MAXGAP
10 1000 100000

Cand. after 1.step
—a— Hits after BLOB test

Hits after 2. step

Figure 14: Candidate IDsand result sets

B]
456 48,0 [1
1 23,0 100
2 *
9| 22
1 Jaf? ‘D ‘ 11 1 10 0 1 0

————+—+—1o0)
10 20 30 40 50 60 78 BoEFAHGEPONSE time

a) b)
9959 PLANE
10000 T r 150 PLANE
u% HRI-method Ri-tree

. - 400
< 1000 060 7 3 L2
3 -7 00 58 g o3
2 796 e g &
S 100 -7 ® ®

. I
g 42 - 717 Ed £ 20
° 50 =% g o 365
2 10 8 s <

= o

£ 2 2
E} 2 @
g ¢

=1 number of parts
resp. time Ri-tree / resp. time HRI-method
— — — trend response-time-ratio

Figure 15: Responsetime
a) [resp. time RI-tree|/ |resp. time HRI method],
b) maximum response times

factor is higher than 100. In Figure 15b, it isillustrated that
we haveto wait for more than five minutesfor some collision
gueries when using the RI-tree. On the other hand, using the
HRI method yields almost interactive response times for all
collision queries.

Observation 3

If we use voluminous high resol ution spatial query objects,
leading to high response times, we particularly benefit
from the HRI method.

An interesting observation is that the minimum of sec-
ondary storage requirement (cf. Figure 11) and the minimum
of the response time (cf. Figure 12) are found at the same
value of the MAX GAP parameter, i.e. 1,000 on the CAR data
and 10,000 on the PLANE data. Thisvalue of MAXGAP co-
incides with the smallest MAXGAP value for which the
height of the B*-directory is1 (cf. Figure 16). Smaller MAX-
GAP valueslead to more grey intervals and, thus, to ahigher
B*-directory.

5. Conclusion

In this paper, we present a new multi-step architecture
for querying high resolution spatial objects on top of stan-
dard database systems, called High Resolution Indexing
(HRI). As the key to HRI we introduce a novel concept of
grey approximations and apply it to the representation of spa-
tial objects by interval sequences which are obtained from
encoding voxels by means of space filling curves. As the

_?:"3‘ 2= —s—CAR
=2 PLANE
58 1 N

5T

24 0

' " MAXGAP
1000 1000000

o

Figure 16: Height of the B*-directory of Rl-tree

number of intervals which represent high resolution spatial
objects can become unreasonably high, we reduce this num-
ber by grouping intervals of a sequence into grey intervals.
Technically, small gaps between consecutive black intervals
areclosed. In order to guarantee compl ete and correct answer
setsinthequery process, threetypesof informationfor agrey
interval are stored in the database: First, the hull of the grey
interval, second, aggregated information including density
and maximum gap length and, third, the exact black interval
sequence. This information about grey intervalsis reflected
in the three major steps of the query process asfollows:

» Inafirstfilter step, any standard index for interval datais
employed in order to determine al interlacing pairs of
grey database and query intervals.

¢ Inafast second step we identify some actually intersect-
ing black intervals by examining aggregated information
of the grey intervals. Furthermore, the grey interval pairs
are released in an order that reflects the probability
whether the exact black interval sequences intersect or
not.

» Finally, an expensive BLOB test is carried out, scrutiniz-
ing the exact black interval sequences.

We have implemented our new access method on top of
the Oracle9i Server. The experimental evaluation of the HRI
method can be summarized as follows. First, using the
HRI method improves the secondary storage requirement at
least by an order of magnitude. Second, using the
HRI method improves the response time of collision queries
by an order of magnitude.

In our future work we plan to extend the idea of grey
approximations to other access methods, for instance the use
of grey rectanglesin R-trees.

6. References

[1] Berchtold S, Kriegel H.-P, Pétke M.: Database Support for
Concurrent Digital Mock-Up. Proc. IFIP Int. Conf. PROLA-
MAT, Globalization of Manufacturing in the Digital Commu-
nications Eraof the 21st Century: Innovation, Agility, and the
Virtual Enterprise, Kluwer Academic Publishers, 499-509,
1998.

[2] BeckmannN., Kriegel H.-P, Schneider R., Seeger B.: TheR*-
tree: An Efficient and Robust Access Method for Points and
Rectangles. Proc. ACM SIGMOD Int. Conf. on Management
of Data, 322-331, 1990.

[3] Brinkhoff T., Kriegel H.-P, Schneider R., Seeger B.: Mullti-
Sep Processing of Spatial Joins. Proc. ACM SIGMOD Int.
Conf. on Management of Data, 197-208, 1994.

[4] BliyjuteR., SdtenisS,, Slivinskas G., Jensen C. S.: Develop-
ing a DataBladefor aNew Index. Proc. 15thInt. Conf. on Data
Engineering (ICDE), 314-323, 1999.

[5] ChenW., Chow J.-H.,FuhY.-C., GrandboisJ., Jou M., Mattos
N., Tran B., Wang Y.: High Level Indexing of User-Defined
Types. Proc. 25th Int. Conf. on Very Large Databases (VL DB),
554-564, 1999.

(6l

(9]

(10]

(11]

(12]

(13]

(14]

(19]

(16]

(17]

(18]

(19]

[20]
[21]

[22]

(23]

[24]

[29]

FaloutsosC., Jagadish H. V., Manolopoulos Y.: Analysisof the
n-Dimensional Quadtree Decompositionfor Arbitrary Hyper-
rectangles. IEEE TKDE 9(3): 373-383, 1997.

Gaede V.: Optimal Redundancy in Spatial Database Systems.
Proc. 4th Int. Symp. on Large Spatial Databases (SSD), LNCS
951: 96-116, 1995.

Gaede V., Gunther O.: Multidimensional Access Methods.
ACM Computing Surveys 30(2): 170-231, 1998.

Guttman A.: R-trees: A Dynamic Index Structure for Spatial
Searching. Proc. ACM SIGMOD Int. Conf. on Management
of Data, 47-57, 1984.

Gunther O.: Looking Both Ways: SSD 1999 + 10. Proc. 6th Int.
Symp. on Large Spatial Databases (SSD), LNCS 1651: 12-15,
1999.

Huang Y.-W., Jing N, Rundensteiner E. A.: A Cost Model for
Estimating the Performance of Spatial Joins Using R-trees.
Proc. 9th Int. Conf. on Scientific and Stati stical DatabaseMan-
agement (SSDBM), 30-38, 1997.

IBM Corp.: IBM DB2 Universal Database Application Devel-
opment Guide, Veersion 6. Armonk, NY, 1999.

Informix Software, Inc.: DataBlade Developers Kit User's
Guide, Version 3.4. Menlo Park, CA, 1998.

Kamel ., Faloutsos C.: Hilbert R-tree: An Improved R-tree
Using Fractals. Proc. ACM SIGMOD Int. Conf. on Manage-
ment of Data, 500-509, 1994.

Kriegel H.-P, Potke M., Seidl T.: Managing Intervals Effi-
ciently in Object-Relational Databases. Proc. 26th Int. Conf.
on Very Large Databases (VL DB}), 407-418, 2000.

Kriegel H.-P, Pétke M., Seidl T.: Interval Sequences. An
Object-Relational Approach to Manage Spatial and Temporal
Data. Proc. 7th Int. Symposium on Spatial and Temporal Data-
bases (SSTD), LNCS 2121: 481-501, 2001.

Moon B., Jagadish H. V., Faloutsos C., Saltz J. H.: Analysis of
theClustering Propertiesof Hilbert Space-filling Curve. Tech.
Rep. CS-TR-3611, University of Maryland, 1996.
MedeirosC. B., Pires F.: Databases for GIS ACM SIGMOD
Record, 23(1): 107-115, 1994.

McNedly W. A., Puterbaugh K. D., Troy J. J.: Sx Degree-of-
Freedom Haptic Rendering Using Voxel Sampling. Proc.
ACM SIGGRAPH, 401-408, 1999.

Manolopoulos Y., Theodoridis Y., Tsotras V. J.: Advanced
Database Indexing. Boston, MA: Kluwer, 2000.

Oracle Corp.: Oracle8i Data Cartridge Developer’s Guide,
Release 2 (8.1.6). Redwood Shores, CA, 1999.

Pfeifle M.: Object-Relational Management of High-Resolu-
tion CAD Databases. DiplomaThesis, University of Munich,
2001.

Potke M.: Spatial Indexing for Object-Relational Databases,
Ph.D. Thesis, Faculty for Mathematicsand Computer Science,
University of Munich, 2001.

SrinivasanJ., Murthy R., SundaraS., Agarwal N., DeFazio S.:
Extensible Indexing: A Framework for Integrating Domain-
Soecific Indexing Schemesinto Oracle8i. Proc. 16th Int. Conf.
on Data Engineering (ICDE), 91-100, 2000.

Sellis T., Roussopoulos N., Faloutsos C.: The R*-Tree: A
Dynamic Index for Multi-Dimensional Objects. Proc. 13thInt.
Conf. on Very Large Databases (VLDB), 507-518, 1987.

