
Spatial Query Processing for High Resolutions

Hans-Peter Kriegel*, Martin Pfeifle*, Marco Pötke** and Thomas Seidl***

*University of Munich, {kriegel, pfeifle}@dbs.informatik.uni-muenchen.de
**sd&m AG software design & management, marco.poetke@sdm.de

***RWTH Aachen University, seidl@informatik.rwth-aachen.de

Abstract

Modern database applications including computer-
aided design (CAD), medical imaging, or molecular biology
impose new requirements on spatial query processing. Par-
ticular problems arise from the need of high resolutions for
very large spatial objects, including cars, space stations,
planes and industrial plants, and from the design goal to use
general purpose database management systems in order to
guarantee industrial-strength. In the past two decades, vari-
ous stand-alone spatial index structures have been proposed
but their integration into fully-fledged database systems is
problematic. Most of these approaches are based on decom-
position of spatial objects leading to replicating index struc-
tures. In contrast to common black-and-white decomposi-
tions which suffer from the lack of intermediate solutions, we
introduce grey approximations as a new and general con-
cept. We demonstrate the benefits of grey approximations in
the context of encoding spatial objects by space filling
curves resulting in grey interval sequences. Spatial intersec-
tion queries are then processed by a filter and refine archi-
tecture which, as an important design goal, can purely be ex-
pressed by means of the SQL:1999 standard. Our new High
Resolution Indexing (HRI) method can easily be integrated
into general purpose DBMSs. The experimental evaluation
on real-world test data from car and plane design projects
points out that our new concept outperforms competitive
techniques that are implementable on top of a standard ob-
ject-relational DBMS by an order of magnitude with respect
to secondary storage space and overall query response time.

1. Introduction
The efficient management of spatially extended objects

has become an enabling technology for many novel database
applications, including computer aided design (CAD), med-
ical imaging or molecular biology. As a common and suc-
cessful approach, spatial objects can conservatively be ap-
proximated by voxels, i.e. cells of a grid covering the
complete data space. An important new requirement for
large objects, including cars, planes or space stations, is a
high approximation quality which is primarily influenced by
the resolution of the grid. Low resolutions result in large ap-
proximation errors whereas high resolutions yield a high
quality but require high efforts in terms of storage space as
well as update and query processing time. By means of space
filling curves, each cell of the grid can be encoded by a single

integer and, thus, an extended object is represented by a set
of integers. As a principal design goal, space filling curves
achieve good spatial clustering properties since cells in close
spatial proximity are encoded by contiguous integers. Fol-
lowing [16], adjacent cell values can be grouped together to
Object Interval Sequences (cf. Figure 1) which are basic
datatypes for spatial applications.

By expressing spatial region queries as intersections of
interval sequences, vital operations for two-dimensional GIS
and environmental information systems [18] can be support-
ed. Efficient and scalable database solutions are also required
for two- and three-dimensional CAD applications to cope
with rapidly growing amounts of dynamic data and highly
concurrent workflows. Such applications include the digital
mock-up of vehicles and airplanes [1], haptic simulations in
virtual product environments [19] or engineering data man-
agement. Furthermore, spatial databases have evolved from
highly specialized applications to mainstream business soft-
ware such as enterprise resource planning systems (ERP)
[10].

For commercial use, a seamless and capable integration
of temporal and spatial indexing into industrial-strength da-
tabases is essential. Fortunately, a lot of traditional database
servers have evolved into Object-Relational Database Man-
agement Systems (ORDBMS). This means that in addition to
the efficient and secure management of data ordered under
the relational model, these systems now also provide support
for data organized under the object model. Object types and
other features, such as large objects (LOBs), external proce-
dures, extensible indexing, user-defined aggregate functions
and query optimization, can be used to build powerful, reus-
able server-based components.

In order to guarantee an efficient evaluation of user-de-
fined predicates, the extensibility services of the ORDBMS
offer a conceptual framework to supplement the functional
evaluation of user-defined predicates with index-based look-

Figure 1: Conversion pipeline from spatial objects to
interval sequences

a) Spatial object b) Voxel set c) Interval sequence

Proc. 8th Int. Conf. on Database Systems for Advanced Applications (DASFAA’03), Kyoto, Japan, 2003

ups. A wide variety of access methods for one- and multidi-
mensional extended objects has been published so far. For a
general overview on external temporal and spatial index
structures, we refer the reader to the surveys of Manolopou-
los, Theodoridis and Tsotras [20] or Gaede and Günther [8].
An extensive comparison of index structures for one-dimen-
sional intervals has been done by Kriegel, Pötke and Seidl
with a particular focus on relational storage and relational
query processing, i.e. an implementation mainly based on
SQL [15]. Furthermore, multidimensional access methods
for objects with a spatial (or temporal) extension can be clas-
sified, with respect to inherent data replication, i.e. the need
to produce redundancy for spatial objects or their identifiers
[16].

Many of the non-replicating access methods, e.g. R-
trees [2, 9, 14], use simple spatial primitives such as rectilin-
ear hyperrectangles for one-value approximations of extend-
ed objects. Although providing the minimal storage com-
plexity, one-value approximations of spatially extended
objects often are far too coarse. In many applications, GIS or
CAD objects feature a very complex and fine-grained geom-
etry. The rectilinear bounding box of the brake line of a car,
for example, would cover the whole bottom of the indexed
data space. A non-replicating storage of such data causes re-
gion queries to produce too many false hits that have to be
eliminated by subsequent filter steps. For such applications,
the accuracy can be improved by decomposing the objects.

In the case of replicating access methods, e.g. R+-tree
[25] or the RI-tree [16], the number of the simple spatial
primitives used to approximate the objects can become very
high, resulting in a storage and query processing overhead.
Gaede pointed out that the number of tiles and intervals rep-
resenting a spatially extended object exponentially depends
on the granularity of the grid approximation [7] (cf.
Figure 2). Furthermore, the extensive analysis given in [17]
and [6] shows that the asymptotic redundancy of an interval-
based decomposition is proportional to the surface of the ap-
proximated object. Thus, in the case of high resolution huge
parts (e.g. wings of an airplane), the number of intervals can
become unreasonably high.

A promising way to cope with high resolution spatial
data may be found somewhere in between replicating and
non-replicating spatial index structures. In this paper, we
present our new concept of grouping simple black intervals
into grey intervals which helps to range between these two
extremes.

The remainder of the paper is organized as follows:
Section 2 introduces grey intervals and how they can be
stored in an ORDBMS. Section 3 shows that spatial query
processing based on grey intervals can elegantly be ex-
pressed within the SQL-standard. In Section 4, we present
the empirical results, which are based on two real-world test
data sets of our industrial partners, a German car manufactur-
er and an American plane producer, dealing with high resolu-
tion CAD data. In Section 5, we summarize our work.

2. Grey Intervals
Interval sequences, representing high resolution spatial-

ly extended objects, often consist of very short intervals con-
nected by short gaps. Experiments suggest that both gaps and
intervals obey an exponential distribution (cf. Section 4).
Thus, it seems promising to group them together to longer
grey intervals in order to improve storage behavior and query
response time.

Definition 1 (grey object interval sequences)
Let id be an object identifier and W = {(l, u) ∈ IN2, l ≤ u} be
the domain of intervals which we call black intervals
throughout this paper. A black interval (l, u) contains all inte-
gers x such that l ≤ x ≤ u. Furthermore, let b1 = (l1, u1), …, bn
= (ln, un) ∈ W be a sequence of intervals with ui + 1 < li+1 for
all i ∈ {1, …, n – 1}. Moreover, let m ≤ n and let i0, i1, i2, …,
im ∈ IN such that 0 = i0 < i1 < i2 < …< im = n holds. Then, we
call Ogrey = (id, 〈 , , …,

〉) a grey object interval sequence of cardi-
nality m. If m equals n, we denote Ogrey also as a black object
interval sequence Oblack . We call each of the j = 1, …, m
groups of Ogrey a grey interval Igrey . If ij-1+1
equals ij, we denote Igrey also as a black interval Iblack .

Intuitively, a grey interval is a covering of one or more
disjoint and nonadjacent black intervals where there is at
least a gap of one integer between adjacent intervals. In the
next definition, we introduce a few useful operators on grey
intervals.

Definition 2 (operators on grey intervals)
For any grey interval Igrey = 〈(lr ,ur),…, (ls ,us)〉 we define the
following operators:
Length: L (Igrey) = us – lr + 1.
Cardinality: C (Igrey) = s – r + 1.
Number of Black Cells: Nb (Igrey) = .
Number of White Cells: Nw (Igrey) = L(Igrey) − Nb (Igrey).
Density: D (Igrey) = Nb (Igrey) / L (Igrey).
Hull: H (Igrey) = (lr ,us).
Gap:G(Igrey) ={ .

Figure 2: Quadtree tessellation (top) and Z-order
interval sequence decomposition (bottom) of a 2D

spatial object for various resolutions 4x4, 8x8, 16x16,
and 32x32 (left to right).

bi0 1+ ,...,bi1
〈 〉 bi1 1+ ,...,bi2

〈 〉
bim 1– 1+ ,...,bim

〈 〉

bij 1– 1+ ,...,bij
〈 〉

ui li– 1+()
i r…s=
∑

0 r s=
max li ui 1–– 1– i r 1 … s, ,+=,{ } else

Figure 3 demonstrates the values of these operators for a
sample set of grey intervals.

2.1. Storing Grey Intervals in an ORDBMS

One approach for storing an object id in a database is to
map its black object interval sequence Oblack = (id, 〈b1, …,
bn〉) to a set of n rows in an object-relational table BlackInter-
vals (id, interval). An index on the attribute interval supports
efficient query processing. For high resolution spatial data,
this approach yields a high number of table and index entries
and, consequently, leads to a poor query response behavior.

A key idea of our approach is to store the grey object
interval sequence Ogrey = (id, 〈 , ,
…, 〉) in a set of m rows in an object-relation-
al table GreyIntervals (id, intervalsequence). In this case, the
black intervals br , …, bs of each grey interval Igrey = 〈br , …,
bs〉 are mapped to the complex attribute intervalsequence
which consists of the hull H(Igrey), a BLOB, and the BLOB
type, indicating the structure of the BLOB. The two impor-
tant advantages of this approach are as follows: First, the
number of table and index entries can be controlled and re-
duced dramatically. Secondly, the access to the grey intervals
is efficiently supported by established relational access
methods for intervals. These access methods have to be cre-
ated on H(Igrey).

2.1.1. Storing an Interval Sequence in a BLOB. The de-
tailed black interval sequence br , …, bs of a grey interval
Igrey = 〈br , …, bs〉 can be materialized and stored in a BLOB
in many different ways. A good materialization should con-
sider two aspects. First, as little as possible secondary stor-
age should be occupied. Secondly, as little as possible time

should be needed for the evaluation of the BLOB. These two
requirements are in accordance with each other as long as the
CPU-costs for the evaluation of the BLOB are negligible
compared to the I/O-costs. We introduce two alternatives,
the bit-oriented approach and the offset-oriented approach,
and show in which case each of them uses less secondary
disk space. Finally, we present a mixed approach which
yields both, a good secondary storage behavior and a good
query response time (cf. Section 4).

Bit-Oriented Approach. A very important observation is
that a black object interval sequence for high resolution spa-
tial objects consists of a large number of very short intervals
(e.g. points) which are connected by short gaps. This moti-
vates the bit-oriented approach illustrated in Figure 4a. Each
voxel of the data space which is covered by a grey interval
Igrey = 〈br , …, bs〉 is represented by one bit in its BLOB. Thus,
the size of the BLOB is always equal to us – lr + 1 bits, i.e. the
space complexity is O(L(Igrey)). Obviously, this approach
works well for short intervals with short gaps.

Offset-Oriented Approach. Unfortunately, the bit-oriented
approach is extremely bad if a grey interval includes very
long black intervals or long gaps. Therefore, we introduce the
offset-oriented approach (cf. Figure 4b) where we process
the boundary values of the black intervals. For a grey interval
Igrey = 〈br , …, bs〉 with C(Igrey) black intervals, we store the
values ur – lr , lr+1 – lr , ur+1 – lr , …, l(s–1) – lr , u(s–1) – lr , and
ln – lr sequentially in the BLOB. Each of these 1 + 2 · (C(Igrey)
– 2) + 1 = 2 · (C(Igrey) – 1) values is smaller than L(Igrey) .
Thus, only  log2 L(Igrey) bits are needed for storing one value
(e.g.  log2 (42 – 3) = 6 bits in the example of Figure 4). In
the offset-oriented approach the size of the BLOB does not
depend linearly on L(Igrey) , but logarithmically. Furthermore,
it depends linearly on the cardinality C(Igrey) of the grey in-
terval, i.e. we have a space complexity of O(C(Igrey) ·
log2 L(Igrey)).

A final remark: instead of using the offset-oriented ap-
proach, we could have organized the sequence br , …, bs by
means of run-length-coding. The result is in the same storage
space complexity class but the process of accessing the

Figure 3: Grey object interval sequence

Black object interval sequence (obtained from encoding voxels via a space filling curve)

Grey object interval sequence (obtained from grouping black intervals together)

D (I1)= 5/6

L (I1) = 6

D (I2) = 3/7

L (I2) = 7
D (I3)= 1

L (I3)= 8

D (I4) = 3/7

L (I4) = 7

D (I5) = 1

L (I5) = 2

0 8 24 32 40 48

G (I1) = 1 G (I2) = 2 G (I4) = 2G (I3) = 0 G (I5) = 0

A voxelized “real-world” object

I 1 I 2 I 3 I 4

C (I1) = 2 C (I2) = 3 C (I4) = 3C (I3) = 1 C (I5) = 1

Nb (I1) = 5 Nb (I2) = 3 Nb (I4) = 3Nb (I3) = 8 Nb (I5) = 2

Nw (I1) = 1 Nw (I2) = 4 Nw (I4) = 4Nw (I3) = 0 Nw (I5) = 0

16

0 8 24 32 40 48 16

I 5

bi0 1+ ,...,bi1
〈 〉 bi1 1+ ,...,bi2

〈 〉
bim 1– 1+ ,...,bim

〈 〉

Figure 4: Storing the detailed black interval
sequence in a BLOB

a) bit-oriented, b) offset-oriented

1 10 20 30 40 50

a)

b)

Igrey = <(3,6),(8,8),(13,13),(16,16),(19,19),(23,28),(38,38),(41,42)>

������_��|����_����|��_������|_������_��|����_����|��_������|_������_��|����_
����|��_������|_������_��|����

��������|��������|��������|��������|��������

.

�

1 10 20 30 40 50

{6-3 8-3 8-3
. . .

23-3

41-3

. . .

} }

{

}

}

} }

{ { {

BLOB at a desired offset is only possible by scanning the
BLOB from the beginning, whereas our approach allows bi-
partitioning the BLOB and so a logarithmic access time is
guaranteed (cf. Section 3).

Mixed approach. Obviously, it is sometimes better to use
the bit-oriented approach which needs O(L(Igrey)) bits, and
sometimes the offset-oriented approach which needs O(C(Ig-

rey) · log2 L(Igrey)) bits is better. Fortunately, it can be decided
individually which one is preferable for each grey interval,
depending on the length and the cardinality of the grey inter-
val.

Theorem 1 (bit-oriented versus offset-oriented approach)

Let Igrey = 〈br , …, bs〉 be a grey interval. Then, the bit-orient-
ed approach needs less secondary disk space compared to the
offset-oriented approach for storing the sequence br , …, bs if
the following formula holds

L (Igrey) < 2 · (C (Igrey) – 1) ·  log2L(Igrey) .

Proof: The bit-oriented approach needs L(Igrey) bits for stor-
ing the sequence br , …, bs in a BLOB. On the other hand, we
have to store 2 · (C(Igrey) – 1) boundary values of which each
needs  log2L(Igrey) bits in the offset-oriented approach.
Thus, the formula holds.

Based on this theorem, we can decide for each grey in-
terval whether the offset-oriented or the bit-oriented ap-
proach needs less secondary storage.

3. Query Processing
Most ORDBMSs, including Oracle [21, 24], IBM DB2

[5, 12] or Informix IDS/UDO [4, 13], provide extensibility
interfaces in order to enable database developers to seamless-
ly integrate custom object types and predicates within the de-
clarative DDL and DML. These interfaces form a necessary
prerequisite for the seamless embedding of spatial objects
and the intersect predicate into off-the-shelf ORDBMSs. As
we represent spatial objects by grey object interval sequenc-
es, we first clarify when two of these sequences intersect.

Definition 3 (object intersection)
Let Wblack = {(l, u) ∈ IN2, l ≤ u} be the domain of black inter-
vals, and let I1 = 〈 , …, 〉 and I2 = 〈 , …, 〉 be two
grey intervals. Furthermore, let O1 = (id1, 〈 , , …, 〉)
and O2 = (id2, 〈 , , …, 〉) be two grey object interval
sequences. Then, the notions intersect and interlace are de-
fined in the following way (cf. Figure 5):
1. Two black intervals, b1 = (l1, u1) and b2 = (l2, u2), intersect
if l1 ≤ u2 and l2 ≤ u1.
2a. Two grey intervals I1 and I2 intersect if for any i ∈ {1, …,
n1}, j ∈ {1, …, n2}, the black intervals and intersect.
2b. Two grey intervals I1 and I2 interlace, if their hulls, H(I1)
and H(I2) intersect.
3a. Two objects O1 and O2 intersect if for any i ∈ {1, …, m1},
j ∈ {1, …, m2}, the grey intervals and intersect.
3b. Two objects O1 and O2 interlace if for any i ∈ {1, …, m1},
j ∈ {1, …, m2}, the grey intervals and interlace.

3.1. The intersect SQL Statement

As shown in Section 2.3, the black object interval se-
quences can be mapped to an object-relational schema Black-
Intervals. Following this approach yields a clear SQL-state-
ment for the detection of intersecting spatial objects
(cf. Figure 6). In order to efficiently determine all intersect-
ing black intervals, we can use one of the many index struc-
tures for intervals, surveyed in [15], and integrate them into
the extensible indexing framework of modern ORDBMSs.

These index structures also support the evaluation of the
intersect predicate based on grey intervals. As we defined
grey object interval sequences as a conservative approxima-
tion of black object interval sequences, we can use the hulls
of the grey intervals in a first conservative filter step. There-
by, we can take advantage of the same access methods as
used for the detection of intersecting black interval pairs. As
shown in Section 2.1, the grey object interval sequences can
be mapped to an object-relational schema GreyIntervals.
Following this approach, we can also clearly express the in-
tersect predicate on top of the SQL engine (cf. Figure 7).

We use table as a nesting function that groups references
of interlacing grey query and database interval pairs together.
In our implementation, we realized this NF2-operator table
by a user-defined aggregate function as provided in the
SQL:1999 standard. As we want to find out which database
objects are intersected by a specific query object, we have to
test the interlacing grey intervals for intersection. This test is
carried out by a stored procedure blobintersection. If we find
one intersecting grey database and query interval pair, we can
stop investigating other grey interlacing interval pairs be-
longing to the same database object, and issue the object’s id.
This skipping principle is realized by means of the exists-
clause within the SQL-statement.

b1
1 bn1

1 b1
2 bn2

2

I1
1 I2

1 Im1

1

I1
2 I2

2 Im2

2

bi
1 bj

2

Ii
1 Ij

2

Ii
1 Ij

2

SELECT DISTINCT db.id
FROM BlackIntervals db, :BlackQueryIntervals q
WHERE intersects (db.interval, q.interval)

Figure 6: SQL statement for spatial object intersection,
based on black object interval sequences

Figure 5: grey object interval sequences
a) non interlacing, b) interlacing but no intersection,

c) intersection

a)

no interlacing
no intersection

interlacing but
no intersection

interlacing and
intersection

b) c)

The approach introduced above actually forms a new
spatial access method which can easily be integrated into
common extensible indexing frameworks [22].

3.1.1. Stored Procedure blobintersection. In order to de-
cide whether two interlacing grey database and query inter-
vals intersect, the detailed black interval sequences have to
be scrutinized. If an intersection is detected, the procedure
blobintersection can stop testing the interlacing area further-
more. Thus, unnecessary disk accesses are avoided.

If the grey interval Igrey = 〈br , …, bs〉 is bit-oriented and
has to be examined in the area Linterlace = (linterlace , uinterlace),
we can find the starting point of the interlacing area linterlace in
constant time by using linterlace – lr as offset. We then have to
examine at most the Linterlace bits of this area.

If the grey interval Igrey = 〈br , …, bs〉 follows the offset-
oriented approach, the starting point of the interlacing area
linterlace of Igrey can be found by bipartitioning. We first access
the value in the middle of the BLOB and compare it to
linterlace . If it is smaller, we only have to consider the upper
half of the BLOB. If it is higher, we take the lower half. This
test can be done in constant time and has to be performed at
most 1 + log2C(Igrey) times. Then, we have to access the black
intervals in the interlacing area which are consecutively or-
ganized.

3.2. Optimizations

For each database object which interlaces the query ob-
ject, it suffices to find a single intersecting interval pair in
order to issue the database id. Obviously, it is desirable to
detect such intersecting interval pairs as early as possible in
order to avoid unnecessary blobintersection tests.

In this section, we present two optimizations striking for
this goal. First, we introduce a fast second filter step which

tries to determine intersecting intervals without examining
the detailed black interval sequence of a grey interval. This
test is entirely based on aggregated information of the grey
intervals. Secondly, we introduce a probability model which
leads to an ordering for the interlacing intervals such that the
most promising blobintersection tests are carried out first.

In order to put these optimizations into practice, we pass
G(Igrey) and D(Igrey) (cf. Definition 2) as additional parame-
ters to the user-defined aggregate function table. Thus, the
following two optimizations can easily be integrated into this
user-defined aggregate function. For efficiency reason, we
materialize not only H(Igrey) (cf. Section 2.1), but also
G(Igrey) and D(Igrey) in the complex attribute intervalse-
quence of the table GreyIntervals. If the fast second filter step
determines an intersecting pair of intervals, all other interval
pairs are deleted so that the resulting table of candidate inter-
val pairs, called ctable, consists only of one intersecting in-
terval pair. If this test detects that the intervals cannot inter-
sect, this interval pair is not added to ctable. Nevertheless,
there might be database objects where for none of the corre-
sponding interval pairs this second filter step determines an
intersection. In this case, we sort the interval pairs at the end
of our user-defined aggregation function table such that the
most promising blobintersection tests are carried out first.

3.2.1. Fast Grey Test. In the following paragraph, we will
discuss how grey and black intervals have to look like so that
we can decide whether two interlacing intervals intersect
each other or not without accessing their BLOBs.

Two Black Intervals. If two black intervals interlace, they
necessarily intersect as well.

Black and Grey Intervals. In this case, the situation is a
little bit more complicated. In almost any cases where a black
interval Iblack = (lblack , ublack) interlaces a grey interval Igrey,
with H(Igrey) = (lgrey , ugrey), there is an intersection of Iblack

and Igrey as well. If any of the three conditions depicted in
Table 1 holds, then Iblack and Igrey intersect.

Two Grey Intervals. Obviously, two grey intervals Igrey and
I’grey , with H(Igrey) = (lgrey , ugrey) and H(I’grey)=(l’grey , u’grey),
which interlace do not have to intersect. Fortunately, there
are two cases where we can assert that they intersect without
examining the detailed black interval sequences. The two
cases are illustrated in Table 2.

No intersection. There are only two situations, depicted in
Table 3, where we can determine that two interlacing inter-
vals do not intersect.

3.2.2. Ranking. As shown above, we can pinpoint, based on
relatively little information, whether two interlacing inter-
vals intersect or not. Nevertheless, there might be cases
where we cannot do this for any interlacing database and
query interval pair. In this situation, it is still helpful if we
can predict how likely an intersection might be in order to
rank this interval pair properly in the set of all interlacing

SELECT candidates.id FROM
(SELECT db.id AS id,

table (pair(db.rowid, q.rowid)) AS ctable
FROM GreyIntervals db, :GreyQueryIntervals q
WHERE intersects (hull(db.intervalsequence),

hull(q.intervalsequence)) -- interlacing
GROUP BY db.id

) candidates
WHERE EXISTS
(SELECT 1

FROM GreyIntervals db, :GreyQueryIntervals q,
candidates.ctable ctable

WHERE db.rowid = ctable.dbrowid AND
q.rowid = cable.qrowid AND
blobintersection (db.intervalsequence,
q.intervalsequence) -- intersection

)

Figure 7: SQL statement for spatial object intersection,
based on grey object interval sequences

query and database interval pairs belonging to the same da-
tabase object.

Theorem 2 (Probability for an intersection of interlacing in-
tervals)
Let Igrey and I’grey be two grey intervals with densities d =
D(Igrey) and d’ = D(I’grey) which interlace within an area of
length L. Furthermore, let the black and white cells of the two
intervals be equally distributed. Then the probability for an
intersection is:

Proof: As we assume that the black cells of both grey inter-
vals are equally distributed, we can conclude that N = d × L
black cells of Igrey are included in the interlacing area and
likewise N’ = d’ × L black cells from I’grey . The number of all
different possibilities how N’ black cells of I’grey can be
placed over the L cells of the interlacing area is .
Assuming that all N black cells of Igrey are already distributed
over L, then the number of different possibilities how N’

black cells of I’grey can be placed over the remaining L-N
white cells such that no intersection occurs is

. Thus, the probability for a non-intersec-
tion is equal to , which proves the theorem.

Table 1: Intersection between an interlacing black and grey
interval

condition explanation

L(Iblack)
>
G(Igrey)

If the black interval is longer
than the maximum gap
between two black intervals
of the detailed black interval
sequence of Igrey then the two
intervals intersect.

(linterlace = lblack and
uinterlace = ugrey) or
(linterlace = lgrey and
uinterlace = ublack)

If one of the two conditions
presented in the box on the
left holds, then the black and
grey interval intersect. This
is due to the fact that the grey
intervals end and start with
black intervals.

Nw(Igrey)
<
Linterlace

If the number of the white
cells Nw(Igrey) of a grey inter-
val is smaller than the length
of the interlacing area, then
the grey and the black inter-
val necessarily intersect.

smaller than
G(Igrey)

G(Igrey)
larger than

linterlace=lgrey

uinterlace=ugreylinterlace=lblack

uinterlace=ublack

Nw(Igrey)uinterlace - linterlace+1 >

+

P 1

L d L×–

d’ L× 
 

L

d’ L× 
 

---------------------------–=

L

N’ 
  L

d’ L× 
 =

Table 2: Intersection between two interlacing grey intervals

condition explanation

ugrey = u’grey
or
lgrey = l’grey
or
lgrey = u’grey

If one of the three conditions
depicted in the box on the left
holds, then the two grey inter-
vals intersect (grey intervals
start and end with black inter-
vals). This test is similar to the
polygon boundary test in [11].

Nw(Igrey) + Nw(I’grey)
< Linterlace

If the sum of the number of the
“white cells” of two grey inter-
lacing intervals is smaller than
the length of the interlacing
area, then the two intervals nec-
essarily intersect. This is the
generalization of the third case
of Table 1. This test is similar to
the false area test in [3].

Table 3: No intersection between two interlacing grey intervals

condition explanation

Nb (Igrey) = 2
and
lgrey < l’grey
and
ugrey > u’grey

If Igrey consists only of two black
cells and I’grey is totally “included”
in Igrey , then we know that the two
intervals cannot intersect each
other, although they interlace.

Nb(Igrey) = 2
Nb(I’grey) = 2
and

If both grey intervals consist only
of two black cells and, further-
more, have distinct interval
bounds, then the two intervals cer-
tainly do not intersect.

l’grey = ugrey

u’grey = ugreyl’grey = lgrey

L (Igrey)

L’ (Igrey)

Linterlace

+

Nw (Igrey)+Nw (I’grey)

u’grey < ugrey

Lgrey

L’grey

lgrey < l’grey

Nb(Igrey) = 2

lgrey l’grey ≠ ≠
ugrey u’grey≠

u’grey=ugrey

Lgrey

L’grey

l’grey=lgrey

Nb(Igrey) = 2
N’b(Igrey) = 2

L N–

N’ 
  L d L×–

d’ L× 
 =

L d L×–

d’ L× 
  L

d’ L× 
 ⁄

4. Experimental Evaluation
In this section, we evaluate the performance of the grey

object interval sequences based on two test data sets CAR and
PLANE (cf. Figure 8). These test data sets were provided by
our industrial partners, a German car manufacturer and an
American plane producer, in form of high resolution voxel-
ized three-dimensional CAD parts. In both cases, the Z-curve
was used as a space filling curve to enumerate the voxels.

In order to support the first filter step of our new High
Resolution Indexing method HRI, we can take an arbitrary
access method for intervals as presented in [15]. Throughout
our experiments we have used the relational interval tree for
this purpose. Many spatial access methods compete with our
HRI technique but only few of them may be integrated into
standard SQL database servers. Examples include the Linear
Segment Tree, the Linear Quadtree (Octree), the Relational
R-tree and the spatial version of the RI-tree [16]. Since the
latter outperforms competing approaches by factors between
4.6 and 58.3 for query response time [16], we compared the
HRI method to the optimized spatial version of the RI-tree
which deals efficiently with black interval sequences.

In order to evaluate the HRI method, we have grouped
black object interval sequences into different grey object in-
terval sequences depending on a MAXGAP parameter. The
grouping algorithm tries to minimize the number of grey in-
tervals while not allowing that a maximum gap G(Igrey) of
any grey interval exceeds the MAXGAP parameter. Let us
note that the HRI method and the RI-tree coincide if the
MAXGAP parameter is 0. In this case, we always used the
original optimized version of the RI-tree and not the HRI
method.

We have implemented the optimized RI-tree and the
HRI method on top of the Oracle9i Server using PL/SQL for
the computational main memory based programming. All
experiments were performed on a Pentium III/700 machine
with IDE hard drives. The database block cache was set to
500 disk blocks with a block size of 8 KB and was used ex-
clusively by one active session.

4.1. Gap and Interval Histograms

As shown by Gaede [7] and Faloutsos et al. [6], the num-
ber of intervals generated via a space-filling curve out of a
real-world object mainly depends on the surface and the
shape of the objects and on the resolution of the underlying
grid. Unfortunately, there is nothing mentioned about the dis-
tribution of the intervals or the corresponding gap distribu-
tion. In [23] it is asserted that the gap histograms show local
peaks at gap lengths around 23k with k ∈ IN and k ≥ 0 for 3D
data. This behavior is caused by the fact that many gaps rep-
resent empty cube-like (3D) regions at the boundary of the
spatial objects. Figure 9 supports this assertion. Figure 10
depicts the interval distribution. It can be seen that the bucket
which includes most intervals is regularly increasing with in-
creasing MAXGAP.

4.1.1. Storage Requirements. Although the storage com-
plexity O(n/b) of the RI-tree is optimal, it seems rather
wasteful to spend one row in the table BlackIntervals of the
RI-tree for each short interval, especially if these black inter-
vals are connected to each other by short gaps. Figure 11a
shows the different storage requirements for the GreyInter-
vals table with respect to the different organization ap-
proaches of the BLOBs. As you can see, the bit-oriented ap-
proach is very bad for high MAXGAP values, but it is better
than the offset-oriented approach when using small MAX-
GAP values. The mixed approach combines the advantages
of both and is, therefore, used throughout the rest of this pa-
per. In Figure 11b, the storage requirements for the index as
well as for the complete GreyIntervals table are depicted. In
the case of small MAXGAP parameters, the number of disk

b)

Figure 8: High resolution CAD test data sets
a) CAR, b) PLANE

number of parts: approx. 200 approx. 10,000
data space: [0 m .. 6 m]3 [0 inch .. 3250 inch]3

voxel side length: 3 mm 0.2 inch
resolution: 33 bit 42 bit

(0 .. 8,589,934,591) (0 .. 4,398,046,511,103)
number of intervals: approx. 7 million approx. 10 million

a) Gap histogram

1

100

10000

1000000

1 256 65536 16777216 4294967296 2,20E+16
gap length

n
u

m
b

er
 o

f
g

ap
s

CAR

PLANE

Figure 9: Gap histogram

Figure 10: Interval length depending on the MAXGAP
parameter

1

100

10000

1000000

1 1024 1048576
Interval-Length

n
u

m
b

er
 o

f
in

te
rv

al
s

M=0 M=10^1 M=10^2
M=10^3 M=10^4 M=10^5
M=10^6

1

100

10000

1000000

1 1024 1048576
Interval-Length

n
u

m
b

er
 o

f
 in

te
rv

al
s

M=0 M=10^1 M=10^2
M=10^3 M=10^4 M=10^5
M=10^6

a) b)

blocks used by the index dominates the number of disk
blocks for the GreyIntervals table. With increasing MAX-
GAP parameters the number of disk blocks used by the index
dramatically decreases hand in hand with the number of grey
intervals, and at high parameter values they yield no signifi-
cant contribution any more to the overall sum of used disk
blocks.

4.2. Evaluation of the Dynamic Properties of the
HRI Method

In this section, we want to turn our attention to the differ-
ent facets related to the query response behavior of the HRI
method where we consider collision queries.

All figures presented in this paragraph depict the aver-
age result obtained from collision queries where we have tak-
en every physical mechanical part from both test data sets
CAR and PLANE as query objects in order to determine
which parts in the associated database are colliding with the
query object. We first discuss the overall runtime behavior,
and then, investigate the number of tested candidates. Final-
ly, we close with a few general remarks on miscellaneous
facets.

Response time. In Figure 12, it is shown in which way the
overall response time depends on the MAXGAP parameter.
As the second filter step does not require any measurable
time, it is not visible there. If we use small MAXGAP param-
eters, we still need a lot of time for the first filter step. On the
other hand, using large values leads to an expensive BLOB

test. Fortunately, using MAXGAP parameters in the middle
leads to a good query response time.

Number of Tested candidates. Figure 13 illustrates the
number of interval candidate pairs and the number of the cor-
responding tests which are actually carried out. In the second
filter step, the number of the candidate pairs rapidly decreas-
es with increasing MAXGAP value although the number of
candidate object IDs increases (cf. Figure 14). At low MAX-
GAP values, we have to test only a fractional amount of can-
didate pairs as the fast second filter step works very success-
fully with this parametrization (cf. Figure 13). Consequently,
there is only a relative small number of candidate pairs left
for the blobintersection tests.

In the blobintersection step, the number of both candi-
date pairs and corresponding tests do not vary as much as in
the second step. We can still see that in the case of the best
response time on the CAR data (i.e. MAXGAP equals 1,000),
we only have to test 40% of all candidates and, thus, this step
benefits as well from the skipping principle introduced in
Section 3.1.

In Figure 14, it is illustrated that at small MAXGAP val-
ues the number of the different object IDs resulting from the
first filter step is only marginally higher than the number of
different IDs in the final result set. Likewise, the number of
detected hits in the second filter step is only marginally

Observation 1

With the HRI method we can improve the storage re-
quirement at least by an order of magnitude.

CAR

0

20

40

60

80

100

0 1000 1000000
MAXGAP

n
u

m
b

er
 o

f
b

lo
ck

s
[x

10
00

]

index

table

PLANE

0

20

40

60

80

100

120

140

160

0 1000 1000000
MAXGAP

n
u

m
b

er
 o

f
b

lo
ck

s
[x

10
00

]

index

table

GreyIntervals
 CAR

0

10

20

30

0 1000 1000000
MAXGAP

n
u

m
b

er
 o

f
b

lo
ck

s
[x

10
00

]

bit-oriented
approach
offset-oriented
approach
mixed
approach

Figure 11: Storage requirements
a) GreyIntervals table , b) GreyIntervals table + index

GreyIntervals
PLANE

0

10

20

30

0 1000 1000000
MAXGAP

n
u

m
b

er
 o

f
b

lo
ck

s
[x

10
00

]

bit-oriented
approach
offset-oriented
approach
mixed
approach

a)

(RI-tree)

(RI-tree)(RI-tree)

(RI-tree)

b)

Observation 2

With the HRI method we can improve the response time
of collision queries by an order of magnitude.

PLANE

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

10 100 1000 10000 100000 1000000
MAXGAP

re
sp

o
n

se
 t

im
e

[s
ec

.] 3. filter step

2. filter step

1. filter step

RI-tree

CAR

0

10

20

30

40

50

10 100 1000 10000 100000 1000000
MAXGAP

re
sp

o
n

se
 t

im
e

[s
ec

.]

3. filter step

2. filter step

1. filter step

RI-tree

Figure 12: Response time on collision queries
a) CAR, b) PLANE

b)

a)

smaller. With increasing MAXGAP values the two curves di-
verge.

Miscellaneous. The size of the parts in the PLANE data set
varies considerably. We have a lot of small parts and only a
few very large ones. In the case of the CAR data, this pecu-
liarity is far less distinctive. As large query parts produce a
large number of query intervals, it is obvious that the size of
a part correlates with the response time. In Figure 15a, it is
shown that for most parts from the PLANE data set the HRI
method (MAXGAP = 10,000) outperforms the RI-tree ‘only’
by a factor of 2.9 whereas there are some parts for which this

factor is higher than 100. In Figure 15b, it is illustrated that
we have to wait for more than five minutes for some collision
queries when using the RI-tree. On the other hand, using the
HRI method yields almost interactive response times for all
collision queries.

An interesting observation is that the minimum of sec-
ondary storage requirement (cf. Figure 11) and the minimum
of the response time (cf. Figure 12) are found at the same
value of the MAXGAP parameter, i.e. 1,000 on the CAR data
and 10,000 on the PLANE data. This value of MAXGAP co-
incides with the smallest MAXGAP value for which the
height of the B+-directory is 1 (cf. Figure 16). Smaller MAX-
GAP values lead to more grey intervals and, thus, to a higher
B+-directory.

5. Conclusion
In this paper, we present a new multi-step architecture

for querying high resolution spatial objects on top of stan-
dard database systems, called High Resolution Indexing
(HRI). As the key to HRI we introduce a novel concept of
grey approximations and apply it to the representation of spa-
tial objects by interval sequences which are obtained from
encoding voxels by means of space filling curves. As the

2nd filter step

1

10

100

1000

10000

100000

10 10000
MAXGAP

n
u

m
b

er
 o

f
C

an
d

id
at

es

0.0

0.2

0.4

0.6

0.8

1.0

n
o

. T
es

ts
 /

n
o

.
C

an
d

.

Candidates Tests/Candidates

Figure 13: Tested candidate pairs of query and
database intervals a) CAR, b) PLANE

BLOB intersection step

1

10

100

1000

10 10000
MAXGAP

n
u

m
b

er
 o

f
C

an
d

id
at

es

0.0

0.2

0.4

0.6

0.8

1.0

n
o

. T
es

ts
 /

n
o

.
C

an
d

.

Candidates Tests/Candidates

2nd filter step

1

10

100

1000

10 10000
MAXGAP

n
u

m
b

er
 o

f
C

an
d

id
at

es

0.0

0.2

0.4

0.6

0.8

1.0

n
o

. T
es

ts
 /

n
o

.
C

an
d

.

Candidates Tests/Candidates

blobintersection step

0

1

2

3

10 10000
MAXGAP

n
u

m
b

er
 o

f
C

an
d

id
at

es

0.0

0.2

0.4

0.6

0.8

1.0

n
o

. T
es

ts
 /

n
o

.
C

an
d

.

Candidates Tests/Candidates

b)

a)

Figure 14: Candidate IDs and result sets

CAR 40,31

28,08

20,91
16,40

13,6812,00

10,83 7,80
4,63 2,57 1,74 1,37

11,14

0

10

20

30

40

10 1000 100000
MAXGAP

n
u

m
b

er
 o

f
ID

s

PLANE

3,33

2,27
1,87

1,611,451,37

1,25 1,13 1,07 1,03 1,03 1,03

1,31

0

1

2

3

4

10 1000 100000
MAXGAP

n
u

m
b

er
 o

f
ID

s

Cand. after 1.step Hits after 2. step

Hits after BLOB test

Observation 3

If we use voluminous high resolution spatial query objects,
leading to high response times, we particularly benefit
from the HRI method.

2,2

316,5

0

100

200

300

400

re
sp

o
n

se
 t

im
e

[s
ec

]

 PLANE
 HRI-method RI-tree

10111
2

42

1 0

9959

2,9

43,6

141,0

71,7

48,0

23,0

79,6

106,0

1

10

100

1000

10000

10 20 30 40 50 60 70 80 90 100
% of m ax. response-tim e

n
u

m
b

er
 o

f
q

u
er

y
p

ar
ts

0

50

100

150

re
sp

. t
im

e
R

I-
tr

ee
/

re
sp

. t
im

e
H

R
I-

m
et

h
o

d

number of parts
resp. time RI-tree / resp. time HRI-method
trend response-time-ratio

PLANE

a)

Figure 15: Response time
a) |resp. time RI-tree | / |resp. time HRI method|,

b) maximum response times

b)

0

1

2

0 1000 1000000
MAXGAPh

ei
g

h
t

o
f

th
e

B
+-

d
ir

ec
to

ry

CAR

PLANE

Figure 16: Height of the B+-directory of RI-tree

number of intervals which represent high resolution spatial
objects can become unreasonably high, we reduce this num-
ber by grouping intervals of a sequence into grey intervals.
Technically, small gaps between consecutive black intervals
are closed. In order to guarantee complete and correct answer
sets in the query process, three types of information for a grey
interval are stored in the database: First, the hull of the grey
interval, second, aggregated information including density
and maximum gap length and, third, the exact black interval
sequence. This information about grey intervals is reflected
in the three major steps of the query process as follows:

 • In a first filter step, any standard index for interval data is
employed in order to determine all interlacing pairs of
grey database and query intervals.

 • In a fast second step we identify some actually intersect-
ing black intervals by examining aggregated information
of the grey intervals. Furthermore, the grey interval pairs
are released in an order that reflects the probability
whether the exact black interval sequences intersect or
not.

 • Finally, an expensive BLOB test is carried out, scrutiniz-
ing the exact black interval sequences.

We have implemented our new access method on top of
the Oracle9i Server. The experimental evaluation of the HRI
method can be summarized as follows: First, using the
HRI method improves the secondary storage requirement at
least by an order of magnitude. Second, using the
HRI method improves the response time of collision queries
by an order of magnitude.

In our future work we plan to extend the idea of grey
approximations to other access methods, for instance the use
of grey rectangles in R-trees.

6. References
[1] Berchtold S., Kriegel H.-P., Pötke M.: Database Support for

Concurrent Digital Mock-Up. Proc. IFIP Int. Conf. PROLA-
MAT, Globalization of Manufacturing in the Digital Commu-
nications Era of the 21st Century: Innovation, Agility, and the
Virtual Enterprise, Kluwer Academic Publishers, 499-509,
1998.

[2] Beckmann N., Kriegel H.-P., Schneider R., Seeger B.: The R*-
tree: An Efficient and Robust Access Method for Points and
Rectangles. Proc. ACM SIGMOD Int. Conf. on Management
of Data, 322-331, 1990.

[3] Brinkhoff T., Kriegel H.-P., Schneider R., Seeger B.: Multi-
Step Processing of Spatial Joins. Proc. ACM SIGMOD Int.
Conf. on Management of Data, 197-208, 1994.

[4] Bliujute R., Saltenis S., Slivinskas G., Jensen C. S.: Develop-
ing a DataBlade for a New Index. Proc. 15th Int. Conf. on Data
Engineering (ICDE), 314-323, 1999.

[5] Chen W., Chow J.-H., Fuh Y.-C., Grandbois J., Jou M., Mattos
N., Tran B., Wang Y.: High Level Indexing of User-Defined
Types. Proc. 25th Int. Conf. on Very Large Databases (VLDB),
554-564, 1999.

[6] Faloutsos C., Jagadish H. V., Manolopoulos Y.: Analysis of the
n-Dimensional Quadtree Decomposition for Arbitrary Hyper-
rectangles. IEEE TKDE 9(3): 373-383, 1997.

[7] Gaede V.: Optimal Redundancy in Spatial Database Systems.
Proc. 4th Int. Symp. on Large Spatial Databases (SSD), LNCS
951: 96-116, 1995.

[8] Gaede V., Günther O.: Multidimensional Access Methods.
ACM Computing Surveys 30(2): 170-231, 1998.

[9] Guttman A.: R-trees: A Dynamic Index Structure for Spatial
Searching. Proc. ACM SIGMOD Int. Conf. on Management
of Data, 47-57, 1984.

[10] Günther O.: Looking Both Ways: SSD 1999 ±10. Proc. 6th Int.
Symp. on Large Spatial Databases (SSD), LNCS 1651: 12-15,
1999.

[11] Huang Y.-W., Jing N., Rundensteiner E. A.: A Cost Model for
Estimating the Performance of Spatial Joins Using R-trees.
Proc. 9th Int. Conf. on Scientific and Statistical Database Man-
agement (SSDBM), 30-38, 1997.

[12] IBM Corp.: IBM DB2 Universal Database Application Devel-
opment Guide, Version 6. Armonk, NY, 1999.

[13] Informix Software, Inc.: DataBlade Developers Kit User's
Guide, Version 3.4. Menlo Park, CA, 1998.

[14] Kamel I., Faloutsos C.: Hilbert R-tree: An Improved R-tree
Using Fractals. Proc. ACM SIGMOD Int. Conf. on Manage-
ment of Data, 500-509, 1994.

[15] Kriegel H.-P., Pötke M., Seidl T.: Managing Intervals Effi-
ciently in Object-Relational Databases. Proc. 26th Int. Conf.
on Very Large Databases (VLDB), 407-418, 2000.

[16] Kriegel H.-P., Pötke M., Seidl T.: Interval Sequences: An
Object-Relational Approach to Manage Spatial and Temporal
Data. Proc. 7th Int. Symposium on Spatial and Temporal Data-
bases (SSTD), LNCS 2121: 481-501, 2001.

[17] Moon B., Jagadish H. V., Faloutsos C., Saltz J. H.: Analysis of
the Clustering Properties of Hilbert Space-filling Curve. Tech.
Rep. CS-TR-3611, University of Maryland, 1996.

[18] Medeiros C. B., Pires F.: Databases for GIS. ACM SIGMOD
Record, 23(1): 107-115, 1994.

[19] McNeely W. A., Puterbaugh K. D., Troy J. J.: Six Degree-of-
Freedom Haptic Rendering Using Voxel Sampling. Proc.
ACM SIGGRAPH, 401-408, 1999.

[20] Manolopoulos Y., Theodoridis Y., Tsotras V. J.: Advanced
Database Indexing. Boston, MA: Kluwer, 2000.

[21] Oracle Corp.: Oracle8i Data Cartridge Developer’s Guide,
Release 2 (8.1.6). Redwood Shores, CA, 1999.

[22] Pfeifle M.: Object-Relational Management of High-Resolu-
tion CAD Databases. Diploma Thesis, University of Munich,
2001.

[23] Pötke M.: Spatial Indexing for Object-Relational Databases,
Ph.D. Thesis, Faculty for Mathematics and Computer Science,
University of Munich, 2001.

[24] Srinivasan J., Murthy R., Sundara S., Agarwal N., DeFazio S.:
Extensible Indexing: A Framework for Integrating Domain-
Specific Indexing Schemes into Oracle8i. Proc. 16th Int. Conf.
on Data Engineering (ICDE), 91-100, 2000.

[25] Sellis T., Roussopoulos N., Faloutsos C.: The R+-Tree: A
Dynamic Index for Multi-Dimensional Objects. Proc. 13th Int.
Conf. on Very Large Databases (VLDB), 507-518, 1987.

