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Abstract

Moving object environments contain large numbers of
queries and continuously moving objects. Traditional spa-
tial index structures do not work well in this environment
because of the need to frequently update the index which re-
sults in very poor performance. In this paper, we present a
novel indexing structure, namely the Q+Rtree, based on the
observation that i) most moving objects are in quasi-static
state most of time, and ii) the moving patterns of objects
are strongly related to the topography of the space. The
Q+Rtree is a hybrid tree structure which consists of both
an R-tree and a QuadTree. The Rtree component indexes
quasi-staticobjects – those that are currently moving slowly
and are often crowded together in buildings or houses. The
Quadtree component indexes fast moving objects which are
dispersed over wider regions. We also present the experi-
mental evaluation of our approach.

1 Introduction

The advances of wireless communications technologies,
personal locator technology and global positioning systems
enable a wide range of location-aware services, includ-
ing location and mobile commerce(L- and M-commerce).
Current location-aware services support proximity-based
queries including map viewing and navigation, driving di-
rections, and searching for restaurants and hotels. The
demand for storing, updating and processing continuously
moving data arises in a large number of applications such as
the digital battlefield, mobile e-commerce and traffic con-
trol and monitoring.

In this paper, we address the problem of indexing con-
tinuously moving objects, which could be critical for eval-
uating queries in response to the movement of objects with
near real-time responses. Traditional spatial index struc-
tures such as Rtree [4] are not appropriate for indexing mov-
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ing objects because the constantly changing locations of ob-
jects require constant updates to the index structure which
greatly degrades its performance. To reduce the number of
index updates, many previous schemes [1][6][12][14] use
a simple linear function to describe the movements of the
objects, where the index and the database are updated only
when the parameters of the linear function change. How-
ever, in reality, the movements of objects are far too com-
plicated to be accurately represented as a linear function that
changes infrequently.

We develop a novel technique, the Q+Rtree, to efficiently
index the positions of the moving objects and reduce the
update cost to a great extent. The basic idea is to differ-
entiate fast moving objects from quasi-static objects, which
account for the majority of all moving objects. Although
fast moving objects constitute only a very small fraction of
all moving objects, their movements are the main reason for
the huge index updating overhead and degradation of index
performance. In Q+R tree, quasi-static objects are stored in
an Rtree and fast-moving objects are stored in a Quadtree.
Objects may switch between two trees when they change
their moving status, e.g., if a person moves out of a home
and travels on a freeway, it will change from quasi-static
state into the fast-moving state.

In this paper, we investigate several index structures
for efficient index updating and query evaluation. Our re-
sults show that Rtree alone gives good query performance
but poor index update performance. On the other hand,
Quadtree does pretty well when updating the index, but
its query performance is worse than that of the Rtree. By
combining them together, Q+Rtree achieves a better perfor-
mance for both index updating and query evaluation.

Our work distinguishes itself from related work in that
it makes use of the topography and the patterns of object
movement. By handling different types of moving objects
separately, our index structure more accurately reflects the
reality and results in better performance. In our work, no
assumption is made about the future positions of objects.
It is not necessary for objects to move according to well-
behaved patterns and there are no restrictions, like the max-
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imum velocity, placed on objects either.
The rest of the paper proceeds as follows. Related work

is discussed in Section 2. In Section 3, we describe the
problem being addressed and present the novel index struc-
ture, Q+Rtree, which reduces index updating cost and im-
proves query performance. Experimental evaluation of the
proposed approach is presented in Section 4 and Section 5
concludes the paper.

2 Related Work

Developing efficient index structures is an important re-
search issue for moving object databases. As a naive ap-
proach, multi-dimensional spatial index structures can be
used for indexing the positions of moving objects. Numer-
ous index structures have been proposed for indexing multi-
dimensional data. An excellent survey of these indexing
schemes can be found in [3]. Recently, in [7] Kothuri et
al. argue that R-trees are generally better than Quadtrees
and Oracle now recommends the use of only the R-tree. Al-
though traditional spatial index structures can be used, they
are not efficient for indexing the positions of moving ob-
jects because of frequent and numerous update operations
in moving environments.

Some new index structures have been proposed for in-
dexing moving objects recently. These index structures can
be classified into the two categories. Those that index: (1)
the trajectories (histories) and (2) the current positions of
objects. Our approach belongs to the latter category.

In the first category, object movement in a d-dimensional
space is converted into a trajectory in a (d+1) dimensional
space when time is treated as a dimension. Examples of
this approach are the Spatio-Temporal R-tree (STR-tree)
and Trajectory-Bundle tree (TB-tree) proposed in [9]. The
authors showed that these two structures work better than
traditional spatial index structures for queries related to
trajectories. In [13], Tao and Papadias have proposed
the Multi- version 3D R-tree(MV3R-tree), which combines
multi-version B-trees and 3D-Rtrees.

In the second category, most approaches describe a mov-
ing object’s location by a linear function, and only when the
parameters of the function change, for example, when the
moving object changes its speed or direction, is the database
updated. The time-parameterized R-tree (TPR-tree) has
been proposed in by Saltenis et al. [12]. In this scheme,
the position of a moving point is represented by a refer-
ence position and a corresponding velocity vector. When
splitting nodes, the TPRtree considers both the positions of
the moving points and their velocities. Kollios et al. [6]
proposed an efficient indexing scheme using partition trees.
Tayeb et al. [14] introduced the issue of indexing moving
objects to query the present and future positions. They pro-
posed PMR-Quadtree for indexing moving objects. Agar-

wal et al.[1] proposed various schemes based on the duality
and they developed an efficient indexing scheme to answer
approximate nearest-neighbor queries.

All these techniques rely upon a good representation of
the future movement of objects. They suffer from the prob-
lem objects in reality do not follow predictable paths. In
many applications, the movement of objects is complicated
and non-linear. In such situations, the approaches based
on a linear function cannot work efficiently – the function
changes too often. Song and Roussopoulos [11] proposed
a new idea based on hashing to solve this problem. Their
approach is simple and intuitive. However, since it is based
on a simple hashing, it might cause problems such as long
chains of overflow pages [8]. In [10], we propose two
novel approaches, namely Query Indexing and Velocity-
Constrained Indexing (VCI), for indexing moving objects.
Both approaches achieve significant improvements over tra-
ditional approaches. However, Query Indexing cannot ef-
ficiently handle the arrival of new queries, while the VCI
index does not have good performance when the number of
concurrent queries is large.

It should be noted that our approach of using two sep-
arate index structures – one R-tree and one QuadTree – is
quite different from the hybrid tree [2]. In [2], Chakrabarti
et al. presented the hybrid tree, which is basically a space
partitioning based data structure that allows the index sub-
space to overlap. The overlap is allowed only when try-
ing to achieve an overlap-free split would cause downward
cascading splits and hence a possible violation of utiliza-
tion constraints. It combines positive aspects of both space
partitioning and data partitioning based index structures to
achieve better search performance. The hybrid tree they
proposed is for indexing high-dimensional feature spaces.

3 Q+Rtree

In this section, we present our proposed index structure,
called the Q+Rtree, to efficiently index and query moving
objects. We first introduce the basic idea and motivation
of building the Q+Rtree, followed by the details of its con-
struction, update, and query processing.

3.1 Observations

Our Approach is based on two important observations
about moving object environments. Firstly, most moving
objects do not move at high speeds most of the time. In
fact, most objects (especially human beings) are in a, quasi-
staticstate most of the time. The termquasi-staticis used
to describe a state where the object is not perfectly static
(such as a parked park) but rather is moving within a small
region of space (e.g. an office, home or building). The ma-
jority of people spend most of their time at home or in an
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office, where their movements are small and slow. There
are objects, of course, that move almost all the time, like
taxis or city buses, but the proportion of these constantly
moving objects is very small. We can safely estimate that
normally, at any time, more than 80% of the objects are in a
quasi-static state, which we currently define as moving less
than 30 meters per minute. Based upon experiments with
the City Simulator developed at IBM Almaden [5], which
is designed to generate realistic motion data for cities, we
found that the results are consistent with this estimation.

Secondly, the movements of objects are generally related
to topography. For instance, huge buildings often contain
hundreds or even thousands of people, who are in quasi-
static states. On the other hand, fast moving objects are
usually on roads or freeways (and not likely to be in build-
ings). Furthermore because the topography does not change
over a short time, we can exploit the topography, the rela-
tively stable elements (compared to the moving objects), to
build the index.

Based upon these observations about moving objects we
propose the hybrid Q+Rtree.

3.2 Q+Rtree

Considering the distribution and moving patterns of ob-
jects, we separate the quasi-static objects and fast-moving
objects and build separate indexes for each type.

For quasi-static objects, the update frequency is expected
to be lower since their velocities are smaller. The range
of movement of quasi-static objects is normally small too,
such as within an office building or a house. Therefore, if
we build an Rtree over the quasi-static objects, the chances
that they move out of their current MBRs are small, which
can reduce a large amount of index updating overhead by
using the Lazy Update approach [8]. This approach updates
the structure of the index only when an object moves out of
the corresponding MBR. If the new position is still within
the MBR, only the position of the object in the leaf node is
updated. Furthermore, if we take a look at the distribution
of objects, quasi-static objects are often crowded together
(e.g. in buildings, parks, or schools), which makes the low-
level MBR of the Rtree small and packed. This will increase
the precision of the index and speed up searching (in terms
of efficient pruning during query evaluation).

For fast-moving objects, we build a Quadtree index. It is
not appropriate to use an Rtree index for these fast-moving
objects since they are likely to often move out of their cur-
rent MBRs and result in significant index updating over-
head. Moreover, fast-moving objects are more likely to be
widely distributed over the space instead of being crowded
together, which would result in large (in terms of coverage)
nodes and less efficient searching. A Quadtree, on the other
hand, works well in this scenario. Since each quadrant can

accommodate a certain number of objects, when the den-
sity of the objects is low, the area of the quadrant can be
very large. Therefore, even if objects are moving fast, there
is a small chance that the object will move out of its cur-
rent quadrant, which makes it easy to update the index (if
the object remains in its current quadrant, no update to the
index structure is needed).

Any index for moving objects suffers from two conflict-
ing requirements. On the one hand, a large internal node
is desirable so that objects will not constantly move out
of the range of the nodes and result in changes to the in-
dex structure. On the other hand, a small and tight internal
node is desirable so that the index can efficiently support
queries. By separating slow and fast moving objects, build-
ing a loose index for fast objects and a tight index for slow
objects, we achieve both goals.

3.3 Q+Rtree Construction

The process of building a Q+Rtree consists of three
steps:

1. Build a Topography-Based Rtree for quasi-static ob-
jects. A simple approach is to build an R-tree over
the slow-moving objects in the usual fashion – i.e. ei-
ther insert the objects one by one into the R-tree, or
perform a bulk loading operation. However, our ap-
proach takes a different alternative. Instead of building
the index using the quasi-static objects, we build an R-
tree index over topographical regions. These regions
can be determined from an analysis of maps if they are
available, or from the past behavior of users. The moti-
vation for building an index over the topographical re-
gions is that these regions represent reasonable bounds
that quasi-static objects will remain within for large
periods of time. Once this index is created, the quasi-
static objects are inserted into the index while treating
the topographical objects from the previous step sim-
ply as MBR one level above the new leaf level – at
which the objects are stored.

This Rtree, as shown in Figure 1, has the following
features:

(a) The level above the leaves store topographical re-
gions. Therefore, at this level, there is no overlap
between the nodes. This is different from a tradi-
tional Rtree, which might have overlap between
MBRs at each level.

(b) The leaves of the tree store moving objects. The
leaf level is a special level where there is no Max-
imum/Minimum Entries per node restriction. All
objects that belong to a given topographical re-
gion are inserted below that region. This also
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Topographical Rtree

. . .

. . .. . .. . .

. . .
... ...

Leaves (Moving Objects)

Topography Level

Figure 1. Example of Rtree over the Quasi-
Static Objects

makes insertion an easier procedure since there is
only one place to insert an object, while in tradi-
tional Rtree, an object could be inserted into any
node and large amounts of computation needs to
be performed to determine which node it should
be inserted into, (for example, finding a node
that needs least enlargement to accommodate
this object or results in least overlap of MBRs).
Since there are no Maximum/Minimum Entries
per node restriction for the leaf nodes, we use a
dynamic array to increase the space utilization.

2. Build a Quadtree. The second step is to build a
Quadtree over the entire space by insert all objects not
in the slow-moving cells. This process is identical to
the regular Quadtree operations.

3. Combine the Quadtree and Rtree structures.Since the
Quadtree and the Rtree overlap in space, at the leaves
of the QuadTree, we build a link list for each quadrant
with pointers to each of the Rtree nodes contained by
or intersecting the quadrant. The Rtree nodes pointed
to by the link list can be at different levels. An example
of this combined tree is shown in Figure 3 correspond-
ing to the city shown in Figure 2.

3.4 Updating the Q+Rtree

When an update arrives with an object’s new location, it
could be one of the following cases:

1. The object is currently in the Rtree, its new position
is still in the Rtree, corresponding to the scenario that
the quasi-static object stays in the slow-moving area.
We need to check if its current MBR contains the new
location or not.

(a) If the new position is still in its current MBR,

:Slow Moving Region
:Fast Moving Object

Figure 2. Example of a city

Q2

Query Q1

MBR1MBR1

Q12 Q11

Q13 Q14

MBR3

MBR21

MBR22

MBR2

Q3 Q4

Quadtree Rtree

Q1 Q2 Q3 Q4

Q11 Q12 Q13 Q14

MBR1 MBR3MBR2

...

MBR21 MBR22

Figure 3. Example of the Combined Q+R Tree
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just modify the position of that object in the leaf
node.

(b) If the new position is not in its current MBR,
delete it from current node and insert it with its
new position.

2. The object is currently in the Rtree, its new position is
not in the Rtree: since the Rtree, as Figure 1 shows,
contains all the slow moving regions, this corresponds
to the scenario that the quasi-static object leaves the
slow-moving area and moves into a fast-moving area,
such as a freeway. The object should be deleted from
the Rtree and inserted into the Quadtree.

3. The object is currently in the Quadtree, its new posi-
tion is in the Rtree: corresponding to the scenario that
a fast moving object leaves the fast-moving area and
moves into a slow-moving area The object should be
deleted from the Quadtree and inserted into the Rtree.

4. The object is currently in the Quadtree, its new posi-
tion is still in the Quadtree: corresponding to the sce-
nario that a fast moving object keeps moving in the
fast-moving area We need to check if its current quad-
rant contains the new location or not.

(a) If the new position is still in its current quadrant,
just modify the position of that object entry

(b) If the new position is not in its current quadrant,
delete it from current node and insert it into the
new node.

Since most of the objects are in slow-moving areas and
stay in quasi-static states most of the time, The majority of
the situations are expected to be case 1.1, which does not
result in a large update overhead.

3.5 Query Evaluation with Q+Rtree

In order to process a range or point query, the search
begins with the Quadtree. For Example, as show in Figure
3, when range query Q1 arrives, we start searching from
the Quadtree and find that quadrant Q14 intersects with the
query, consequently we search all objects under quadrant
Q14. In addition, since Q14 also links to MBR21 in the
Rtree, we need to continue the search for objects indexed
under MBR21 in the Rtree as well. Because the Quadtree
and the Rtree overlap in space, many queries will result in
searching both trees. The link lists from Quadtree nodes
pointing to Rtree nodes are very useful in improving the
search time for these queries. This link list speed up the
search since we do not have to start from the Rtree root for
each query.

Parameter Value
Number of Objects 100,000 - 1,000,000
Number of Queries 100,000

Table 1. Parameter used in the experiments

4 Experimental Evaluation

In this section, we present some experimental results
for the performance of the Q+Rtree relative to both the
Quadtree and R-tree with respect to update and search per-
formance. We compare the following 4 approaches: i) the
Q+Rtree, ii) the Quadtree, iii) the R*tree which updates the
index by deletion and insertion, i.e., it deletes the old po-
sitions and insert the new ones, and iv) the R* tree which
updates the index by modifying the MBR, i.e. it extends
the MBR to include the new positions if necessary. The re-
sults report the actual execution time for the various cases.
The experimental settings are described first, followed by
the results and discussion.

4.1 Experimental Setup

In all our experiments, we used a 1G Hz Pentium III ma-
chine with 2GB of main memory. This machine has 32K
of level 1 cache, of which 16K is for instructions and 16K
for data, and 256K level 2 cache. Due to the unavailabil-
ity of actual object movement data, we used a synthetic
dataset generated by the City Simulator, developed at IBM
Almaden. City Simulator is a scalable, three-dimensional
model city that enables creation of dynamic spatial data
simulating the motion of up to 1 million people. It is de-
signed to generate realistic data for evaluation of database
algorithms for indexing and storing dynamic location data.

For generating the slow-moving topographical regions
we employed the same input that was fed as a map into
the City Simulator. In the City Simulator, the map is de-
scribed by an XML file, which specifies detailed informa-
tion about roads, buildings, parks, etc. We wrote a slow-
moving area finder, which scans the XML file and find out
all slow-moving regions. Then, we build an Rtree over all
of the slow-moving regions, and insert the objects that fall
in these cells into the leaf nodes of this Rtree.

The experiments were repeated with datasets of three dif-
ferent sizes. We generated datasets with 100K, 500K and
1M objects respectively. Object movement and query evalu-
ation are carried in cycles. Each cycle consists of two steps:
updating the indexes with the new object locations and eval-
uation of queries. A set of queries is continuously evalu-
ated. We measure the performance of each step separately.
In each set of graphs, we present the results for 100k, 500K,
and 1M objects. Thex-axis gives the number of cycles for
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Figure 4. Index Updating time

which the tests were run, and they-axis gives the actual to-
tal execution times observed. We test the performance for
20 cycles. Assume that objects report their locations every
3 minutes, 20 cycles corresponds to an hour.

4.2 Update Performance

In the first experiment, we compared the four approaches
in terms of the time to process location update opera-
tions for objects in each cycle. Figure 4 shows that
both alternatives for the R*tree take more time to update
that the Quadtree and the Q+Rtree. Furthermore, the in-
sert/deletion option is particularly poor. The performance
of the Quadtree is clearly the best in all cases, although the
Q+R-tree does not lag too far behind.

4.3 Search performance

In this experiment, we measured the performance for
range queries. The number of queries is the fixed at
100,000. In each dimension, the range of the query win-
dows are approximately 5 percent of the entire range. Query
windows are uniformly distributed in the space.

Figure 5 shows that the R*tree, although suffering from
the huge indexing updating overhead, performs well in
searching. On the contrary, the Quadtree, which is fast for
index updating, is not very efficient for searching. We can
also see that the modifying scheme makes the R*tree per-
formance deteriorate quickly and thereby result in increased
searching time. This is not surprising since the advantage
of the modify approach lies in avoiding the cost of moving
objects from one node to another. However over time this
results in an increase in the average size of MBRs as well as
the amount of dead space. Consequently, it is not surpris-
ing that the search performance is poorer. The search per-
formance of Q+Rtree is a little bit worse than pure R*tree.
However, as showed in the previous section, pure R*tree
has a large update overhead, therefore, when considering
the overall performance, as we will see next, Q+Rtree out-
performs both pure R*tree and pure Quadtree.

4.4 Overall performance

For each cycle, the system needs to first update the index,
then evaluate the queries. Figure 6 shows the total cost of
the four schemes in each cycle by adding up their updating
cost and the query processing cost. Clearly, the Q+Rtree,
with good performance in both updating and searching, has
the best overall performance.
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5 Conclusion

Traditional spatial index structures do not work well in
moving object environments, which are characterized by
large numbers of continuously moving objects and concur-
rent active queries over these objects. The need for frequent
index updating results in poor performance. Some early
techniques try to reduce the number of updates by approx-
imating the movement of moving objects as a linear func-
tion, but the movement of real objects are too complicated
to be described as a linear function.

We present a novel indexing technique for scalable ex-
ecution: Q+Rtree. The Q+Rtree differentiates quasi-static
objects, which account for the majority of all moving ob-
jects, and fast-moving objects and stores them in different
index structures. It also makes use of the topography, which
can affect or even determine movement characteristics of
the objects. Our experiments demonstrate that Q+Rtree
achieves significant improvement over the traditional ap-
proaches.
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